Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T04:55:31.188Z Has data issue: false hasContentIssue false

Chapter 5 - Lead Isotopes

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abouchami, W. and Goldstein, S. L. (1995). A lead isotope study of Circum-Antarctic manganese nodules. Geochim. Cosmochim. Acta 59, 1809–20.Google Scholar
Ahrens, L. H. (1955). Implications of the Rhodesia age pattern. Geochim. Cosmochim. Acta 8, 115.CrossRefGoogle Scholar
Albarede, F. (2009). Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–33.Google Scholar
Albarede, F. and Juteau, M. (1984). Unscrambling the lead model ages. Geochim. Cosmochim. Acta 48, 207–12.Google Scholar
Aleinikoff, J. N., Winegarden, D. L. and Walter, M. (1990). U)Pb ages of zircon rims: a new analytical method using the air-abrasion technique. Chem. Geol. (Isot. Geosci. Sect.) 80, 351–63.Google Scholar
Allegre, C. J., Manhes, G. and Gopel, C. (1995). The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–56.Google Scholar
Alpher, R. A. and Herman, R. C. (1951). The primeval lead isotopic abundances and the age of the Earth's crust. Phys. Rev. 84, 1111–14.Google Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D. and Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions. Science 297, 1678–83.Google Scholar
Amelin, Y., Kaltenbach, A., Iizuka, T. et al. (2010). U–Pb chronology of the Solar System's oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300, 343–50.Google Scholar
Appel, P. W. U., Moorbath, S. and Taylor, P. N. (1978). Least radiogenic terrestrial lead from Isua, west Greenland. Nature 272, 524–6.Google Scholar
Armstrong, R. L. (1968). A model for Sr and Pb isotope evolution in a dynamic Earth. Rev. Geophys. 6, 175–99.Google Scholar
Augland, L. E. and David, J. (2015). Protocrustal evolution of the Nuvvuagittuq Supracrustal Belt as determined by high precision zircon Lu–Hf and U–Pb isotope data. Earth Planet. Sci. Lett. 428, 162–71.Google Scholar
Blichert-Toft, J., Zanda, B., Ebel, D. S. and Albarede, F. (2010). The solar system primordial lead. Earth Planet. Sci. Lett. 300, 152–63.CrossRefGoogle Scholar
Brennecka, G. A. and Wadhwa, M. (2012). Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Nat. Acad. Sci. 109, 9299–303.Google Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M. et al. (2010). 238U/235U variations in meteorites: Extant 247Cm and implications for Pb–Pb dating. Science 327, 449–51.Google Scholar
Burton, K. W., Ling, H.-F. and O'Nions, R. K. (1997). Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature 386, 382–5.CrossRefGoogle Scholar
Carl, C. and Dill, H. (1985). Age of secondary uranium mineralization in the basement rocks of the north eastern Bavaria F. R. G. Chem. Geol. (Isot. Geosci. Sect.) 52, 295316.Google Scholar
Carl, C., Wendt, I. and Wendt, J. I. (1989). U/Pb whole-rock and mineral dating of the Falkenburg granite in northeast Bavaria. Earth Planet. Sci. Lett. 94, 236–44.CrossRefGoogle Scholar
Catlos, E. J., Gilley, L. D. and Harrison, T. M. (2002). Interpretation of monazite ages obtained via in situ analysis. Chem. Geol. 188, 193215.Google Scholar
Chapman, H. J. and Roddick, J. C. (1994). Kinetics of Pb release during the zircon evaporation technique. Earth Planet. Sci. Lett. 121, 601–11.Google Scholar
Chen, J. H. and Wasserburg, G. J. (1981). The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates. Earth Planet. Sci. Lett. 52, 115.CrossRefGoogle Scholar
Chow, T. J. (1970). Isotopic identification of industrial pollutant lead. In: 2nd Int. Clean Air Congress, pp. 348–52.Google Scholar
Chow, T. J. and Earl, J. L. (1972). Lead isotopes in North American coals. Science 176, 510–11.Google Scholar
