Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T04:58:57.776Z Has data issue: false hasContentIssue false

Chapter 3 - The Rb–Sr Method

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarede, F., Michard, A., Minster, J. F. and Michard, G. (1981). 87Sr/86Sr ratios in hydrothermal waters and deposits from the East Pacific Rise at 21 °N. Earth Planet. Sci. Lett. 55, 229–36.CrossRefGoogle Scholar
Aleinikoff, J. N., Horton, J. W., Drake, A. A. et al. (2004). Deciphering multiple Mesoproterozoic and Paleozoic events recorded in zircon and titanite from the Baltimore Gneiss, Maryland: SEM imaging, SHRIMP U-Pb geochronology, and EMP analysis. In: Tollo, R. P., Corriveau, L., McLelland, J. and Bartholomew, M. J. (Eds) Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction: Geol. Soc. America Mem. 197, 411–34.Google Scholar
Allegre, C. J., Louvat, P., Gaillardet, J. et al. (2010). The fundamental role of island arc weathering in the oceanic Sr isotope budget. Earth Planet. Sci. Lett. 292, 51–6.CrossRefGoogle Scholar
Amelin, Y. and Zaitsev, A. N. (2002). Precise geochronology of phoscorites and carbonatites: The critical role of U-series disequilibrium in age interpretations. Geochim. Cosmochim. Acta 66, 2399–419.Google Scholar
Ando, A., Nakano, T., Kawahata, H., Yokoyama, Y. and Khim, B. K. (2010). Testing seawater Sr isotopic variability on a glacial–interglacial timescale: An application of latest high-precision thermal ionization mass spectrometry. Geochem. J. 44, 347–57.Google Scholar
Armstrong, R. L. (1971). Glacial erosion and the variable isotopic composition of strontium in sea water. Nature Phys. Sci. 230, 132–3.Google Scholar
Asmerom, Y., Jacobsen, S. B., Knoll, A. H., Butterfield, N. J. and Swett, K. (1991). Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution. Geochim. Cosmochim. Acta 55, 2883–94.Google Scholar
Basu, A. R., Jacobsen, S. B., Poreda, R. J., Dowling, C. B. and Aggarwal, P. K. (2001). Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record. Science 293, 1470–3.Google Scholar
Beck, A. J., Charette, M. A., Cochran, J. K., Gonneea, M. E. and Peucker-Ehrenbrink, B. (2013). Dissolved strontium in the subterranean estuary–Implications for the marine strontium isotope budget. Geochim. Cosmochim. Acta 117, 3352.Google Scholar
Becker, T. W., Conrad, C. P., Buffett, B. and Müller, R. D. (2009). Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport. Earth Planet. Sci. Lett. 278, 233–42.Google Scholar
Begemann, F., Ludwig, K. R., Lugmair, G. W. et al. (2001). Call for an improved set of decay constants for geochronological use. Geochim. Cosmochim. Acta 65, 111–21.Google Scholar
Birck, J. L. and Allegre, C. J. (1978). Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb)87Sr method. Earth Planet. Sci. Lett. 39, 3751.Google Scholar
Blum, J. D. and Erel, Y. (1995). A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature 373, 415–18.Google Scholar
Blum, J. D., Gazis, C. A., Jacobsen, A. D. and Chamberlain, C. P. (1998). Carbonate versus silicate weathering in the Raikot watershed within the High Himalayan Crystalline Series. Geology 26, 411–4.Google Scholar
Brand, U. and Veizer, J. (1980). Chemical diagenesis of a multicomponent carbonate system – 1: Trace elements. J. Sed. Petrol. 50, 1219–36.Google Scholar
Brannon, J. C., Podosek, F. A. and McLimans, R. K. (1992). Alleghenian age of the Upper Mississippi Valley zinc–lead deposit determined by Rb–Sr dating of sphalerite. Nature 356, 509–11.Google Scholar
