Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T20:02:20.208Z Has data issue: false hasContentIssue false

The protective effect of vitamin D supplementation as adjunctive therapy to antidepressants on brain structural and functional connectivity of patients with major depressive disorder: a randomized controlled trial

Published online by Cambridge University Press:  14 March 2024

Wenming Zhao
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
Dao-min Zhu
Affiliation:
Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China Hefei Fourth People's Hospital, Hefei 230022, China Anhui Mental Health Center, Hefei 230022, China
Yuhao Shen
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
Yu Zhang
Affiliation:
Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China Hefei Fourth People's Hospital, Hefei 230022, China Anhui Mental Health Center, Hefei 230022, China
Tao Chen
Affiliation:
Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China Hefei Fourth People's Hospital, Hefei 230022, China Anhui Mental Health Center, Hefei 230022, China
Huanhuan Cai
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
Jiajia Zhu*
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
Yongqiang Yu*
Affiliation:
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China Anhui Provincial Institute of Translational Medicine, Hefei 230032, China Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
*
Corresponding author: Yongqiang Yu; Email: cjr.yuyongqiang@vip.163.com; Jiajia Zhu; Email: zhujiajiagraduate@163.com
Corresponding author: Yongqiang Yu; Email: cjr.yuyongqiang@vip.163.com; Jiajia Zhu; Email: zhujiajiagraduate@163.com

Abstract

Background

Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients.

Methods

We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention.

Results

Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group.

Conclusions

These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Aghajafari, F., Letourneau, N., Mahinpey, N., Cosic, N., & Giesbrecht, G. (2018). Vitamin D deficiency and antenatal and postpartum depression: A systematic review. Nutrients, 10(4), 478. 10.3390/nu10040478.CrossRefGoogle ScholarPubMed
Alavi, N. M., Khademalhoseini, S., Vakili, Z., & Assarian, F. (2019). Effect of vitamin D supplementation on depression in elderly patients: A randomized clinical trial. Clinical Nutrition, 38(5), 20652070. doi:10.1016/j.clnu.2018.09.011CrossRefGoogle ScholarPubMed
Albert, K. M., Potter, G. G., Boyd, B. D., Kang, H., & Taylor, W. D. (2019). Brain network functional connectivity and cognitive performance in major depressive disorder. Journal of Psychiatric Research, 110, 5156. doi:10.1016/j.jpsychires.2018.11.020CrossRefGoogle ScholarPubMed
Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 4(3), 316329. doi:10.1016/j.nurt.2007.05.011CrossRefGoogle ScholarPubMed
Alghamdi, S., Alsulami, N., Khoja, S., Alsufiani, H., Tayeb, H. O., & Tarazi, F. I. (2020). Vitamin D supplementation ameliorates severity of major depressive disorder. Journal of Molecular Neuroscience: MN, 70(2), 230235. doi:10.1007/s12031-019-01461-2CrossRefGoogle ScholarPubMed
Alroy, I., Towers, T. L., & Freedman, L. P. (1995). Transcriptional repression of the interleukin-2 gene by vitamin D3: Direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Molecular and Cellular Biology, 15(10), 57895799. doi:10.1128/mcb.15.10.5789CrossRefGoogle ScholarPubMed
