We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A short-term 2-week (2w) and long-term 8-week (8w) feeding trial was conducted to investigate the effects of low-starch (LS) and high-starch (HS) diets on the growth performance, metabolism and liver health of largemouth bass (Micropterus salmoides). Two isonitrogenous and isolipidic diets containing two levels of starch (LS, 9·06 %; HS, 13·56 %) were fed to largemouth bass. The results indicated that HS diet had no significant effects on specific growth rate during 2w, whereas significantly lowered specific growth rate at 8w. HS diet significantly increased hepatic glycolysis and gluconeogenesis at postprandial 24 h in 2w. The hepatosomatic index, plasma alkaline phosphatase, total bile acid (TBA) levels, and hepatic glycogen, TAG, total cholesterol, TBA, and NEFA contents were significantly increased in the HS group at 2w. Moreover, HS diet up-regulated fatty acid and TAG synthesis-related genes and down-regulated TAG hydrolysis and β-oxidation-related genes. Therefore, the glucolipid metabolism disorders resulted in metabolic liver disease induced by HS diet at 2w. However, the up-regulation of bile acid synthesis, inflammation and energy metabolism-related genes in 2w indicated that largemouth bass was still in a state of ‘self-repair’ response. Interestingly, all the metabolic parameters were returned to homoeostasis, with up-regulation of intestinal glucose uptake and transport-related genes, even hepatic histopathological analysis showed no obvious abnormality in the HS group in 8w. In conclusion, HS feed induced short-term acute metabolic disorder, but long-term metabolic adaptation to HS diet was related to repairing metabolism disorders via improving inflammatory responses, bile acid synthesis and energy metabolism. These results strongly indicated that the largemouth bass owned certain adaptability to HS diet.
Vitamin D is engaged in various neural processes, with low vitamin D linked to depression and cognitive dysfunction. There are gender differences in depression and vitamin D level. However, the relationship between depression, gender, vitamin D, cognition, and brain function has yet to be determined.
Methods
One hundred and twenty-two patients with major depressive disorder (MDD) and 119 healthy controls underwent resting-state functional MRI and fractional amplitude of low-frequency fluctuations (fALFF) was calculated to assess brain function. Serum concentration of vitamin D (SCVD) and cognition (i.e. prospective memory and sustained attention) were also measured.
Results
We found a significant group-by-gender interaction effect on SCVD whereby MDD patients showed a reduction in SCVD relative to controls in females but not males. Concurrently, there was a female-specific association of SCVD with cognition and MDD-related fALFF alterations in widespread brain regions. Remarkably, MDD- and SCVD-related fALFF changes mediated the relation between SCVD and cognition in females.
Conclusion
Apart from providing insights into the neural mechanisms by which low vitamin D contributes to cognitive impairment in MDD in a gender-dependent manner, these findings might have clinical implications for assignment of female patients with MDD and cognitive dysfunction to adjuvant vitamin D supplementation therapy, which may ultimately advance a precision approach to personalized antidepressant choice.
Technology that develops rapidly has profoundly affected the business field and reshaped some behaviours of corporations, and the discussion on startup risk-taking behaviour in the new era is still insufficient. Based on social network theory and social capital theory, this article studies how social networks and entrepreneurial ecosystems support startup risk-taking behaviour. This article cuts into this issue through the perspective of coopetition. Based on 737 responses, this article employs regression and fuzzy-set qualitative comparative analysis to explore the relationships between networks, ecosystem coopetition, and risk-taking behaviour. Results indicate that networks and coopetition may stimulate startup risk-taking behaviour, and coopetition may weaken the impacts of networks. There are replacement effects between different characteristics of networks, and there are several configurations, which may lead to high-level risk-taking. This article may help us understand startup risk-taking behaviour in the digital era and the positive impacts of ecosystems.
