We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extraction of reference signal is an indispensable step in the signal processing of polarization diversity passive radar (PDPR) based on a digital television signal. A conventional reference signal extraction method requires an additional reference antenna, which has a certain demand for space. Single dual-polarization antenna passive radar (SDPPR) systems do not require a reference antenna, and the radar station layout is flexible, which is suitable for a large-scale radar network. It is a main research direction of PDPR in future. However, its reference signal extraction needs to rely on the signal reconstruction method. When the signal to interference and noise ratio of the direct-path signal is relatively low, the signal reconstruction method will fail. In this paper, we propose a reference signal extraction method based on sub-carrier processing method, blind adaptive oblique projection technology, and extensive cancelation algorithm to solve the above problem. Experimental results show that the method proposed in this paper is a reasonable alternative after the failure of reference signal reconstruction, and it is an effective supplement to the reference signal extraction technology.
This study is performed to figure out how the presence of diabetes affects the infection, progression and prognosis of 2019 novel coronavirus disease (COVID-19), and the effective therapy that can treat the diabetes-complicated patients with COVID-19. A multicentre study was performed in four hospitals. COVID-19 patients with diabetes mellitus (DM) or hyperglycaemia were compared with those without these conditions and matched by propensity score matching for their clinical progress and outcome. Totally, 2444 confirmed COVID-19 patients were recruited, from whom 336 had DM. Compared to 1344 non-DM patients with age and sex matched, DM-COVID-19 patients had significantly higher rates of intensive care unit entrance (12.43% vs. 6.58%, P = 0.014), kidney failure (9.20% vs. 4.05%, P = 0.027) and mortality (25.00% vs. 18.15%, P < 0.001). Age and sex-stratified comparison revealed increased susceptibility to COVID-19 only from females with DM. For either non-DM or DM group, hyperglycaemia was associated with adverse outcomes, featured by higher rates of severe pneumonia and mortality, in comparison with non-hyperglycaemia. This was accompanied by significantly altered laboratory indicators including lymphocyte and neutrophil percentage, C-reactive protein and urea nitrogen level, all with correlation coefficients >0.35. Both diabetes and hyperglycaemia were independently associated with adverse prognosis of COVID-19, with hazard ratios of 10.41 and 3.58, respectively.
Metabolically healthy obesity (MHO) might be an alternative valuable target in obesity treatment. We aimed to assess whether alternative Mediterranean (aMED) diet and Dietary Approaches to Stop Hypertension (DASH) diet were favourably associated with obesity and MHO phenotype in a Chinese multi-ethnic population. We conducted this cross-sectional analysis using the baseline data of the China Multi-Ethnic Cohort study that enrolled 99 556 participants from seven diverse ethnic groups. Participants with self-reported cardiometabolic diseases were excluded to eliminate possible reverse causality. Marginal structural logistic models were used to estimate the associations, with confounders determined by directed acyclic graph (DAG). Among 65 699 included participants, 11·2 % were with obesity. MHO phenotype was present in 5·7 % of total population and 52·7 % of population with obesity. Compared with the lowest quintile, the highest quintile of DASH diet score had 23 % decreased odds of obesity (OR = 0·77, 95 % CI 0·71, 0·83, Ptrend < 0·001) and 27 % increased odds of MHO (OR = 1·27, 95 % CI 1·10, 1·48, Ptrend = 0·001) in population with obesity. However, aMED diet showed no obvious favourable associations. Further adjusting for BMI did not change the associations between diet scores and MHO. Results were robust to various sensitivity analyses. In conclusion, DASH diet rather than aMED diet is associated with reduced risk of obesity and presents BMI-independent metabolic benefits in this large population-based study. Recommendation for adhering to DASH diet may benefit the prevention of obesity and related metabolic disorders in Chinese population.
The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.
The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experimental results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats. In addition, mulberry leaf induced browning of inguinal white adipose tissue (IWAT) by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA-like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated brown adipose tissue (BAT) by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT-1) proteins in both IWAT and BAT via a mechanism involving AMP-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.