Anglin, R. E., Samaan, Z., Walter, S. D., & McDonald, S. D. (2013). Vitamin D deficiency and depression in adults: Systematic review and meta-analysis. The British Journal of Psychiatry: the Journal of Mental Science, 202, 100107. doi:10.1192/bjp.bp.111.106666CrossRefGoogle ScholarPubMed
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95113. doi:10.1016/j.neuroimage.2007.07.007CrossRefGoogle ScholarPubMed
Berridge, M. J. (2015). Vitamin D cell signalling in health and disease. Biochemical and Biophysical Research Communications, 460(1), 5371. doi:10.1016/j.bbrc.2015.01.008CrossRefGoogle ScholarPubMed
Berridge, M. J. (2017). Vitamin D and depression: Cellular and regulatory mechanisms. Pharmacological reviews, 69(2), 8092. doi:10.1124/pr.116.013227CrossRefGoogle ScholarPubMed
Bersani, F. S., Ghezzi, F., Maraone, A., Vicinanza, R., Cavaggioni, G., Biondi, M., & Pasquini, M. (2019). The relationship between Vitamin D and depressive disorders. Rivista di psichiatria, 54(6), 229234. doi:10.1708/3281.32541Google ScholarPubMed
Beurel, E., Toups, M., & Nemeroff, C. B. (2020). The bidirectional relationship of depression and inflammation: Double trouble. Neuron, 107(2), 234256. doi:10.1016/j.neuron.2020.06.002CrossRefGoogle ScholarPubMed
Briggs, R., McCarroll, K., O'Halloran, A., Healy, M., Kenny, R. A., & Laird, E. (2019). Vitamin D deficiency is associated with an increased likelihood of incident depression in Community-Dwelling older adults. Journal of the American Medical Directors Association, 20(5), 517523. doi:10.1016/j.jamda.2018.10.006CrossRefGoogle ScholarPubMed
Casseb, G. A. S., Kaster, M. P., & Rodrigues, A. L. S. (2019). Potential role of vitamin D for the management of depression and anxiety. CNS drugs, 33(7), 619637. doi:10.1007/s40263-019-00640-4CrossRefGoogle ScholarPubMed
Chabas, J. F., Alluin, O., Rao, G., Garcia, S., Lavaut, M. N., Risso, J. J., … Feron, F. (2008). Vitamin D2 potentiates axon regeneration. Journal of Neurotrauma, 25(10), 12471256. doi:10.1089/neu.2008.0593CrossRefGoogle ScholarPubMed
Chen, G., Guo, Y., Zhu, H., Kuang, W., Bi, F., Ai, H., … Gong, Q. (2017). Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: A voxel-based meta-analysis of diffusion tensor imaging. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 76, 179187. doi:10.1016/j.pnpbp.2017.03.011CrossRefGoogle ScholarPubMed
Chen, G., Hu, X., Li, L., Huang, X., Lui, S., Kuang, W., … Gong, Q. (2016). Disorganization of white matter architecture in major depressive disorder: A meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Scientific Reports, 6, 21825. doi:10.1038/srep21825CrossRefGoogle ScholarPubMed
Chen, H., Liu, K., Zhang, B., Zhang, J., Xue, X., Lin, Y., … Deng, Y. (2019). More optimal but less regulated dorsal and ventral visual networks in patients with major depressive disorder. Journal of Psychiatric Research, 110, 172178. doi:10.1016/j.jpsychires.2019.01.005CrossRefGoogle ScholarPubMed
Cheng, Y. C., Huang, Y. C., & Huang, W. L. (2020). The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depression and Anxiety, 37(6), 549564. doi:10.1002/da.23025CrossRefGoogle ScholarPubMed
Cipriani, A., Furukawa, T. A., Salanti, G., Chaimani, A., Atkinson, L. Z., Ogawa, Y., … Geddes, J. R. (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. The Lancet, 391(10128), 13571366. doi:10.1016/s0140-6736(17)32802-7CrossRefGoogle ScholarPubMed