The findings regarding the associations between red meat, fish and poultry consumption, and the metabolic syndrome (Mets) have been inconclusive, and evidence from Chinese populations is scarce. A cross-sectional study was performed to investigate the associations between red meat, fish and poultry consumption, and the prevalence of the Mets and its components among the residents of Suzhou Industrial Park, Suzhou, China. A total of 4424 participants were eligible for the analysis. A logistic regression model was used to estimate the OR and 95 % CI for the prevalence of the Mets and its components according to red meat, fish and poultry consumption. In addition, the data of our cross-sectional study were meta-analysed under a random effects model along with those of published observational studies to generate the summary relative risks (RR) of the associations between the highest v. lowest categories of red meat, fish and poultry consumption and the Mets and its components. In the cross-sectional study, the multivariable-adjusted OR for the highest v. lowest quartiles of consumption was 1·23 (95 % CI 1·02, 1·48) for red meat, 0·83 (95 % CI 0·72, 0·97) for fish and 0·93 (95 % CI 0·74, 1·18) for poultry. In the meta-analysis, the pooled RR for the highest v. lowest categories of consumption was 1·20 (95 % CI 1·06, 1·35) for red meat, 0·88 (95 % CI 0·81, 0·96) for fish and 0·97 (95 % CI 0·85, 1·10) for poultry. The findings of both cross-sectional studies and meta-analyses indicated that the association between fish consumption and the Mets may be partly driven by the inverse association of fish consumption with elevated TAG and reduced HDL-cholesterol and, to a lesser extent, fasting plasma glucose. No clear pattern of associations was observed between red meat or poultry consumption and the components of the Mets. The current findings add weight to the evidence that the Mets may be positively associated with red meat consumption, inversely associated with fish consumption and neutrally associated with poultry consumption.
Echinococcus shiquicus is currently limited to the Qinghai–Tibet plateau, a large mountainous region in China. Although the zoonotic potential remains unknown, progress is being made on the distribution and intermediate host range. In this study, we report E. shiquicus within Gansu and Qinghai provinces in regions located not only around the central areas but also the southeast edge of the plateau and describe their genetic relationship with previous isolates from the plateau. From 1879 plateau pikas examined, 2.39% (95% CI 1.79–3.18) were infected with E. shiquicus. The highest prevalence of 10.26% (4.06–23.58) was recorded in Makehe town, Qinghai province. Overall the prevalence was marginally higher in Qinghai (2.5%, CI 1.82–3.43) than in Gansu (2%, CI 1.02–3.89). The cox1 and nad1 genes demonstrated high and low haplotype and nucleotide diversities, respectively. The median-joining network constructed by the cox1–nad1 gene sequences demonstrated a star-like configuration with a median vector (unsampled haplotype) occupying the centre of the network. No peculiar distinction or common haplotype was observed in isolates originating from the different provinces. The presence of E. shiquicus in regions of the southeast and northeast edges of the Qinghai–Tibet plateau and high genetic variation warrants more investigation into the haplotype distribution and genetic polymorphism by exploring more informative DNA regions of the mitochondrial genome to provide epidemiologically useful insight into the population structure of E. shiquicus across the plateau and its axis.
Teenagers are important carriers of Neisseria meningitidis, which is a leading cause of invasive meningococcal disease. In China, the carriage rate and risk factors among teenagers are unclear. The present study presents a retrospective analysis of epidemiological data for N. meningitidis carriage from 2013 to 2017 in Suizhou city, China. The carriage rates were 3.26%, 2.22%, 3.33%, 3.53% and 9.88% for 2013, 2014, 2015, 2016 and 2017, respectively. From 2014 to 2017, the carriage rate in the 15- to 19-year-old age group (teenagers) was the highest and significantly higher than that in remain age groups. Subsequently, a larger scale survey (December 2017) for carriage rate and relative risk factors (population density, time spent in the classroom, gender and antibiotics use) were investigated on the teenagers (15- to 19-year-old age) at the same school. The carriage rate was still high at 33.48% (223/663) and varied greatly from 6.56% to 52.94% in a different class. Population density of the classroom was found to be a significant risk factor for carriage, and 1.4 persons/m2 is recommended as the maximum classroom density. Further, higher male gender ratio and more time spent in the classroom were also significantly associated with higher carriage. Finally, antibiotic use was associated with a significantly lower carriage rate. All the results imply that attention should be paid to the teenagers and various measures can be taken to reduce the N. meningitidis carriage, to prevent and control the outbreak of IMD.
No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment.
Methods
This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance.
Results
Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6).
Conclusion
Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.