The association between dietary Fe intake and diabetes risk remains inconsistent. We aimed to explore the association between dietary Fe intake and type 2 diabetes mellitus (T2DM) risk in middle-aged and older adults in urban China. This study used data from the Guangzhou Nutrition and Health Study, an on-going community-based prospective cohort study. Participants were recruited from 2008 to 2013 in Guangzhou community. A total of 2696 participants aged 40–75 years without T2DM at baseline were included in data analyses, with a median of 5·6 (interquartile range 4·1–5·9) years of follow-up. T2DM was identified by self-reported diagnosis, fasting glucose ≥ 7·0 mmol/l or glycosylated Hb ≥ 6·5 %. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95 % CI. We ascertained 205 incident T2DM cases during 13 476 person-years. The adjusted HR for T2DM risk in the fourth quartile of haem Fe intake was 1·92 (95 % CI 1·07, 3·46; Ptrend = 0·010), compared with the first quartile intake. These significant associations were found in haem Fe intake from total meat (HR 2·74; 95 % CI 1·22, 6·15; Ptrend = 0·011) and haem Fe intake from red meat (HR 1·86; 95 % CI 1·01, 3·44; Ptrend = 0·034), but not haem Fe intake from processed meat, poultry or fish/shellfish. The association between dietary intake of total Fe or non-haem Fe with T2DM risk had no significance. Our findings suggested that higher dietary intake of haem Fe (especially from red meat), but not total Fe or non-haem Fe, was associated with greater T2DM risk in middle-aged and older adults.
Studies have indicated government transfers greatly alleviate poverty among older Americans. Yet recent social policy changes were suggested to increase older Americans’ fiscal insecurity. New evidence is needed to expand the evaluation of government transfers. Longitudinal Health and Retirement Study data from 2002 to 2014 were used. We computed individuals’ poverty status both when household income included and did not include government transfers. Results indicated the poverty rate dropped dramatically when household income included government transfers. The poverty alleviation effect was significantly greater among people who were female, older, members of a minority group, having fewer years of education, residing in the South, and living in a bigger household. Evidence from this study solidified the overall poverty alleviation effect of government transfers in old age. Differential effects among various demographic groups could be attributed to their initial status and divergent political beliefs about who should receive government transfers.
To investigate the cumulative effects of maternal supplementation with nucleotides in the form of uridine (UR) on fatty acid and amino acid constituents of neonatal piglets, fifty-two sows in late gestation were assigned randomly into the control (CON) group (fed a basal diet) or UR group (fed a basal diet with 150 g/t UR). Samples of neonates were collected during farrowing. Results showed that supplementing with UR in sows’ diet significantly decreased the birth mortality of pigs (P = 0·05), and increased serum total cholesterol, HDL and LDL of neonatal piglets (P < 0·05). Moreover, the amino acid profile of serum and liver of neonatal piglets was affected by the addition of UR in sows’ diets (P < 0·05). Furthermore, an up-regulation of mRNA expression of energy metabolism-related genes, including fatty acid elongase 5, fatty acid desaturase 1, hormone-sensitive lipase and cholesterol-7a-hydroxylase, was observed in the liver of neonates from the UR group. Additionally, a decrease in placental gene expression of excitatory amino acid transporters 2, excitatory amino acid transporter 3 and neutral AA transporter 1 in the UR group was concurrently observed (P < 0·05), and higher protein expression of phosphorylated protein kinase B, raptor, PPARα and PPARγ in placenta from the UR group was also observed (P < 0·05). Together, these results showed that maternal UR supplementation could regulate placental nutrient transport, largely in response to an alteration of mTORC1–PPAR signalling, thus regulating the nutrition metabolism of neonatal piglets and improving reproductive performance.
A higher dietary intake or serum concentration of betaine has been associated with greater lean body mass in middle-aged and older adults. However, it remains unknown whether betaine intake is associated with age-related loss of skeletal muscle mass (SMM). We assessed the association between dietary betaine intake and relative changes in SMM after 3 years in middle-aged adults. A total of 1242 participants aged 41–60 years from the Guangzhou Nutrition and Health Study 2011–2013 and 2014–2017 with body composition measurements by dual-energy X-ray absorptiometry were included. A face-to-face questionnaire was used to collect general baseline information. After adjustment for potential confounders, multiple linear regression found that energy-adjusted dietary betaine intake was significantly and positively associated with relative changes (i.e. percentage loss or increase) in SMM of legs, limbs and appendicular skeletal mass index (ASMI) over 3 years of follow-up (β 0·322 (se 0·157), 0·309 (se 0·142) and 0·303 (se 0·145), respectively; P < 0·05). The ANCOVA models revealed that participants in the highest betaine tertile had significantly less loss in SMM of limbs and ASMI and more increase in SMM of legs over 3 years of follow-up, compared with those in the bottom betaine tertile (all Ptrend < 0·05). In conclusion, our findings suggest that elevated higher dietary betaine intake may be associated with less loss of SMM of legs, limbs and ASMI in middle-aged adults.