Cipriani, A., Zhou, X., Del Giovane, C., Hetrick, S. E., Qin, B., Whittington, C., … Xie, P. (2016). Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: A network meta-analysis. Lancet (London, England), 388(10047), 881890. doi:10.1016/S0140-6736(16)30385-3CrossRefGoogle ScholarPubMed
Cole, M. W., Repovs, G., & Anticevic, A. (2014). The frontoparietal control system: A central role in mental health. The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry, 20(6), 652664. doi:10.1177/1073858414525995CrossRefGoogle ScholarPubMed
Croarkin, P. E., Levinson, A. J., & Daskalakis, Z. J. (2011). Evidence for GABAergic inhibitory deficits in major depressive disorder. Neuroscience and Biobehavioral Reviews, 35(3), 818825. doi:10.1016/j.neubiorev.2010.10.002CrossRefGoogle ScholarPubMed
de Koning, E. J., van Schoor, N. M., Penninx, B. W., Elders, P. J., Heijboer, A. C., Smit, J. H., … Lips, P. (2015). Vitamin D supplementation to prevent depression and poor physical function in older adults: Study protocol of the D-Vitaal study, a randomized placebo-controlled clinical trial. BMC Geriatrics, 15, 151. doi:10.1186/s12877-015-0148-3CrossRefGoogle ScholarPubMed
de Kwaasteniet, B., Ruhe, E., Caan, M., Rive, M., Olabarriaga, S., Groefsema, M., … Denys, D. (2013). Relation between structural and functional connectivity in major depressive disorder. Biological Psychiatry, 74(1), 4047. doi:10.1016/j.biopsych.2012.12.024CrossRefGoogle ScholarPubMed
Di Somma, C., Scarano, E., Barrea, L., Zhukouskaya, V. V., Savastano, S., Mele, C., … Marzullo, P. (2017). Vitamin D and neurological diseases: An endocrine view. International Journal of Molecular Sciences, 18(11), 2482. 10.3390/ijms18112482.CrossRefGoogle ScholarPubMed
Eyles, D. W., Burne, T. H., & McGrath, J. J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology, 34(1), 4764. doi:10.1016/j.yfrne.2012.07.001CrossRefGoogle ScholarPubMed
Eyles, D. W., Smith, S., Kinobe, R., Hewison, M., & McGrath, J. J. (2005). Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemical Neuroanatomy, 29(1), 2130. doi:10.1016/j.jchemneu.2004.08.006CrossRefGoogle ScholarPubMed
Felger, J. C., Li, Z., Haroon, E., Woolwine, B. J., Jung, M. Y., Hu, X., & Miller, A. H. (2016). Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Molecular Psychiatry, 21(10), 13581365. doi:10.1038/mp.2015.168CrossRefGoogle ScholarPubMed
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700711. doi:10.1038/nrn2201CrossRefGoogle ScholarPubMed
Geng, C., Shaikh, A. S., Han, W., Chen, D., Guo, Y., & Jiang, P. (2019). Vitamin D and depression: Mechanisms, determination and application. Asia Pacific Journal of Clinical Nutrition, 28(4), 689694. doi:10.6133/apjcn.201912_28(4).0003Google ScholarPubMed
Gowda, U., Mutowo, M. P., Smith, B. J., Wluka, A. E., & Renzaho, A. M. (2015). Vitamin D supplementation to reduce depression in adults: Meta-analysis of randomized controlled trials. Nutrition (Burbank, Los Angeles County, Calif.), 31(3), 421429. doi:10.1016/j.nut.2014.06.017CrossRefGoogle ScholarPubMed
Guidotti, A., Auta, J., Chen, Y., Davis, J. M., Dong, E., Gavin, D. P., … Tueting, P. (2011). Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology, 60(7-8), 10071016. doi:10.1016/j.neuropharm.2010.10.021CrossRefGoogle ScholarPubMed
Guo, T., Xiang, Y. T., Xiao, L., Hu, C. Q., Chiu, H. F., Ungvari, G. S., … Wang, G. (2015). Measurement-Based care versus standard care for major depression: A randomized controlled trial with blind raters. The American Journal of Psychiatry, 172(10), 10041013. doi:10.1176/appi.ajp.2015.14050652CrossRefGoogle ScholarPubMed