HIV-1 drug resistance can compromise the effectiveness of antiretroviral therapy (ART). A survey of pretreatment HIV-1 drug resistance (PDR) was conducted in Lincang Prefecture of Yunnan Province. From 372 people living with HIV/AIDS initiating ART for the first time during 2017–2018, 322 pol sequences were obtained, of which 11 HIV-1 strain types were detected. CRF08_BC (70.2%, 226/322) was the predominant strain, followed by URF strains (10.6%, 34/322). Drug resistance mutations (DRMs) were detected among 34.2% (110/322) of the participants. E138A/G/K/R (14.3%, 46/322) and V179E/D/T (13.7%, 47/322) were the predominant DRMs. Specifically, E138 mutations commonly occurred in CRF08_BC (19.9%, 45/226). Among the DRMs detected, some independently conferred resistance, such as K65R (1.6%, 5/322), Y188C/F/L (0.9%, 3/322), K103N (0.6%, 2/322) and G190A (0.3%, 1/322), which conferred high-level resistance. The prevalence of PDR was 7.5% (95% CI: 4.6–10.3%) and the prevalence of non-nucleotide reverse transcriptase inhibitor (NNRTI) resistance was 5.0% (95% CI: 2.6–7.4%), which is below the threshold (⩾10%) of initiating a public health response. In conclusion, HIV-1 genetic diversity and an overall moderate level of PDR prevalence were found in western Yunnan. PDR surveillance should be continually performed to decide whether a public health response to NNRTI resistance should be initiated.
The aim of the present study was to investigate the effects of dietary Zn level on growth performance, Zn bioaccumulation, antioxidant capacity and innate immunity in juvenile mud crabs (Scylla paramamosain). Six semi-purified diets were formulated to contain dietary Zn levels of 44·5, 56·9, 68·5, 97·3, 155·6 or 254·7 mg/kg. Dietary Zn level significantly influenced percentage weight gain (PWG), with the highest observed in crabs fed the diet containing 97·3 mg/kg Zn. Tissue Zn concentrations significantly increased as dietary Zn levels increased from 44·5 to 254·7 mg/kg. Retention of Zn in hepatopancreas increased with dietary Zn levels up to 68·5 mg/kg and then significantly decreased. Moreover, inadequate dietary Zn (44·5 and 56·9 mg/kg) reduced antioxidation markers including total superoxide dismutase (SOD) and Cu/Zn SOD activities and total antioxidant level. Crabs fed the diet with 44·5 mg/kg Zn also showed significantly lower expression of genes involved in antioxidant status, such as Cu/Zn SOD, glutathione peroxidase, catalase and thioredoxin than those fed diets containing 68·5 and 97·3 mg/kg Zn. The highest activities of phenoloxidase and alkaline phosphatase were recorded in crabs fed the diets containing 68·5 and 97·3 mg/kg Zn. Expression levels of prophenoloxidase and toll-like receptor 2 were higher in crabs fed the 97·3 mg/kg Zn diet compared with crabs fed the other diets. Based on PWG alone, the optimal dietary Zn level was estimated to be 82·9 mg/kg, with 68·5 to 97·3 mg/kg recommended for maintaining optimal Zn bioaccumulation, oxidation resistance and innate immune response of juvenile mud crabs.
Findings for the roles of dairy products, Ca and vitamin D on ovarian cancer risk remain controversial. We aimed to assess these associations by using an updated meta-analysis. Five electronic databases (e.g. PubMed and Embase) were searched from inception to 24 December 2019. Pooled relative risks (RR) with 95 % CI were calculated. A total of twenty-nine case–control or cohort studies were included. For comparisons of the highest v. lowest intakes, higher whole milk intake was associated with increased ovarian cancer risk (RR 1·35; 95 % CI 1·15, 1·59), whereas decreased risks were observed for higher intakes of low-fat milk (RR 0·84; 95 % CI 0·73, 0·96), dietary Ca (RR 0·71; 95 % CI 0·60, 0·84) and dietary vitamin D (RR 0·80; 95 % CI 0·67, 0·95). Additionally, for every 100 g/d increment, increased ovarian cancer risks were found for total dairy products (RR 1·03; 95 % CI 1·01, 1·04) and for whole milk (RR 1·07; 95 % CI 1·03, 1·11); however, decreased risks were found for 100 g/d increased intakes of low-fat milk (RR 0·95; 95 % CI 0·91, 0·99), cheese (RR 0·87; 95 % CI 0·76, 0·98), dietary Ca (RR 0·96; 95 % CI 0·95, 0·98), total Ca (RR 0·98; 95 % CI 0·97, 0·99), dietary vitamin D (RR 0·92; 95 % CI 0·87, 0·97) and increased levels of circulating vitamin D (RR 0·84; 95 % CI 0·72, 0·97). These results show that whole milk intake might contribute to a higher ovarian cancer risk, whereas low-fat milk, dietary Ca and dietary vitamin D might reduce the risk.