Chow, T. J. and Johnstone, M. S. (1965). Lead isotopes in gasoline and aerosols of Los Angeles Basin, California. Science 147, 502–3.Google Scholar
Chow, T. J. and Patterson, C. C. (1959). Lead isotopes in manganese nodules. Geochim. Cosmochim. Acta 17, 2131.CrossRefGoogle Scholar
Chow, T. J. and Patterson, C. C. (1962). The occurrence and significance of lead isotopes in pelagic sediments. Geochim. Cosmochim. Acta 26, 263308.Google Scholar
Compston, W., Williams, I. S. and Meyer, C. (1984). U)Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proc. 14th Lunar and Planet. Sci. Conf., J. Geophys. Res. 89 Supp., B525–34.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N. et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–5.Google Scholar
Copeland, P., Parrish, R. R. and Harrison, T. M. (1988). Identification of inherited radiogenic Pb in monazite and its implications for U–Pb systematics. Nature 333, 760–3.Google Scholar
Corfu, F. (2000). Extraction of Pb with artificially too-old ages during stepwise dissolution experiments on Archean zircon. Lithos 53 279–91.Google Scholar
Cowan, G. A. and Adler, H. H. (1976). The variability of the natural abundance of 235U. Geochim. Cosmochim. Acta 40, 1487–90.Google Scholar
Craig, H., Krishnaswami, S. and Somayajulu, B. L. K. (1973). 226Pb–226Ra: radioactive disequilibrium in the deep sea. Earth Planet. Sci. Lett. 17, 295305.CrossRefGoogle Scholar
Cumming, G. L. and Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing earth. Earth Planet. Sci. Lett. 28, 155–71.Google Scholar
Dahl, P. S. (1997). A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Earth Planet. Sci. Lett. 150, 277–90.Google Scholar
Das, A. and Davis, D. W. (2010). Response of Precambrian zircon to the chemical abrasion (CA–TIMS) method and implications for improvement of age determinations. Geochim. Cosmochim. Acta 74, 5333–48.Google Scholar
Dasch, E. J., Dymond, J. R. and Heath, G. R. (1971). Isotopic analysis of metalliferous sediment from the East Pacific Rise. Earth Planet. Sci. Lett. 13, 175–80.Google Scholar
David, J., Godin, L., Stevenson, R., O'Neil, J. and Francis, D. (2009). U–Pb ages (3.8–2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, Superior Craton, Canada. Geol. Soc. Amer. Bull. 121, 150–63.Google Scholar
Davis, D. W. (1982). Optimum linear regression and error estimation applied to U–Pb data. Can. J. Earth Sci. 19, 2141–9.Google Scholar
Davis, D. W. and Krogh, T. E. (2000). Preferential dissolution of 234U and radiogenic Pb from alpha-recoil-damaged lattice sites in zircon: implications for thermal histories and Pb isotopic fractionation in the near surface environment. Chem. Geol. 172, 4158.Google Scholar
deLaeter, J. R., Böhlke, J. K., De Bièvre, P. et al. (2003). Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure App. Chem. 75, 683800.Google Scholar
DeWolf, C. P. and Mezger, K. (1994). Lead isotope analysis of leached feldspars: constraints on the early crustal history of the Grenville Orogen. Geochim. Cosmochim. Acta 58, 5537–50.Google Scholar
DeWolf, C. P., Zeissler, C. J., Halliday, A. N., Mezger, K. and Essene, E. J. (1996). The role of inclusions in U–Pb and Sm–Nd garnet geochronology: stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochim. Cosmochim. Acta 60, 121–34.CrossRefGoogle Scholar
Dickin, A. P., McNutt, R. H., Martin, C. and Guo, A. (2010). The extent of juvenile crust in the Grenville Province: Nd isotope evidence. Geol. Soc. Amer. Bull. 122, 870–83.Google Scholar
Doe, B. R. and Stacey, J. S. (1974). The application of lead isotopes to the problems of ore genesis and ore prospect evaluation: a review. Econ. Geol. 69, 757–76.Google Scholar
Doe, B. R. and Zartman, R. E. (1979). Plumbotectonics. In: Barnes, H. L. (Ed.) Geochemistry of Hydrothermal Ore Deposits. Wiley, pp. 2270.Google Scholar