Brass, G. W. (1976). The variation of the marine 87Sr/86Sr during Phanerozoic time: interpretation using a flux model. Geochim. Cosmochim. Acta 40, 721–30.Google Scholar
Brinkman, G. A., Aten, A. H. W. and Veenboer, J. T. (1965). Natural radioactivity of K-40, Rb-87 and Lu-176. Physica 31, 1305–19.Google Scholar
Brooks, C., Hart, S. R., Hofmann, A. and James, D. E. (1976a). Rb–Sr mantle isochrons from oceanic regions. Earth Planet. Sci. Lett. 32, 5161.Google Scholar
Brooks, C., James, D. E. and Hart, S. R. (1976b). Ancient lithosphere: its role in young continental volcanism. Science 193, 1086–94.Google Scholar
Brown, E. H. (1971). Phase relations of biotite and stilpnomelane in the green-schist facies. Contrib. Mineral. Petrol. 31, 275–99.Google Scholar
Burke, W. H., Denison, R. E., Hetherington, E. A. et al. (1982). Variations of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–19.Google Scholar
Butterfield, D. A., Nelson, B. K., Wheat, C. G., Mottl, M. J. and Roe, K. K. (2001). Evidence for basaltic Sr in midocean ridge-flank hydrothermal systems and implications for the global oceanic Sr isotope balance. Geochim. Cosmochim. Acta 65, 4141–53.Google Scholar
Catanzaro, E. J., Murphy, T. J., Garner, E. L. and Shields, W. R. (1969). Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium. J. Res. NBS 73A, 511–16.CrossRefGoogle ScholarPubMed
Chaudhuri, S. and Clauer, N. (1986). Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic eon. Chem. Geol. (Isot. Geosci. Sect.) 59, 293303.CrossRefGoogle Scholar
Christensen, J. N., Halliday, A. N., Leigh, K. E., Randell, R. N. and Kesler, S. E. (1995a). Direct dating of sulfides by Rb–Sr: a critical test using the Polaris Mississippi Valley-type Zn–Pb deposit. Geochim. Cosmochim. Acta 59, 5191–7.Google Scholar
Christensen, J. N., Halliday, A. N., Vearncombe, J. R. and Kesler, S. E. (1995b). Testing models of large-scale fluid flow using direct dating of sulfides: Rb–Sr evidence for early dewatering and formation of Mississippi Valley-type deposits, Canning Basin, Australia. Econ. Geol. 90, 877–84.Google Scholar
Clark, S. P. C. and Jager, E. (1969). Denudation rate in the Alps from geochronologic and heat flow data. Amer. J. Sci. 267, 1143–60.Google Scholar
Clauer, N. (1979). A new approach to Rb)Sr dating of sedimentary rocks. In: Jager, E. and Hunziker, J. C. (Eds) Lectures in Isotope Geology. Springer, pp. 3051.Google Scholar
Clauer, N., Keppens, E. and Stille, P. (1992). Sr isotopic constraints on the process of glauconitization. Geology 20, 133–6.Google Scholar
Clemens, S. C., Farrell, J. W. and Gromet, L. P. (1993). Synchronous changes in seawater strontium isotope composition and global climate. Nature 363, 607–10.Google Scholar
Clemens, S. C., Gromet, L. P. and Farrell, J. W. (1995). Artifacts in Sr isotope records. Nature 373, 201.Google Scholar
Cliff, R. A. (1985). Isotope dating in metamorphic belts. J. Geol. Soc. Lond. 142, 97110.Google Scholar
Coggon, R. M., Teagle, D. A., Smith-Duque, C. E., Alt, J. C. and Cooper, M. J. (2010). Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–17.Google Scholar
Compston, W. and Jeffery, P. M. (1959). Anomalous common strontium in granite. Nature 184, 1792–3.CrossRefGoogle Scholar
Compston, W. and Pidgeon, R. T. (1962). Rubidium–strontium dating of shales by the total-rock method. J. Geophys. Res. 67, 3493–502.Google Scholar