Hasler, G., van der Veen, J. W., Tumonis, T., Meyers, N., Shen, J., & Drevets, W. C. (2007). Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Archives of General Psychiatry, 64(2), 193200. doi:10.1001/archpsyc.64.2.193CrossRefGoogle ScholarPubMed
Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 1024010245. doi:10.1073/pnas.0701519104CrossRefGoogle ScholarPubMed
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 20352040. doi:10.1073/pnas.0811168106CrossRefGoogle ScholarPubMed
Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D. S., … Mori, S. (2008). Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification. NeuroImage, 39(1), 336347. doi:10.1016/j.neuroimage.2007.07.053CrossRefGoogle ScholarPubMed
Jacka, F. N., Kremer, P. J., Leslie, E. R., Berk, M., Patton, G. C., Toumbourou, J. W., & Williams, J. W. (2010). Associations between diet quality and depressed mood in adolescents: Results from the Australian Healthy Neighbourhoods Study. The Australian and New Zealand Journal of Psychiatry, 44(5), 435442. doi:10.3109/00048670903571598CrossRefGoogle ScholarPubMed
Jacka, F. N., Pasco, J. A., Williams, L. J., Leslie, E. R., Dodd, S., Nicholson, G. C., … Berk, M. (2011). Lower levels of physical activity in childhood associated with adult depression. Journal of Science and Medicine in Sport, 14(3), 222226. doi:10.1016/j.jsams.2010.10.458CrossRefGoogle ScholarPubMed
Jiang, J., Zhao, Y. J., Hu, X. Y., Du, M. Y., Chen, Z. Q., Wu, M., … Gong, Q. Y. (2017). Microstructural brain abnormalities in medication-free patients with major depressive disorder: A systematic review and meta-analysis of diffusion tensor imaging. Journal of Psychiatry & Neuroscience: JPN, 42(3), 150163.CrossRefGoogle ScholarPubMed
Jiao, K., Xu, H., Teng, C., Song, X., Xiao, C., Fox, P. T., … Zhong, Y. (2020). Connectivity patterns of cognitive control network in first episode medication-naive depression and remitted depression. Behavioural Brain Research, 379, 112381. doi:10.1016/j.bbr.2019.112381CrossRefGoogle ScholarPubMed
Ju, S. Y., Lee, Y. J., & Jeong, S. N. (2013). Serum 25-hydroxyvitamin D levels and the risk of depression: A systematic review and meta-analysis. The Journal of Nutrition, Health & Aging, 17(5), 447455. doi:10.1007/s12603-012-0418-0CrossRefGoogle ScholarPubMed
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603611. doi:10.1001/jamapsychiatry.2015.0071CrossRefGoogle ScholarPubMed
Kalueff, A. V., Eremin, K. O., & Tuohimaa, P. (2004). Mechanisms of neuroprotective action of vitamin D(3). Biochemistry. Biokhimiia, 69(7), 738741. doi:10.1023/b:biry.0000040196.65686.2fCrossRefGoogle ScholarPubMed
Kaviani, M., Nikooyeh, B., Zand, H., Yaghmaei, P., & Neyestani, T. R. (2020). Effects of vitamin D supplementation on depression and some involved neurotransmitters. Journal of Affective Disorders, 269, 2835. doi:10.1016/j.jad.2020.03.029CrossRefGoogle ScholarPubMed
Kesby, J. P., Turner, K. M., Alexander, S., Eyles, D. W., McGrath, J. J., & Burne, T. H. J. (2017). Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain. International Journal of Developmental Neuroscience, 62, 17. doi:10.1016/j.ijdevneu.2017.07.002CrossRefGoogle ScholarPubMed
Khoraminya, N., Tehrani-Doost, M., Jazayeri, S., Hosseini, A., & Djazayery, A. (2013). Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. The Australian and New Zealand Journal of Psychiatry, 47(3), 271275. doi:10.1177/0004867412465022CrossRefGoogle ScholarPubMed