Duce, R. A., Liss, P. S., Merrill, J. T. et al. (1991). The atmospheric input of trace species to the world ocean. Global Biogeochem. Cyc. 5, 193259.Google Scholar
Fisher, C. M., Loewy, S. L., Miller, C. F. et al. (2010). Whole-rock Pb and Sm–Nd isotopic constraints on the growth of southeastern Laurentia during Grenvillian orogenesis. Geol. Soc. Amer. Bull. 122, 1646–59.Google Scholar
Foster, G., Gibson, H. D., Parrish, R. et al. (2002). Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem. Geol. 191, 183207.Google Scholar
Frank, M. and O'Nions, R. K. (1998). Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion? Earth Planet. Sci. Lett. 158, 121–30.Google Scholar
Frank, M., O'Nions, R. K., Hein, J. R. and Banakar, V. K. (1999). 60 Myr records of major elements and Pb–Nd isotopes from hydrogenous ferromanganese crusts: reconstruction of seawater paleochemistry. Geochim. Cosmochim. Acta 63, 1689–708.Google Scholar
French, J. E., Heaman, L. M. and Chacko, T. (2002). Feasibility of chemical U–Th–total Pb baddeleyite dating by electron microprobe. Chem. Geol. 188, 85104.Google Scholar
Froude, D. O., Ireland, T. R., Kinny, I. S., Williams, I. S. and Compston, W. (1983). Ion microprobe identification of 4,100)4,200 Myr-old terrestrial zircons. Nature 304, 616–18.Google Scholar
Galer, S. J. G. and Goldstein, S. L. (1996). Influence of accretion on lead in the Earth. In: Basu, A. and Hart, S. R. (Eds) Earth Processes: Reading the Isotopic Code. Geophys. Monograph 95, pp. 7598. American Geophysical Union.Google Scholar
Gentry, R. V., Sworski, T. J., McKown, H. S. et al. (1982). Differential lead retention in zircons: implications for nuclear waste containment. Science 216, 296–7.Google Scholar
Goldrich, S. S. and Mudrey, M. G. (1972). Dilatancy model for discordant U–Pb zircon ages. In: Tugarinov, A. I. (Ed.) Contributions to Recent Geochemistry and Analytical Chemistry. Moscow Nauka Publ. Office, 415–18.Google Scholar
Griffin, W. L., Taylor, P. N., Hakkinea, J. W. et al. (1978). Archaean and Proterozoic crustal evolution in Lofoten-Vesteraalen, Norway. J. Geol. Soc. Lond. 135, 629–47.Google Scholar
Grove, M. and Harrison, T. M. (1999). Monazite Th–Pb age depth profiling. Geology 27, 487–90.Google Scholar
Halliday, A. N. (1984). Coupled Sm–Nd and U–Pb systematics in Late Caledonian granites and the basement under northern Britain. Nature 307, 229–33.Google Scholar
Hamelin, B., Ferrand, J. L., Alleman, L., Nicolas, E. and Veron, A. (1997). Isotopic evidence of pollutant lead transport from North America to the subtropical North Atlantic gyre. Geochim. Cosmochim. Acta 61, 4423–8.Google Scholar
Harrison, R. M. and Laxen, D. P. H. (1981). Lead Pollution: Causes and Control. Chapman and Hall.Google Scholar
Heaman, L. M. and LeCheminant, A. N. (1993). Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem. Geol. 110, 95126.Google Scholar
Henderson, G. M. and Maier-Reimer, E. (2002). Advection and removal of 226Pb and stable Pb isotopes in the oceans: a general circulation model study. Geochim. Cosmochim. Acta 66, 257–72.Google Scholar
Hiess, J., Condon, D. J., McLean, N. and Noble, S. R. (2012). 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–14.Google Scholar
Hinton, R. W. and Long, J. V. P. (1979). High-resolution ion-microprobe measurement of lead isotopes: variations within single zircons from Lac Seul, Northwest Ontario. Earth Planet. Sci. Lett. 45, 309–25.Google Scholar
Holmes, A. (1946). An estimate of the age of the Earth. Nature 157, 680–4.CrossRefGoogle ScholarPubMed
Holmes, A. (1954). The oldest dated minerals of the Rhodesian Shield. Nature 173, 612–17.Google Scholar