Coogan, L. A. (2009). Altered oceanic crust as an inorganic record of paleoseawater Sr concentration. Geochem. Geophys. Geosys. 10 (4), 111.Google Scholar
Coogan, L. A. and Dosso, S. E. (2015). Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 3846.Google Scholar
Cowie, J. W. and Johnson, M. R. W. (1985). Late Precambrian and Cambrian geological time-scale. In: Snelling, N. J. (Ed.) The chronology of the geological record. Mem. Geol. Soc. Lond. 10, 4764.Google Scholar
Dasch, E. J. and Biscaye, P. E. (1971). Isotopic composition of strontium in Cretaceous-to-Recent, pelagic foraminifera. Earth Planet. Sci. Lett. 11, 201–4.Google Scholar
Davis, A. C., Bickle, M. J. and Teagle, D. A. (2003). Imbalance in the oceanic strontium budget. Earth Planet. Sci. Lett. 211, 173–87.Google Scholar
Davis, D. W., Gray, J. and Cumming, G. L. (1977). Determination of the 87Rb decay constant. Geochim. Cosmochim. Acta 41, 1745–9.Google Scholar
Del Moro, A., Puxeddu, M. and Villa, I. M. (1982). Rb–Sr and K–Ar ages on minerals at temperatures of 300–400 °C from deep wells in the Larderello geothermal field (Italy). Contrib. Mineral. Petrol. 81, 340–9.Google Scholar
DePaolo, D. J. (1987). Correlating rocks with strontium isotopes. Geotimes 32, 1618.Google Scholar
Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H. and Swett, K. (1989). Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochim. Cosmochim. Acta 53, 2331–9.CrossRefGoogle ScholarPubMed
Dia, A. N., Cohen, A. S., O'Nions, R. K. and Shackleton, N. J. (1992). Seawater Sr isotope variation over the past 300 ka and influence of global climate cycles. Nature 356, 786–8.Google Scholar
Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40, 259–74.Google Scholar
Dodson, M. H. (1979). Theory of cooling ages. In: Jager, E. and Hunziker, J. C. (Eds) Lectures in Isotope Geology. Springer, pp. 194202.Google Scholar
Dunoyer de Segonzac, G. (1969). Les mineraux argileux dans la diagenese. Passage au metamorphisme. Mem. Serv. Carte Geol. Alsace Lorraine 29, 320 pp.Google Scholar
Edmond, J. M., Measures, C., McDuff, R. E. et al. (1979). Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46, 118.CrossRefGoogle Scholar
Elderfield, H. and Gieskes, J. M. (1982). Sr isotopes in interstitial waters of marine sediments from Deep Sea Drilling Project cores. Nature 300, 493–7.Google Scholar
Elderfield, H., Wheat, C. G., Mottl, M. J., Monnin, C. and Spiro, B. (1999). Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 172, 151–65.Google Scholar
English, N. B., Quade, J., DeCelles, P. G. and Garzione, C. N. (2000). Geologic control of Sr and major element chemistry in Himalayan rivers, Nepal. Geochim. Cosmochim. Acta 64, 2549–66.Google Scholar
Fairbairn, H. W., Hurley, P. M. and Pinson, W. H. (1961). The relation of discordant Rb–Sr mineral and rock ages in an igneous rock to its time of subsequent Sr87/Sr86 metamorphism. Geochim. Cosmochim. Acta 23, 135–44.Google Scholar
Farrell, J. W., Clemens, S. C. and Gromet, L. P. (1995). Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr. Geology 23, 403–6.Google Scholar
Faure, G., Hurley, P. M. and Powell, J. L. (1965). The isotopic composition of strontium in surface water from the North Atlantic Ocean. Geochim. Cosmochim. Acta 29, 209–20.Google Scholar
Field, D. and Raheim, A. (1979a). Rb–Sr total rock isotope studies on Precambrian charnockitic gneisses from South Norway: evidence for isochron resetting during a low-grade metamorphic-deformational event. Earth Planet. Sci. Lett. 45, 3244.Google Scholar