Kongsbak, M., Levring, T. B., Geisler, C., & von Essen, M. R. (2013). The vitamin D receptor and T cell function. Frontiers in Immunology, 4, 148. doi:10.3389/fimmu.2013.00148CrossRefGoogle ScholarPubMed
Lai, W. T., Deng, W. F., Xu, S. X., Zhao, J., Xu, D., Liu, Y. H., … Rong, H. (2021). Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychological Medicine, 51(1), 90101. doi:10.1017/S0033291719003027CrossRefGoogle ScholarPubMed
Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 13361349. doi:10.1002/mrm.21890CrossRefGoogle ScholarPubMed
Li, H., Lin, X., Liu, L., Su, S., Zhu, X., Zheng, Y., … Sun, X. (2020). Disruption of the structural and functional connectivity of the frontoparietal network underlies symptomatic anxiety in late-life depression. NeuroImage: Clinical, 28, 102398. doi:10.1016/j.nicl.2020.102398CrossRefGoogle ScholarPubMed
Libuda, L., Antel, J., Hebebrand, J., & Focker, M. (2017). [Nutrition and mental diseases: Focus depressive disorders]. Der Nervenarzt, 88(1), 87101. doi:10.1007/s00115-016-0262-2CrossRefGoogle ScholarPubMed
Liu, G., Jiao, K., Zhong, Y., Hao, Z., Wang, C., Xu, H., … Zhang, N. (2021). The alteration of cognitive function networks in remitted patients with major depressive disorder: An independent component analysis. Behavioural Brain Research, 400, 113018. doi:10.1016/j.bbr.2020.113018CrossRefGoogle ScholarPubMed
Liu, J., Xu, P., Zhang, J., Jiang, N., Li, X., & Luo, Y. (2019). Ventral attention-network effective connectivity predicts individual differences in adolescent depression. Journal of Affective Disorders, 252, 5559. doi:10.1016/j.jad.2019.04.033CrossRefGoogle ScholarPubMed
Liu, Y., Chen, Y., Liang, X., Li, D., Zheng, Y., Zhang, H., … Qiu, S. (2020). Altered resting-state functional connectivity of multiple networks and disrupted correlation with executive function in major depressive disorder. Frontiers in Neurology, 11, 272. doi:10.3389/fneur.2020.00272CrossRefGoogle ScholarPubMed
Lopresti, A. L., Hood, S. D., & Drummond, P. D. (2013). A review of lifestyle factors that contribute to important pathways associated with major depression: Diet, sleep and exercise. Journal of Affective Disorders, 148(1), 1227. doi:10.1016/j.jad.2013.01.014iCrossRefGoogle ScholarPubMed
Luo, L., Chen, L., Wang, Y., Li, Q., He, N., Li, Y., … Li, F. (2023a). Patterns of brain dynamic functional connectivity are linked with attention-deficit/hyperactivity disorder-related behavioral and cognitive dimensions. Psychological Medicine, 53(14), 112. doi:10.1017/S0033291723000089CrossRefGoogle ScholarPubMed
Luo, L., Li, Q., Wang, Y., He, N., Wang, Y., You, W., … Li, F. (2023b). Shared and disorder-specific alterations of brain temporal dynamics in obsessive-compulsive disorder and schizophrenia. Schizophrenia Bulletin, 49(5), 13871398. doi:10.1093/schbul/sbad042CrossRefGoogle Scholar
Luo, L., Wu, H., Xu, J., Chen, F., Wu, F., Wang, C., & Wang, J. (2021). Abnormal large-scale resting-state functional networks in drug-free major depressive disorder. Brain Imaging and Behavior, 15(1), 96106. doi:10.1007/s11682-019-00236-yCrossRefGoogle ScholarPubMed
Luo, L., You, W., DelBello, M. P., Gong, Q., & Li, F. (2022). Recent advances in psychoradiology. Physics in Medicine and Biology, 67(23). doi:10.1088/1361-6560/ac9d1eCrossRefGoogle ScholarPubMed