Houtermans, F. G. (1946). Die isotopen-haufigkeiten im naturlichen blei und das alter des urans. Naturwissenschaften 33, 185–7.Google Scholar
Houtermans, F. G. (1947). Das alter des urans. Z. Naturforsch 29, 322–8.Google Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1978). Interpretation of Nd, Sr and Pb isotope data from Archaean migmatites in Lofoten Vesteraalen, Norway. Earth Planet. Sci. Lett. 41, 245–53.Google Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. and Essling, A. M. (1971). Precision measurement of the half-lives and specific activities of U235 and U238. Phys. Rev. C 4, 18891907.Google Scholar
Jones, C. E., Halliday, A. N., Rea, D. K. and Owen, R. M. (2000). Eolian inputs of lead to the North Pacific. Geochim. Cosmochim. Acta 64, 1405–16.Google Scholar
Kamber, B. S. and Moorbath, S. (1998). Initial Pb of the Amitsoq gneiss revisited: implication for the timing of early Archean crustal evolution in West Greenland. Chem. Geol. 150, 1941.Google Scholar
Kita, N. T., Tenner, T. J., Ushikubo, T. et al. (2015, July). Why do U–Pb ages of chondrules and CAIs have more spread than their 26Al ages? 78th Ann. Meet. Meteoritical Soc. Abstract #5360.Google Scholar
Klemm, V., Reynolds, B., Frank, M., Pettke, T. and Halliday, A. N. (2007). Cenozoic changes in atmospheric lead recorded in central Pacific ferromanganese crusts. Earth Planet. Sci. Lett. 253, 5766.Google Scholar
Kober, B. (1986). Whole-grain evaporation for 207Pb/206Pb–age investigations on single zircons using a double-filament ion source. Contrib. Mineral. Petrol. 93, 482–90.Google Scholar
Kober, B. (1987). Single-zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb–age investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib. Mineral. Petrol. 96, 6371.Google Scholar
Kober, B., Pidgeon, R. T. and Lippolt, H. J. (1989). Single-zircon dating by stepwise Pb-evaporation constrains the Archean history of detrital zircons from the Jack Hills, Western Australia. Earth Planet. Sci. Lett. 91, 286–96.Google Scholar
Kramers, J. D. and Tolstikhin, I. N. (1997). Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem. Geol. 139, 75110.Google Scholar
Krogh, T. E. (1982a). Improved accuracy of U–Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. Geochim. Cosmochim. Acta 46, 631–5.Google Scholar
Krogh, T. E. (1982b). Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using the air abrasion technique. Geochim. Cosmochim. Acta 46, 637–49.Google Scholar
Krogh, T. E., Corfu, F., Davis, D. W. et al. (1987). Precise U–Pb isotopic ages of diabase dykes and mafic to ultramafic rocks using trace amounts of baddeleyite and zircon. In: Halls, H. C. and Fahrig, W. F. (Eds) Mafic Dyke Swarms. Geol. Assoc. Canada Spec. Pap. 34, 147–52.Google Scholar
Krogh, T. E. and Davis, G. L. (1975). Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Inst. Washington Year Book 74, 619–23.Google Scholar
Kumari, S., Paul, D. and Stracke, A. (2016). Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity. Geochim. Cosmochim. Acta 195, 142–57.Google Scholar
Lagos, M., Ballhaus, C., Münker, C. et al. (2008). The Earth's missing lead may not be in the core. Nature 456, 8992.Google Scholar
Ling., H. F., Burton, K. W., O'Nions, R. K., et al. (1997). Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet. Sci. Lett. 146, 112.Google Scholar
Ludwig, K. R. (1977). Effect of initial radioactive daughter disequilibrium on U–Pb isotope apparent ages of young minerals. J. Res. U. S. Geol. Surv. 5, 663–7.Google Scholar
Ludwig, K. R. (1998). On the treatment of concordant uranium–lead ages. Geochim. Cosmochim. Acta 62, 665–76.Google Scholar
Ludwig, K. R. (2000). Decay constant errors in U–Pb concordia-intercept ages. Chem. Geol. 166 315–18.Google Scholar