Field, D. and Raheim, A. (1979b). A geological meaningless Rb–Sr total rock isochron. Nature 282, 497–9.Google Scholar
Fietzke, J. and Eisenhauer, A. (2006). Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC–ICP–MS. Geochem. Geophys. Geosys. 7 (8), 16.Google Scholar
Flynn, K. F. and Glendenin, L. E. (1959). Half-life and β spectrum of Rb87. Phys. Rev. 116, 744–8.Google Scholar
Gast, P. W. (1955). Abundance of Sr87 during geologic time. Bull. Geol. Soc. Amer. 66, 1449–64.Google Scholar
Goldstein, S. J. and Jacobsen, S. B. (1987). The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol.: Isot. Geosci. Sect. 66, 245–72.Google Scholar
Grant, N. K., Laskowski, T. E. and Foland, K. A. (1984). Rb–Sr and K–Ar ages of Paleozoic glauconites from Ohio–Indiana and Missouri, USA. Isot. Geosci. 2, 217–39.Google Scholar
Gray, C. M., Papanastassiou, D. A. and Wasserburg, G. J. (1973). The identification of early condensates from the solar nebula. Icarus 20, 213–39.Google Scholar
Gussone, N., Eisenhauer, A., Heuser, A. et al. (2003). Model for kinetic effects on calcium isotope fractionation (δ 44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim. Cosmochim. Acta 67, 1375–82.Google Scholar
Halliday, A. N. and Porcelli, D. (2001). In search of lost planets – the paleocosmochronology of the inner solar system. Earth Planet. Sci. Lett. 192, 545–59.Google Scholar
Harris, W. B. (1976). Rb–Sr glauconite isochron, Maestrichtian unit of Peedee Formation, North Carolina. Geology 4, 761–2.Google Scholar
Harvey, C. F. (2002). Groundwater flow in the Ganges Delta. Science 296, 1563.Google Scholar
Henderson, G. M., Martel, D. J., O'Nions, R. K. and Shackleton, N. J. (1994). Evolution of seawater 87Sr/86Sr over the last 400 ka: the absence of glacial/interglacial cycles. Earth Planet. Sci. Lett. 128, 643–51.Google Scholar
Hess, J., Bender, M. and Schilling, J. G. (1991). Assessing seawater/basalt exchange of strontium isotopes in hydrothermal processes on the flanks of mid-ocean ridges. Earth Planet. Sci. Lett. 103, 133–42.Google Scholar
Hess, J., Bender, M. L. and Schilling, J. G. (1986). Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science 231, 979–84.CrossRefGoogle ScholarPubMed
Hodell, D. A., Mead, G. A. and Mueller, P. A. (1990). Variation in the strontium isotopic composition of seawater (8 Ma to present): implications for chemical weathering rates and dissolved fluxes to the oceans. Chem. Geol. (Isot. Geosci. Sect.) 80, 291307.Google Scholar
Hofmann, A. W. and Giletti, B. J. (1970). Diffusion of geochronologically important nuclides under hydrothermal conditions. Eclogae Geol. Helv. 63, 141–50.Google Scholar
Hunziker, J. C. (1974). Rb–Sr and K–Ar age determination and the Alpine tectonic history of the Western Alps. Mem. Inst. Geol. Min. Univ. Padova 31, 154.Google Scholar
Hurley, P. M., Cormier, R. F., Hower, J., Fairbairn, H. W. and Pinson, W. H. (1960). Reliability of glauconite for age measurement by K–Ar and Rb–Sr methods. Amer. Assoc. Pet. Geol. Bull. 44, 1793–808.Google Scholar
Jacobson, A. D. and Blum, J. D. (2000). Ca/Sr and 87Sr/86Sr geochemistry of disseminated calcite in Himalayan silicate rocks from Nanga Parbat: influence on river-water chemistry. Geology 28, 463–6.Google Scholar
Jager, E. (1973). Die Alpine orogenese im lichte der radiometrischen altersbestimmung. Eclogae Geol. Helv. 66, 1121.Google Scholar