McCann, J. C., & Ames, B. N. (2008). Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 22(4), 9821001. doi:10.1096/fj.07-9326revCrossRefGoogle ScholarPubMed
Milaneschi, Y., Hoogendijk, W., Lips, P., Heijboer, A. C., Schoevers, R., van Hemert, A. M., … Penninx, B. W. (2014). The association between low vitamin D and depressive disorders. Molecular Psychiatry, 19(4), 444451. doi:10.1038/mp.2013.36CrossRefGoogle ScholarPubMed
Nikolaus, S., Hautzel, H., Heinzel, A., & Muller, H. W. (2012). Key players in major and bipolar depression – A retrospective analysis of in vivo imaging studies. Behavioural Brain Research, 232(2), 358390. doi:10.1016/j.bbr.2012.03.021CrossRefGoogle ScholarPubMed
Okereke, O. I., Reynolds, C. F. 3rd, Mischoulon, D., Chang, G., Vyas, C. M., Cook, N. R., … Manson, J. E. (2020). Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: A randomized clinical trial. Jama, 324(5), 471480. doi:10.1001/jama.2020.10224CrossRefGoogle ScholarPubMed
Okereke, O. I., & Singh, A. (2016). The role of vitamin D in the prevention of late-life depression. Journal of Affective Disorders, 198, 114. doi:10.1016/j.jad.2016.03.022CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. doi:10.1016/0028-3932(71)90067-4CrossRefGoogle ScholarPubMed
Opie, R. S., Itsiopoulos, C., Parletta, N., Sanchez-Villegas, A., Akbaraly, T. N., Ruusunen, A., & Jacka, F. N. (2017). Dietary recommendations for the prevention of depression. Nutritional Neuroscience, 20(3), 161171. doi:10.1179/1476830515Y.0000000043CrossRefGoogle ScholarPubMed
Parker, G. B., Brotchie, H., & Graham, R. K. (2017). Vitamin D and depression. Journal of Affective Disorders, 208, 5661. doi:10.1016/j.jad.2016.08.082CrossRefGoogle ScholarPubMed
Patrick, R. P., & Ames, B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29(6), 22072222. doi:10.1096/fj.14-268342CrossRefGoogle ScholarPubMed
Pike, J. W., Meyer, M. B., Martowicz, M. L., Bishop, K. A., Lee, S. M., Nerenz, R. D., & Goetsch, P. D. (2010). Emerging regulatory paradigms for control of gene expression by 1,25-dihydroxyvitamin D3. The Journal of Steroid Biochemistry and Molecular Biology, 121(1-2), 130135. doi:10.1016/j.jsbmb.2010.02.036CrossRefGoogle Scholar
Ringe, J. D., & Kipshoven, C. (2012). Vitamin D-insufficiency: An estimate of the situation in Germany. Dermato-endocrinology, 4(1), 7280. doi:10.4161/derm.19829CrossRefGoogle ScholarPubMed
Ryan, J. W., Anderson, P. H., & Morris, H. A. (2015). Pleiotropic activities of vitamin D receptors – adequate activation for multiple health outcomes. The Clinical Biochemist. Reviews, 36(2), 5361.Google ScholarPubMed
Saavedra, K., Molina-Marquez, A. M., Saavedra, N., Zambrano, T., & Salazar, L. A. (2016). Epigenetic modifications of major depressive disorder. International Journal of Molecular Sciences, 17(8), 1279. 10.3390/ijms17081279.CrossRefGoogle ScholarPubMed
Sacchet, M. D., Ho, T. C., Connolly, C. G., Tymofiyeva, O., Lewinn, K. Z., Han, L. K., … Yang, T. T. (2016). Large-scale hypoconnectivity between resting-state functional networks in unmedicated adolescent major depressive disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(12), 29512960. doi:10.1038/npp.2016.76CrossRefGoogle ScholarPubMed
Sarris, J., O'Neil, A., Coulson, C. E., Schweitzer, I., & Berk, M. (2014). Lifestyle medicine for depression. BMC Psychiatry, 14, 107. doi:10.1186/1471-244X-14-107CrossRefGoogle ScholarPubMed