Manhes, G., Allegre, C. J., Dupre, B. and Hamelin, B. (1979). Lead–lead systematics, the ‘age of the Earth’ and the chemical evolution of our planet in a new representation space. Earth Planet. Sci. Lett. 44, 91104.Google Scholar
Mattinson, J. M. (2000). Revising the “gold standard”– the uranium decay constants of Jaffey et al., 1971. EOS, Trans. Amer. Geophys. Union 81, S444.Google Scholar
Mattinson, J. M. (2005). Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 4766.Google Scholar
Mattinson, J. M. (2010). Analysis of the relative decay constants of 235 U and 238 U by multi-step CA–TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186–98.CrossRefGoogle Scholar
Mezger, K., Essene, E. J. and Halliday, A. N. (1992). Closure temperatures of the Sm–Nd system in metamorphic garnets. Earth Planet. Sci. Lett. 113, 397409.Google Scholar
Mezger, K., Hanson, G. N. and Bohlen, S. R. (1989). U–Pb systematics in garnet: dating the growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contrib. Mineral. Petrol. 101, 136–48.Google Scholar
Mezger, K., Rawnsley, C. M., Bohlen, S. R. and Hanson, G. N. (1991). U–Pb garnet, sphene, monazite, and rutile ages: implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mts., New York. J. Geol. 99, 415–28.CrossRefGoogle Scholar
Montel, J.-M., Foret, S., Veschambre, M., Nicollet, C. and Provost, A. (1996). Electron microprobe dating of monazite. Chem. Geol. 131, 3753.Google Scholar
Moorbath, S., Taylor, P. N. and Goodwin, R. (1981). Origin of granite magma by crustal remobilisation: Rb–Sr and Pb/Pb geochronology and isotope geochemistry of the late Archaean Qorqut Granite complex of southern West Greenland. Geochim. Cosmochim. Acta 45, 1051–60.Google Scholar
Moorbath, S. and Taylor, P. N. (1981). Isotopic evidence for continental growth in the Precambrian. In: Kroner, A. (Ed.) Precambrian Plate Tectonics. Elsevier, pp. 491525.Google Scholar
Nier, A. O., Thompson, R. W. and Murphy, B. F. (1941). The isotopic constitution of lead and the measurement of geological time III. Phys. Rev. 60, 112–17.Google Scholar
O'Nions, R. K., Carter, S. R., Cohen, R. S., Evensen, N. M. and Hamilton, P. J. (1978). Pb, Nd and Sr isotopes in oceanic ferromanganese deposits and ocean floor basalts. Nature 273, 435–8.Google Scholar
Oversby, V. M. (1974). A new look at the lead isotope growth curve. Nature 248, 132–3.Google Scholar
Parrish, R. R. (1990). U–Pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 27, 1431–50.Google Scholar
Patterson, C. C. (1956). Age of meteorites and the Earth. Geochim. Cosmochim. Acta 10, 230–7.Google Scholar
Pankhurst, R. J. and Pidgeon, R. T. (1976). Inherited isotope systems and the source region pre-history of early Caledonian granites in the Dalradian series of Scotland. Earth Planet. Sci. Lett. 31, 5568.CrossRefGoogle Scholar
Pidgeon, R. T. and Aftalion, M. (1978). Cogenetic and inherited zircon U–Pb systems in granites: Palaeozoic granites of Scotland and England. In: Bowes, D. R. and Leake, B. E. (Eds) Crustal Evolution in Northwestern Britain and Adjacent Regions. Geol. Soc. Spec. Issue 10, 183220.Google Scholar
Potts, P. J. (1987). Handbook of Silicate Rock Analysis. Blackie. 622 pp.Google Scholar
Reynolds, P. H. and Dasch, E. J. (1971). Lead isotopes in marine manganese nodules and the ore-lead growth curve. J. Geophys. Res. 76, 5124–9.Google Scholar
Richter, S., Alonso, A., De Bolle, W., Wellum, R. and Taylor, P. D. P. (1999). Isotopic “fingerprints” for natural uranium ore samples. Int. J. Mass Spec. 193, 914.Google Scholar
Richter, S., Alonso-Munoz, A., Eykens, R. et al. (2008). The isotopic composition of natural uranium samples – Measurements using the new n(233U)/n(236U) double spike IRMM-3636. Int. J. Mass Spec. 269, 145–8.Google Scholar