The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of 8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfκb and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfκb and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation, consequently attenuating HFD-induced inflammation in A. schlegelii.
High-current switching performance of ovonic threshold switching (OTS) selectors have successfully enabled the commercialization of high-density three-dimensional (3D) stackable phase-change memory in Intel’s 3D Xpoint technology. This bridges the huge performance gap between dynamic random access memory (DRAM) and Flash. Similar to phase-change memory, OTS uses chalcogenide-based materials, but whereas phase-change memory reversibly switches between a high-resistance amorphous phase and a low-resistance crystalline phase, OTS freezes in the amorphous phase. In this article, we review recent developments in OTS materials and their performance in devices, especially current density and selectivity. Advantages and challenges of OTS devices in the integration with the phase-change memory are discussed. We introduce the evolution of theoretical models for explaining the OTS behavior, including thermal runaway, field-induced nucleation, and generation/recombination of charge carriers.
Existing data on folate status and hepatocellular carcinoma (HCC) prognosis are scarce. We prospectively examined whether serum folate concentrations at diagnosis were associated with liver cancer-specific survival (LCSS) and overall survival (OS) among 982 patients with newly diagnosed, previously untreated HCC, who were enrolled in the Guangdong Liver Cancer Cohort (GLCC) study between September 2013 and February 2017. Serum folate concentrations were measured using chemiluminescent microparticle immunoassay. Cox proportional hazards models were performed to estimate hazard ratios (HR) and 95 % CI by sex-specific quartile of serum folate. Compared with patients in the third quartile of serum folate, patients in the lowest quartile had significantly inferior LCSS (HR = 1·48; 95 % CI 1·05, 2·09) and OS (HR = 1·43; 95 % CI 1·03, 1·99) after adjustment for non-clinical and clinical prognostic factors. The associations were not significantly modified by sex, age at diagnosis, alcohol drinking status and Barcelona Clinic Liver Cancer (BCLC) stage. However, there were statistically significant interactions on both multiplicative and additive scale between serum folate and C-reactive protein (CRP) levels or smoking status and the associations of lower serum folate with worse LCSS and OS were only evident among patients with CRP > 3·0 mg/l or current smokers. An inverse association with LCSS were also observed among patients with liver damage score ≥3. These results suggest that lower serum folate concentrations at diagnosis are independently associated with worse HCC survival, most prominently among patients with systemic inflammation and current smokers. A future trial of folate supplementation seems to be promising in HCC patients with lower folate status.
Suicide attempt is an important indicator of suicide and potential future mortality. However, the prevalence of suicide attempts has been inconsistent across studies. This meta-analysis aimed to examine the prevalence of suicide attempts in individuals with schizophrenia and associated correlates.
Methods
Relevant publications in Embase, PsycINFO, PubMed, Web of science and Cochrane were systematically searched. Data on the prevalence of suicide attempts in individuals with schizophrenia were pooled using a random-effects model.
Results
Thirty-five studies with 16 747 individuals with schizophrenia were included. The pooled lifetime prevalence of suicide attempts was 26.8% (95% CI 22.1–31.9%; I2 = 97.0%), while the 1-year prevalence, 1-month prevalence and the prevalence of suicide attempts from illness onset were 3.0% (95% CI 2.3–3.7%; I2 = 95.6%), 2.7% (95% CI 2.1–3.4%; I2 = 78.5%) and 45.9% (95% CI 42.1–49.9%; I2 = 0), respectively. Earlier age of onset (Q = 4.38, p = 0.04), high-income countries (Q = 53.29, p < 0.001), North America and Europe and Central Asia (Q = 32.83, p < 0.001) were significantly associated with a higher prevalence of suicide attempts.
Conclusions
Suicide attempts are common in individuals with schizophrenia, especially those with an early age of onset and living in high-income countries and regions. Regular screening and effective preventive measures should be implemented as part of the clinical care.