Jager, E., Niggli, E. and Wenk, E. (1967). Rb)Sr altersbestimmungen an glimmern der Zentralalpen. Beitr. Geol. Karte Schweiz N. F. 134, 167.Google Scholar
Jones, M. T., Gislason, S. R., Burton, K. W. et al. (2014). Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry. Earth Planet. Sci. Lett. 395, 91100.Google Scholar
Kaufman, A. J., Jacobsen, S. B. and Knoll, A. H. (1993). The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet. Sci. Lett. 120, 409–30.Google Scholar
Kossert, K. (2003). Half-life measurements of 87Rb by liquid scintillation counting. Applied Rad. Isot. 59, 377–82.Google Scholar
Krabbenhoft, A., Eisenhauer, A., Bohm, F. et al. (2010). Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ 88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim. Cosmochim. Acta 74, 4097–109.Google Scholar
Kubler, B. (1966). La cristallinite d'illite et les zones tout a fait superieures du metamorphisme. Colloque. sur les Etages Tectoniques. Univ. Neuchatel, pp. 105–22.Google Scholar
Lanphere, M. A., Wasserburg, G. J., Albee, A. L. and Tilton, G. R. (1964). Redistribution of strontium and rubidium isotopes during metamorphism, World Beater complex, Panamint Range, California. In: Craig, H., Miller, S. L. and Wasserburg, G. J. (Eds) Isotopic and Cosmic Chemistry. North Holland Pub., pp. 269320.Google Scholar
Lear, C. H., Elderfield, H. and Wilson, P. A. (2003). A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet. Sci. Lett. 208, 6984.Google Scholar
MacLeod, K. G., Huber, B. T. and Fullagar, P. D. (2001). Evidence for a small (∼0.000 030) but resolvable increase in seawater 87Sr/86Sr ratios across the Cretaceous–Tertiary boundary. Geology 29, 303–6.Google Scholar
Martin, E. E. and Macdougall, J. D. (1991). Seawater Sr isotopes at the Cretaceous/Tertiary boundary. Earth Planet. Sci. Lett. 104, 166–80.Google Scholar
McArthur, J. M., Thirlwall, M. F., Engkilde, M., Zinsmeister, W. J. and Howarth, R. J. (1998). Strontium isotope profiles across K/T boundary sequences in Denmark and Antarctica. Earth Planet. Sci. Lett. 160, 179–92.Google Scholar
McMullen, C. C., Fritze, K. and Tomlinson, R. H. (1966). The half-life of rubidium-87. Can. J. Phys. 44, 3033–8.Google Scholar
Minster, J-F., Birck, J-L. and Allegre, C. J. (1982). Absolute age of formation of chondrites studied by the 87Rb–87Sr method. Nature 300, 414–19.Google Scholar
Mokadem, F., Parkinson, I. J., Hathorne, E. C. et al. (2015). High-precision radiogenic strontium isotope measurements of the modern and glacial ocean: Limits on glacial–interglacial variations in continental weathering. Earth Planet. Sci. Lett. 415, 111–20.Google Scholar
Morton, J. P. and Long, L. E. (1980). Rb)Sr dating of Palaeozoic glauconite from the Llano region, central Texas. Geochim. Cosmochim. Acta 44, 663–72.Google Scholar
Morton, J. L. and Sleep, N. H. (1985). A mid-ocean ridge thermal model: Constraints on the volume of axial hydrothermal heat flux. J. Geophys. Res. 90 (B13), 11345–53.Google Scholar
Nakai, S., Halliday, A. N., Kesler, S. E. and Jones, H. D. (1990). Rb–Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits. Nature 346, 354–7.Google Scholar
Nakai, S., Halliday, A. N., Kesler, S. E. et al. (1993). Rb–Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits. Geochim. Cosmochim. Acta 57, 417–27.Google Scholar
Nebel, O., Scherer, E. E. and Mezger, K. (2011). Evaluation of the 87Rb decay constant by age comparison against the U–Pb system. Earth Planet. Sci. Lett. 301, 18.Google Scholar