Rogers, G., Dempster, T. J., Bluck, B. J. and Tanner, P. W. G. (1989). A high precision U–Pb age for the Ben Vuirich granite: implications for the evolution of the Scottish Dalradian Supergroup. J. Geol. Soc. Lond. 146, 789–98.Google Scholar
Rosholt, J. N. and Bartel, A. J. (1969). Uranium, thorium and lead systematics in Granite Mountains, Wyoming. Earth Planet. Sci. Lett. 7, 141–7.Google Scholar
Russell, R. D. (1956). Lead isotopes as a key to the radioactivity of the Earth’ s mantle. Ann. N. Y. Acad. Sci. 62, 43548.Google Scholar
Russell, R. D. (1972). Evolutionary model for lead isotopes in conformable ores and in ocean volcanics. Rev. Geophys. Space Phys. 10, 529–49.Google Scholar
Russell, R. D. and Ahrens, L. H. (1957). Additional regularities among discordant lead–uranium ages. Geochim. Cosmochim. Acta 11, 213–18.Google Scholar
Russell, R. D. and Farquhar, R. M. (1960). Lead Isotopes in Geology. Interscience Pub., 243 pp.Google Scholar
Scharer, U. (1984). The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet. Sci. Lett. 67, 191204.Google Scholar
Scharer, U., Xu, R. H. and Allegre, C. J. (1984). U–Pb geochronology of Gangdese (Transhimalaya) plutonism in the Zhasa-Xigaze region, Tibet. Earth Planet. Sci. Lett. 69, 311–20.Google Scholar
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D. and Bowring, S. A. (2006). Reassessing the uranium decay constants for geochronology using ID–TIMS U–Pb data. Geochim. Cosmochim. Acta. 70, 426–45.Google Scholar
Silver, L. T. and Deutsch, S. (1963). Uranium–lead isotopic variations in zircons: a case study. J. Geol. 71, 721–58.Google Scholar
Smith, H. A. and Giletti, B. J. (1997). Lead diffusion in monazite. Geochim. Cosmochim. Acta 61, 1047–55.Google Scholar
Stacey, J. S. and Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–21.Google Scholar
Stanton, R. L. and Russell, R. D. (1959). Anomalous leads and the emplacement of lead sulphide ores. Econ. Geol. 54, 588607.Google Scholar
Steiger, R. H. and Jager, E. (1977). Subcommission on Geochronology: Convention on the use of decay constants in geochronology and cosmochronology. Earth Planet. Sci. Lett. 36, 359–62.Google Scholar
Sturges, W. T. and Barrie, L. A. (1987). Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions. Nature 329, 144–6.Google Scholar
Tatsumoto, M., Knight, R. J. and Allegre, C. J. (1973). Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science 180, 1279–83.Google Scholar
Tatsumoto, M. and Patterson, C. C. (1963). The concentration of common lead in sea water. In: Geiss, J. and Goldberg, E. D. (Eds) Earth Science and Meteoritics. North-Holland Pub. Co., pp. 7489.Google Scholar
Taylor, P. N. (1975). An early Precambrian age for migmatitic gneisses from Vikan i Bo, Vesteraalen, North Norway. Earth Planet. Sci. Lett. 27, 3542.Google Scholar
Taylor, P. N., Moorbath, S., Goodwin, R. and Petrykowski, A. C. (1980). Crustal contamination as an indicator of the extent of early Archaean continental crust: Pb isotopic evidence from the late Archaean gneisses of West Greenland. Geochim. Cosmochim. Acta 44, 1437–53.Google Scholar
Tera, F. and Carlson, R. W. (1999). Assessment of the Pb–Pb and U–Pb chronometry of the early solar system. Geochim. Cosmochim. Acta 63, 1877–89.Google Scholar
Tera, F. and Wasserburg, G. J. (1973). A response to a comment on U–Pb systematics in lunar basalts. Earth Planet. Sci. Lett. 19, 213–17.CrossRefGoogle Scholar
Tera, F. and Wasserburg, G. J. (1974). U–Th–Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. Proc. 5th Lunar Sci. Conf. (Supp. 5), Geochim. Cosmochim. Acta (Vol 2), 1571–99.Google Scholar