In a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system, a study was conducted to determine the effects of different fertilization regimens (no fertilization, replacement of a portion of chemical fertilizer with composted pig manure, chemical fertilizer only, and straw return combined with chemical fertilizer) on the weed communities and wheat yields after 4 and 5 yr. The impact of the long-term recurrent fertilization regimen initiated in 2010 on the composition and diversity of weed communities and the impact of the components and total amount of fertilizer on wheat yields were assessed in 2014 and 2015. Totals of 19 and 16 weed species were identified in experimental wheat fields in 2014 and 2015, respectively, but the occurrence of weed species varied according to the fertilization regimen. American sloughgrass [Beckmannia syzigachne (Steud.) Fernald], water starwort [Myosoton aquaticum (L.) Moench], and lyrate hemistepta (Hemistepta lyrata Bunge.) were adapted to all fertilization treatments and were the dominant weed species in the experimental wheat fields. The greatest number of weed species were observed under the no-fertilization treatment, in which 40% of the weed community was composed of broadleaf weeds and the lowest wheat yields were obtained. With fertilizer application, the number of weed species was reduced, the height of weeds increased significantly, the density of broadleaf weeds was significantly reduced, the biodiversity indices of weed communities decreased significantly, and higher wheat yields were obtained. Only the chemical fertilizer plus composted pig manure treatment and the chemical fertilizer–only treatment increased the density of grassy weeds and the total weed community density. The treatment with chemical fertilizer only also resulted in the highest density of B. syzigachne. Rice straw return combined with chemical fertilizer yielded the lowest total weed density, which suggests that it inhibited occurrence of weeds. The different fertilizer regimens not only affected the weed species composition, distribution, and diversity, but also the weed density. Our study provides new information from a rice–wheat rotation system on the relationship between soil amendments and agricultural weed infestation.
Unlike English and other Western languages, many Asian languages such as Chinese and Japanese do not delimit words by space. Word segmentation and new word detection are therefore key steps in processing these languages. Chinese word segmentation can be considered as a part-of-speech (POS)-tagging problem. We can segment corpus by assigning a label for each character which indicates the position of the character in a word (e.g., “B” for word beginning, and “E” for the end of the word, etc.). Chinese word segmentation seems to be well studied. Machine learning models such as conditional random field (CRF) and bi-directional long short-term memory (LSTM) have shown outstanding performances on this task. However, the segmentation accuracies drop significantly when applying the same approaches to out-domain cases, in which high-quality in-domain training data are not available. An example of out-domain applications is the new word detection in Chinese microblogs for which the availability of high-quality corpus is limited. In this paper, we focus on out-domain Chinese new word detection. We first design a new method Edge Likelihood (EL) for Chinese word boundary detection. Then we propose a domain-independent Chinese new word detector (DICND); each Chinese character is represented as a low-dimensional vector in the proposed framework, and segmentation-related features of the character are used as the values in the vector.
Dermal skeletal components near the oral cavity, or dermal jaw bones, contribute to the integrated jaw structure from the beginning of gnathostome evolutionary history and have evolved to be the exclusive skeletal elements of the jaw in mammals, including humans. The morphological variations and modifications of these dermal jaw bones are pivotal in assessing their homology and reconstructing the evolutionary relationship of gnathostome groups. The recent discoveries of maxillate placoderms present unique insights into the evolution of osteichthyan dermal jaw bones, previously considered to be an autapomorphy of the Osteichthyes. Here we briefly review the dermal jaw bones in major gnathostome groups, with focus on taxa close to the transition from stem- to crown-group gnathostomes, i.e., various placoderm subgroups (including antiarchs, arthrodires, ptyctodonts, rhenanids) and basal osteichthyans. In particular, we present a detailed description of the dermal jaw components in the two maxillate placoderms, Entelognathus and Qilinyu. In light of the new morphological data and the comparison between these conditions, we propose the homology between the maxillate placoderm dermal jaw bones and arthrodire gnathal elements. Based on a review of character combinations in gnathostome subgroups, we also propose a possible evolutionary sequence of dermal jaw bones in early jawed vertebrates and demonstrate that the parasphenoid underwent substantial parallelism in placoderms and osteichthyans. We suggest that the inner position of gnathal plates in arthrodires might be secondary. The dermal jaw bones of eubrachythoracid arthrodires show adaptations comparable to those in osteichthyans, in addition to the better-known convergence of ptyctodonts and holocephalans.