The subgrid effects on the dynamics of the filtered velocity gradient tensor (VGT) in compressible turbulence are studied by means of statistical analysis of the invariants of the filtered VGT in compressible mixing layers. The evolution of the filtered VGT is determined by the interaction among the invariants, the pressure effects, the viscous effects and the subgrid effects. Based on the probability fluxes in the plane of the second ($Q$) and the third ($R$) invariants of the filtered VGT, it is found that the flux for the subgrid effect term changes most with the dilatation compared to the other terms. Further, a Schur decomposition of the filtered VGT into its normal part and non-normal part, which represent the local effect and the non-local effect of the flow dynamics, respectively, is used to deal with their effects of the velocity gradient. It is revealed that the compressibility is mainly related to the normal effect while the behaviour of the subgrid-scale (SGS) energy dissipation is mainly associated with the non-normal effect. A backscattering region of the SGS energy dissipation in the $Q$–$R$ plane is identified in the locally expanded regions, which is determined by the non-normal effect. Further, an SGS model with the non-local effect is proposed to give a better prediction of the SGS energy dissipation.
GH3536 alloy is one of the high-temperature nickel-based alloys and widely applied in aviation and aerospace industries. In this study, a combination of experiment and simulation is proposed to study the effect of processing parameters on the selective laser melting (SLM) of GH3536 powder. It is concluded that the relationship between density and laser input energy during SLM complies with a quadratic function and presents an inverted U-shaped distribution. By fitting density and input power to a quadratic polynomial, the optimal laser input energy during SLM of GH3536 alloy can be obtained. The result shows that using 275 W laser power and 960 mm/s scanning speed, the SLM GH3536 specimens can reach the maximum density. This experimental result is consistent with the simulation result obtained by analyzing molten pool dimension. Furthermore, a full process energy prediction diagram for SLM GH3536 alloy based on the simulated molten pool depth and width is proposed. The result shows that it provides an innovative and efficient method for the selection of processing parameters during SLM of GH3536 powder.
The high-cycle fatigue (HCF) behavior is significantly affected by surface roughness, especially for high strength metal FV520B-I. However, with surface roughness effect, neither the fatigue property, nor the high-cycle fatigue life model about FV520B-I with surface roughness has been reported. In this paper, designed fatigue experiment using the specimen with different surface roughness is presented to study the effectiveness of the roughness to the fatigue. The observations of the fatigue crack initiation sites and the crack propagation. Then the high cycle fatigue behavior of FV520B-I affected by surface roughness is analyzed. The existing very-high-cycle fatigue life model is not well-fit for high-cycle fatigue model of FV520B-I. A NEW high-cycle fatigue life prediction model of FV520B-I, taking surface roughness as a main effective variable is proposed. The model is built up by a comprehensive use of experimental data and the traditional fatigue modeling theory. The new finding between the fatigue strength coefficient and stress amplitude, with surface roughness, is adopted, leading to a NEW modified life prediction model. Study on fatigue model of FV520B-I with surface roughness is a very beneficial effort in fatigue theory and fatigue engineering development.
The microstructural evolution of spray-formed high speed steel during hot deformation was investigated as well as the effects of spray forming parameters on the porosity formation. Four distinct zones are identified in the as-deposited material, and interstitial porosity is present in the bottom and peripheral zones, while gas-related porosity is mainly found in the central zone. It can keep the porosity at a minimum value by using the optimum parameters, e.g., the average porosity of central zone is 3.7% for a superheat of 170 °C and a gas-to-metal flow rate of 0.7. During hot deformation at 1150 °C, the amount of porosity can be obviously decreased by increasing the height reduction which also plays a key role in breaking up eutectic carbides. The critical height reduction for the breakdown of the eutectic carbides is 50%, the dominant mechanism being mechanical fragmentation.