Neumann, W. and Huster, E. (1974). The half-life of 87Rb measured as a difference between the isotopes of 87Rb and 85Rb. Z. Physik 270, 121–7.Google Scholar
Neumann, W. and Huster, E. (1976). Discussion of the 87Rb half-life determined by absolute counting. Earth Planet. Sci. Lett. 33, 277–88.Google Scholar
Nicolaysen, L. O. (1961). Graphic interpretation of discordant age measurements on metamorphic rocks. Ann. N. Y. Acad. Sci. 91, 198206.Google Scholar
Odin, G. S. and Dodson, M. H. (1982). Zero isotopic age of glauconies. In: Odin, G. S. (Ed.) Numerical Dating in Stratigraphy. Wiley, pp. 277305.Google Scholar
Odin, G. S., Gale, N. H. and Dore, F. (1985). Radiometric dating of Late Precambrian times. In: Snelling, N. J. (Ed.) The chronology of the geological record. Mem. Geol. Soc. Lond. 10, 6572.Google Scholar
Palmer, M. R. and Edmond, J. M. (1989). The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 92, 1126.Google Scholar
Palmer, M. R. and Edmond, J. M. (1992). Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta 56, 2099–111.Google Scholar
Papanastassiou, D. A. and Wasserburg, G. J. (1969). Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth Planet. Sci. Lett. 5, 361–76.Google Scholar
Papanastassiou, D. A., Wasserburg, G. J. and Burnett, D. S. (1970). Rb–Sr ages of lunar rocks from the Sea of Tranquillity. Earth Planet. Sci. Lett. 8, 119.Google Scholar
Pearce, C. R., Parkinson, I. J., Gaillardet, J. et al. (2015). Reassessing the stable (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs. Geochim. Cosmochim. Acta 157, 125–46.Google Scholar
Peterman, Z. E., Hedge, C. E. and Tourtelot, H. A. (1970). Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochim. Cosmochim. Acta 34, 105–20.Google Scholar
Pettke, T. and Diamond, L. W. (1996). Rb–Sr dating of sphalerite based on fluid inclusion–host mineral isochrons: a clarification of why it works. Econ. Geol. 91, 951–6.Google Scholar
Pierson-Wickmann, A.-C., Reisberg, L. and France-Lanord, C. (2002). Impure marbles of the Lesser Himalaya: another source of continental radiogenic osmium. Earth Planet. Sci. Lett. 204, 203–14.Google Scholar
Popp, B. N., Podosek, F. A., Brannon, J. C., Anderson, T. F. and Pier, J. (1986). 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells. Geochim. Cosmochim. Acta 50, 1321–8.Google Scholar
Provost, A. (1990). An improved diagram for isochron data. Chem. Geol. (Isot. Geosci. Sect.) 80, 8599.Google Scholar
Purdy, J. W. and Jager, E. (1976). K)Ar ages on rock-forming minerals from the Central Alps. Mem. Inst. Geol. Mineral. Univ. Padova 30, 331.Google Scholar
Rahaman, W. and Singh, S. K. (2012). Sr and 87Sr/86Sr in estuaries of western India: Impact of submarine groundwater discharge. Geochim. Cosmochim. Acta 85, 275–88.Google Scholar
Rausch, S., Böhm, F., Bach, W., Klügel, A. and Eisenhauer, A. (2013). Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years. Earth Planet. Sci. Lett. 362, 215–24.Google Scholar
Raymo, M. E., Ruddiman, W. F. and Froelich, P. N. (1988). Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–53.Google Scholar
Rotenberg, E., Davis, D. W., Amelin, Y., Ghosh, S. and Bergquist, B. A. (2012). Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr. Geochim. Cosmochim. Acta 85, 4157.Google Scholar
Rundberg, Y. and Smalley, P. C. (1989). High-resolution dating of Cenozoic sediments from northern North Sea using 87Sr/86Sr stratigraphy. AAPG Bull. 73, 298308.Google Scholar