Schlogl, M., & Holick, M. F. (2014). Vitamin D and neurocognitive function. Clinical Interventions in Aging, 9, 559568. doi:10.2147/CIA.S51785Google ScholarPubMed
Shen, Y., Wei, Y., Yang, X. N., Zhang, G., Du, X., Jia, Q., … Zhang, X. Y. (2020). Psychotic symptoms in first-episode and drug naive patients with major depressive disorder: Prevalence and related clinical factors. Depression and Anxiety, 37(8), 793800. doi:10.1002/da.23026CrossRefGoogle ScholarPubMed
Shirazi, H. A., Rasouli, J., Ciric, B., Rostami, A., & Zhang, G. X. (2015). 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Experimental and Molecular Pathology, 98(2), 240245. doi:10.1016/j.yexmp.2015.02.004CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 14871505. doi:10.1016/j.neuroimage.2006.02.024CrossRefGoogle ScholarPubMed
Sun, J., Kong, J., Duan, Y., Szeto, F. L., Liao, A., Madara, J. L., & Li, Y. C. (2006). Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. American Journal of Physiology. Endocrinology and Metabolism, 291(2), E315E322. doi:10.1152/ajpendo.00590.2005CrossRefGoogle ScholarPubMed
Thompson, E. (2015). Hamilton rating scale for anxiety (HAM-A). Occupational Medicine (Lond), 65(7), 601. doi:10.1093/occmed/kqv054CrossRefGoogle ScholarPubMed
Tong, P., Bo, P., Shi, Y., Dong, L., Sun, T., Gao, X., & Yang, Y. (2021). Clinical traits of patients with major depressive disorder with comorbid borderline personality disorder based on propensity score matching. Depression and Anxiety, 38(1), 100106. doi:10.1002/da.23122CrossRefGoogle ScholarPubMed
Wei, R., & Christakos, S. (2015). Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients, 7(10), 82518260. doi:10.3390/nu7105392CrossRefGoogle ScholarPubMed
WHO (2017). Depression and other common mental disorders: Global health estimates. Geneva: World Health Organization.Google Scholar
Williams, J. B. (1988). A structured interview guide for the Hamilton Depression Rating Scale. Archives of General Psychiatry, 45(8), 742747. doi:10.1001/archpsyc.1988.01800320058007.CrossRefGoogle ScholarPubMed
Winston, G. P. (2012). The physical and biological basis of quantitative parameters derived from diffusion MRI. Quantitative Imaging in Medicine and Surgery, 2(4), 254265. doi:10.3978/j.issn.2223-4292.2012.12.05Google ScholarPubMed
Wong, S. K., Chin, K. Y., & Ima-Nirwana, S. (2018). Vitamin D and depression: The evidence from an indirect clue to treatment strategy. Current Drug Targets, 19(8), 888897. doi:10.2174/1389450118666170913161030CrossRefGoogle ScholarPubMed
Wu, X. J., Zeng, L. L., Shen, H., Yuan, L., Qin, J., Zhang, P., & Hu, D. (2017). Functional network connectivity alterations in schizophrenia and depression. Psychiatry Res Neuroimaging, 263, 113120. doi:10.1016/j.pscychresns.2017.03.012CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinformatics, 14(3), 339351. doi:10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Yanai, K., & Tashiro, M. (2007). The physiological and pathophysiological roles of neuronal histamine: An insight from human positron emission tomography studies. Pharmacology & Therapeutics, 113(1), 115. doi:10.1016/j.pharmthera.2006.06.008CrossRefGoogle ScholarPubMed
Yang, Y., Zhu, D. M., Zhang, C., Zhang, Y., Wang, C., Zhang, B., … Yu, Y. (2020). Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder. Frontiers in Neuroscience, 14, 50. doi:10.3389/fnins.2020.00050CrossRefGoogle ScholarPubMed