The current study sought to examine the utility of intra-individual variability (IIV) in distinguishing participants with prodromal Huntington disease (HD) from nongene-expanded controls. IIV across 15 neuropsychological tasks and within-task IIV using a self-paced timing task were compared as a single measure of processing speed (Symbol Digit Modalities Test [SDMT]) in 693 gene-expanded and 191 nongene-expanded participants from the PREDICT-HD study. After adjusting for depressive symptoms and motor functioning, individuals estimated to be closest to HD diagnosis displayed higher levels of across- and within-task variability when compared to controls and those prodromal HD participants far from disease onset (FICV(3,877)=11.25; p<.0001; FPacedTiming(3,877)=22.89; p<.0001). When prodromal HD participants closest to HD diagnosis were compared to controls, Cohen’s d effect sizes were larger in magnitude for the within-task variability measure, paced timing (−1.01), and the SDMT (−0.79) and paced tapping coefficient of variation (CV) (−0.79) compared to the measures of across-task variability [CV (0.55); intra-individual standard deviation (0.26)]. Across-task variability may be a sensitive marker of cognitive decline in individuals with prodromal HD approaching disease onset. However, individual neuropsychological tasks, including a measure of within-task variability, produced larger effect sizes than an index of across-task IIV in this sample. (JINS, 2015, 21, 8–21)
To compare the clinical features of our sero-negative and sero-positive neuromyelitis optica (NMO) patients.
Methods:
Thirty-nine patients with NMO were recruited and analyzed retrospectively. Serum aquaporin 4 (AQP4) antibody status was determined by a cell-based assay. For the sero-negative patients, cerebrospinal fluid (CSF) and serum samples were re-tested using the cell-based assay and an indirect immunofluorescence assay.
Results:
By the cell-based assay, 30 patients (76.92%, 30/39), were positive for AQP4 antibodies in serum and 37 patients (94.9%, 37/39), had a CSF-positive antibody status. Seven NMO patients (17.9%, 7/39) were sero-negative by the cell-based assay but demonstrated positive CSF results. By indirect immunofluorescence, the remaining two patients, who had no AQP4 antibodies in serum or CSF by the cell-based assay, were positive for IgG antibodies in serum, which selectively targeted the central nervous system microvessels, pia, subpia, Virchow-Robin space, kidney, and stomach. There were no significant differences between the sero-positive and sero-negative NMO groups among their demographic and clinical data.
Conclusions:
Repeating the test using a different assay or CSF is helpful to clarify whether sero-negative NMO patients do in fact carry AQP4 antibodies.
Energetic electron beam generation from a thin foil target by the ponderomotive force of an ultra-intense circularly polarized laser pulse is investigated. Two-dimensional particle-in-cell (PIC) simulations show that laser pulses with intensity of 1022–1023 Wcm−2 generate about 1–10 GeV electron beams, in agreement with the prediction of one-dimensional theory. When the laser intensity is at 1024–1025 Wcm−2, the beam energy obtained from PIC simulations is lower than the values predicted by the theory. The radiation damping effect is considered, which is found to become important for the laser intensity higher than 1025 Wcm−2. The effect of laser focus positions is also discussed.
Nanometer-sized intermetallic Mg-Ni and Mg-Cu compound powders were prepared by a physical vapor deposition method (arc discharge) and characterized by means of x-ray diffraction and transmission electron microscopy. Based on an empirical specific heat equation, the effective heat of formation and its temperature dependence were calculated to explain phase formation in nanoscale powders of the binary Mg-Ni and Mg-Cu systems. It is shown that theoretic calculations are in good agreement with the experimental observations.
By
Xu Xiuli, College of Economics and Management,
Qi Gubo, Beijing Agricultural University,
Zuo Ting, Nanjiang Normal University,
Lu Min, College of Agronomy,
Li Jingsong, Wageningen Agricultural University,
Song Yiching, Wageningen Agricultural University,
Yuan Juanwen, University of the Philippines,
Long Zhipu, Ningxia University,
Mao Miankui,
Ji Miao, Shan Dong Finance Institute in 1999,
Gao Xiaowei, Center for Chinese Agricultural Policy,
Chen Keke, Rural Development and Management,
Liu Lin, Jilin Agricultural University,
Ronnie Vernooy, Wageningen Agricultural University
Edited by
Ronnie Vernooy, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Li Xiaoyun, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Xu Xiuli, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Lu Min, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Qi Gubo, Senior Programme Specialist, International Development Research Centre (IDRC), Canada
By
Ronnie Vernooy, Wageningen Agricultural University,
Qi Gubo, Beijing Agricultural University,
Lu Min, College of Agronomy,
Xu Xiuli, College of Economics and Management,
Li Jingsong, Wageningen Agricultural University,
Long Zhipu, Ningxia University,
Yang Huan, Ningxia University,
Zhang Li, Ningxia University
Edited by
Ronnie Vernooy, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Li Xiaoyun, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Xu Xiuli, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Lu Min, Senior Programme Specialist, International Development Research Centre (IDRC), Canada,Qi Gubo, Senior Programme Specialist, International Development Research Centre (IDRC), Canada