Schreiner, G. D. L. (1958). Comparison of the Rb-87/Sr-87 age of the Red granite of the Bushveld complex from measurements on the total rock and separated mineral fractions. Proc. Roy. Soc. Lond. A. 245, 112–17.Google Scholar
Sheppard, T. J. and Darbyshire, D. P. F. (1981). Fluid inclusion Rb–Sr isochrons for dating mineral deposits. Nature 290, 578–9.Google Scholar
Shih, C. Y., Nyquist, L. E., Bogard, D. D. et al. (1985). Chronology and petrogenesis of a 1.8 g lunar granitic clast: 14321, 1062. Geochim. Cosmochim. Acta 49, 411–26.Google Scholar
Spooner, E. T. C. (1976). The strontium isotopic composition of seawater, and seawater–oceanic crust interaction. Earth Planet. Sci. Lett. 31, 167–74.Google Scholar
Steiger, R. H. and Jager, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett. 36, 359–62.Google Scholar
Steuber, T. and Veizer, J. (2002). Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology 30, 1123–6.Google Scholar
Stoll, H. M. and Schrag, D. P. (1998). Effects of Quaternary sea level cycles on strontium in seawater. Geochim. Cosmochim. Acta 62, 1107–18.Google Scholar
Sun, S. S. and Hansen, G. N. (1975). Evolution of the mantle: geochemical evidence from alkali basalt. Geology 3, 297302.Google Scholar
Tatsumoto, M. (1966). Genetic relationships of oceanic basalts as indicated by lead isotopes. Science 153, 1094–101.Google Scholar
Tilton, G. R. (1988). Age of the solar system. In: Kerridge, J. F. and Matthews, M. S. (Eds) Meteorites and the Early Solar System, Univ. Arizona Press, pp. 259–75.Google Scholar
Tretbar, D. R., Arehart, G. B. and Christensen, J. N. (2000). Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite. Geology 28, 947–50.Google Scholar
Vance, D., Teagle, D. A. and Foster, G. L. (2009). Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458, 493–6.Google Scholar
Veizer, J. and Compston, W. (1974). 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim. Cosmochim. Acta 38, 1461–84.Google Scholar
Veizer, J. and Compston, W. (1976). 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution. Geochim. Cosmochim. Acta 40, 905–14.Google Scholar
Veizer, J. and 14 others. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 5988.Google Scholar
Verschure, R. H. Andriessen, P. A. M., Boelrijk, N. A. I. M. et al. (1980). On the thermal stability of Rb–Sr and K–Ar biotite systems: evidence from co-existing Sveconorwegian (ca. 870 Ma) and Caledonian (ca. 400 Ma) biotites in S.W. Norway. Contrib. Mineral. Petrol. 74, 245–52.Google Scholar
Villa, I. M., De Bièvre, P., Holden, N. E. and Renne, P. R. (2015). IUPAC–IUGS recommendation on the half life of 87Rb. Geochim. Cosmochim. Acta 164, 382–5.Google Scholar
Wasserburg, G. J., Papanastassiou, D. A. and Sanz, H. G. (1969). Initial strontium for a chondrite and the determination of a metamorphism or formation interval. Earth Planet. Sci. Lett. 7, 3343.Google Scholar
Wetherill, G. W., Davis, G. L. and Lee-Hu, C. (1968). Rb–Sr measurements on whole rocks and separated minerals from the Baltimore Gneiss, Maryland. Geol. Soc. Amer. Bull. 79, 757–62.Google Scholar
Wickman, F. E. (1948). Isotope ratios: a clue to the age of certain marine sediments. J. Geol. 56, 61–6.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Rb–Sr Method
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Rb–Sr Method
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Rb–Sr Method
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.004
Available formats
×