Yin, Y., He, X., Xu, M., Hou, Z., Song, X., Sui, Y., … Yuan, Y. (2016). Structural and functional connectivity of default mode network underlying the cognitive impairment in late-onset depression. Scientific Reports, 6, 37617. doi:10.1038/srep37617CrossRefGoogle ScholarPubMed
You, W., Luo, L., Yao, L., Zhao, Y., Li, Q., Wang, Y., … Li, F. (2022). Impaired dynamic functional brain properties and their relationship to symptoms in never treated first-episode patients with schizophrenia. Schizophrenia (Heidelb), 8(1), 90. doi:10.1038/s41537-022-00299-9CrossRefGoogle ScholarPubMed
Yu, M., Linn, K. A., Shinohara, R. T., Oathes, D. J., Cook, P. A., Duprat, R., … Sheline, Y. I. (2019). Childhood trauma history is linked to abnormal brain connectivity in major depression. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 85828590. doi:10.1073/pnas.1900801116CrossRefGoogle ScholarPubMed
Zhang, C., Yang, Y., Zhu, D. M., Zhao, W., Zhang, Y., Zhang, B., … Yu, Y. (2020). Neural correlates of the association between depression and high density lipoprotein cholesterol change. Journal of Psychiatric Research, 130, 918. doi:10.1016/j.jpsychires.2020.07.012CrossRefGoogle ScholarPubMed
Zhao, W., Zhu, D. M., Li, Q., Xu, X., Zhang, Y., Zhang, C., … Yu, Y. (2023). Brain function mediates the association between low vitamin D and neurocognitive status in female patients with major depressive disorder. Psychological Medicine, 53(9), 40324045. doi:10.1017/S0033291722000708CrossRefGoogle ScholarPubMed
Zhao, W., Zhu, D. M., Li, S., Cui, S., Jiang, P., Wang, R., … Yu, Y. (2022). The reduction of vitamin D in females with major depressive disorder is associated with worse cognition mediated by abnormal brain functional connectivity. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 118, 110577. doi:10.1016/j.pnpbp.2022.110577CrossRefGoogle ScholarPubMed
Zheng, Y. P., Zhao, J. P., Phillips, M., Liu, J. B., Cai, M. F., Sun, S. Q., & Huang, M. F. (1988). Validity and reliability of the Chinese Hamilton depression rating scale. The British Journal of Psychiatry: the Journal of Mental Science, 152, 660664. doi:10.1192/bjp.152.5.660CrossRefGoogle ScholarPubMed
Zhong, X., Shi, H., Ming, Q., Dong, D., Zhang, X., Zeng, L. L., & Yao, S. (2017). Whole-brain resting-state functional connectivity identified major depressive disorder: A multivariate pattern analysis in two independent samples. Journal of Affective Disorders, 218, 346352. doi:10.1016/j.jad.2017.04.040CrossRefGoogle ScholarPubMed
Zhu, D. M., Zhao, W., Cui, S., Jiang, P., Zhang, Y., Zhang, C., … Yu, Y. (2022). The relationship between vitamin D, clinical manifestations, and functional network connectivity in female patients with major depressive disorder. Frontiers in Aging Neuroscience, 14, 817607. doi:10.3389/fnagi.2022.817607CrossRefGoogle ScholarPubMed
Zhu, D.-m., Zhao, W., Zhang, B., Zhang, Y., Yang, Y., Zhang, C., … Yu, Y. (2019). The relationship between serum concentration of vitamin D, total intracranial volume, and severity of depressive symptoms in patients with major depressive disorder. Frontiers in Psychiatry, 10, 322. 10.3389/fpsyt.2019.00322.CrossRefGoogle ScholarPubMed
Zhu, X., Yuan, F., Zhou, G., Nie, J., Wang, D., Hu, P., … Liao, W. (2021). Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity. Brain Imaging and Behavior, 15(3), 12791289. doi:10.1007/s11682-020-00326-2CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material
Download Zhao et al. supplementary material(File)
File 1.3 MB