Tilton, G. R. (1960). Volume diffusion as a mechanism for discordant lead ages. J. Geophys. Res. 65, 2933–45.Google Scholar
Tilton, G. R. and Grunenfelder, M. H. (1968). Sphene: uranium–lead ages. Science 159, 1458–61.Google Scholar
Tucker, R. D., Raheim, A., Krogh, T. E. and Corfu, F. (1987). Uranium–lead zircon and titanite ages from the northern portion of the Western Gneiss Region, south-central Norway. Earth Planet. Sci. Lett. 81, 203–11.Google Scholar
Valley, J. W., Cavosie, A. J., Ushikubo, T. et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geosci. 7, 219–23.Google Scholar
van Breemen, O., Davidson, A., Loveridge, W. D. and Sullivan, R. W., (1986). U–Pb zircon geochronology of Grenville tectonites, granulites and igneous precursors, Parry Sound, Ontario. In: Moore, J. M., Davidson, A. and Baer, A. J. (Eds) The Grenville Province. Geol. Assoc. Canada Spec. Pap. 31, 191207.Google Scholar
Vlastelic, I., Abouchami, W., Galer, S. J. G. and Hofmann, A. W. (2001). Geographical control on Pb isotope distribution and sources in Indian Ocean Fe–Mn deposits. Geochim. Cosmochim. Acta 65, 4303–19.Google Scholar
von Blankenburg, F., O'Nions, R. K. and Hein, J. R. (1996). Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe–Mn crusts. Geochim. Cosmochim. Acta 60, 4957–63.Google Scholar
Watson, E. B. and Harrison, T. M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64, 295304.Google Scholar
Wendt, I. (1984). A three-dimensional U–Pb discordia plane to evaluate samples with common lead of unknown isotopic composition. Isot. Geosci. 2, 112.Google Scholar
Wetherill, G. W. (1956). An interpretation of the Rhodesia and Witwatersrand age patterns. Geochim. Cosmochim. Acta 9, 290–2.Google Scholar
Whitehouse, M. (1990). Isotopic evolution of the southern Outer Hebridean Lewisian gneiss complex: constraints on Late Archean source regions and the generation of transposed Pb–Pb palaeoisochrons. Chem. Geol. (Isot. Geosci. Sect.) 86, 120.Google Scholar
Wilde, S. A., Valley, J. W., Peck, W. H. and Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–8.Google Scholar
Williams, I. S. and Claesson, S. (1987). Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contrib. Mineral. Petrol. 97, 205–17.CrossRefGoogle Scholar
Williams, I. S., Compston, W., Black, L. P., Ireland, T. R. and Foster, J. J. (1984). Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb–Pb, U–Pb and Th–Pb ages. Contrib. Mineral. Petrol. 88, 322–7.Google Scholar
Wood, B. J. and Halliday, A. N. (2005). Cooling of the Earth and core formation after the giant impact. Nature 437, 1345–8.Google Scholar
Wood, B. J. and Halliday, A. N. (2010). The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767.Google Scholar
Wood, B. J., Halliday, A. N. and Rehkamper, M. (2010). Volatile accretion history of the Earth. Nature 467, E6E7.Google Scholar
Wotzlaw, J. F., Hüsing, S. K., Hilgen, F. J. and Schaltegger, U. (2014). High-precision zircon U–Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene. Earth Planet. Sci. Lett. 407, 1934.Google Scholar
Wu, J. and Boyle, E. A. (1997). Lead in the western North Atlantic Ocean: completed response to leaded gasoline phase-out. Geochim. Cosmochim. Acta 61, 3279–83.Google Scholar
Zartman, R. E. and Doe, B. R. (1981). Plumbotectonics – the model. Tectonophys. 75, 135–62.Google Scholar
Zartman, R. E. and Haines, S. M. (1988). The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs – a case for bi-directional transport. Geochim. Cosmochim. Acta 52, 1327–39.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Lead Isotopes
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Lead Isotopes
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Lead Isotopes
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.006
Available formats
×