We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present study sought to unravel the psychological processes through which mass incarceration, specifically paternal incarceration, is negatively affecting the next generation of children. Data came from 4,327 families from 20 cities who participated in a 10-year longitudinal study. Parents and children reported on children’s rule-breaking behaviors and depressive symptoms when they were on average ages 5 (2003–2006), 9 (2007–2010), and 15 (2014–2017). Parental surveys and disposition information were combined to assess paternal incarceration at each age. Results showed that children who experienced paternal incarceration at age 5 also demonstrated more rule-breaking behaviors at age 15. Children’s age-9 depressive symptoms partially mediated our finding, such that children who experienced paternal incarceration at age 5 also showed greater depressive symptoms at age 9, which in turn predicted greater rule-breaking behaviors at age 15. Paternal incarceration predicted future rule-breaking behaviors more strongly than did other forms of father loss. Because we found paternal incarceration during childhood is associated with worsened adjustment into adolescence, we discussed the need for developmentally appropriate practices in the criminal justice system.
Village cadres are important agents for the state yet disciplining them has been difficult. There are few disciplinary tools that can easily hold them to account. Prior to 2018, Party discipline did not apply to non-Party cadres. Legislation was ambiguous in relation to these grassroots agents and had to rely heavily on legal interpretation. The impact of the cadre evaluation system on village cadres, who are not considered to be public servants on the state payroll, was limited. This situation has changed since 2018. The party-state has consolidated and institutionalized ways in which grassroots cadres are checked and disciplined. Instead of relying on policy regulation, which had been the dominant disciplinary method since 1949, village cadres are now fully subject to Party rules and state laws. These changes have been accomplished through the application of three measures. First, village Party secretaries are to serve concurrently as village heads, and members of village and Party committees are to overlap, thereby making them subject to Party discipline. Second, village cadres are now considered to be “public agents” and are on an equal legal footing with other state agents. Finally, a campaign waged by the criminal justice apparatus cleaned up village administration and prepared it for upcoming village elections in a new era.
Across Eurasia, horse transport transformed ancient societies. Although evidence for chariotry is well dated, the origins of horse riding are less clear. Techniques to distinguish chariotry from riding in archaeological samples rely on elements not typically recovered from many steppe contexts. Here, the authors examine horse remains of Mongolia's Deer Stone-Khirigsuur (DSK) Complex, comparing them with ancient and modern East Asian horses used for both types of transport. DSK horses demonstrate unique dentition damage that could result from steppe chariotry, but may also indicate riding with a shallow rein angle at a fast gait. A key role for chariots in Late Bronze Age Mongolia helps explain the trajectory of horse use in early East Asia.
This research aimed to examine health-care workers’ grief counseling for bereaved families of coronavirus disease 2019 (COVID-19) victims in China. Our research may provide a new opportunity to stimulate development of grief counseling in China.
Methods:
A cross-sectional survey was conducted with 724 health-care workers selected by convenience sampling from 7 hospitals in Wuhan. Data collection tools included a sociodemographic questionnaire, the skills of grief counseling scale (SGCS), and the attitudes of grief counseling scale (AGCS).
Results:
The average SGCS score was 18.96 ± 4.66, whose influencing factors consisted of sense of responsibility, frequency of contact with bereaved families, and relevant training (P < 0.05). The average AGCS score was 33.36 ± 8.70, whose influencing factors consisted of other grief counseling skills, communication skills, education background, and relevant training (P < 0.05).
Conclusions:
The skills and attitudes toward grief counseling among health-care workers combating COVID-19 were at a lower level in Wuhan, China, indicating the need to build a comprehensive grief counseling system, establish a standardized training course, and strengthen the popularization of grief counseling services to the public.
We use the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) project as a template to demonstrate how deep spectrophotometric surveys covering large cosmological volumes over extended fields (1–
$15\, \rm{deg^2}$
) with a mid-IR imaging spectrometer (17–
$36\, \rm{\rm{\upmu m}}$
) in conjunction with deep
$70\, \rm{\rm{\upmu m}}$
photometry with a far-IR camera, at wavelengths which are not affected by dust extinction can answer the most crucial questions in current galaxy evolution studies. A SPICA-like mission will be able for the first time to provide an unobscured three-dimensional (3D, i.e. x, y, and redshift z) view of galaxy evolution back to an age of the universe of less than
$\sim$
2 Gyrs, in the mid-IR rest frame. This survey strategy will produce a full census of the Star Formation Rate (SFR) in the universe, using polycyclic aromatic hydrocarbons (PAH) bands and fine-structure ionic lines, reaching the characteristic knee of the galaxy luminosity function, where the bulk of the population is distributed, at any redshift up to
$z \sim 3.5$
. Deep follow-up pointed spectroscopic observations with grating spectrometers onboard the satellite, across the full IR spectral range (17–
$210\, \rm{\rm{\upmu m}}$
), would simultaneously measure Black Hole Accretion Rate (BHAR), from high-ionisation fine-structure lines, and SFR, from PAH and low- to mid-ionisation lines in thousands of galaxies from solar to low metallicities, down to the knee of their luminosity functions. The analysis of the resulting atlas of IR spectra will reveal the physical processes at play in evolving galaxies across cosmic time, especially its heavily dust-embedded phase during the activity peak at the cosmic noon (
$z \sim 1$
–3), through IR emission lines and features that are insensitive to the dust obscuration.
Spatial profiles of impurity emission measurements in the extreme ultraviolet (EUV) spectroscopic range in radiofrequency (RF)-heated discharges are combined with one-dimensional and three-dimensional transport simulations to study the effects of resonant magnetic perturbations (RMPs) on core impurity accumulation at EAST. The amount of impurity line emission mitigation by RMPs appears to be correlated with the ion Z for lithium, carbon, iron and tungsten monitored, i.e. stronger suppression of accumulation for heavier ions. The targeted effect on the most detrimental high-Z impurities suggests a possible advantage using RMPs for impurity control. Profiles of transport coefficients are calculated with the STRAHL one-dimensional impurity transport code, keeping $\nu /D$ fixed and using the measured spatial profiles of $\textrm{F}{\textrm{e}^{20 + }}$, $\textrm{F}{\textrm{e}^{21 + }}$ and $\textrm{F}{\textrm{e}^{22 + }}$ to disentangle the transport coefficients. The iron diffusion coefficient ${D_{\textrm{Fe}}}$ increases from $1.0- 2.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ to $1.5- 3.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ from the core region to the edge region $(\rho \gt 0.5)$ after the onset of RMPs. Meanwhile, an inward pinch of iron convective velocity ${\nu _{\textrm{Fe}}}$ decreases in magnitude in the inner core region and increases significantly in the outer confined region, simultaneously contributing to preserving centrally peaked $\textrm{Fe}$ profiles and exhausting the impurities. The ${D_{\textrm{Fe}}}$ and ${\nu _{\textrm{Fe}}}$ variations lead to reduced impurity contents in the plasma. The three-dimensional edge impurity transport code EMC3-EIRENE was also applied for a case of RMP-mitigated high-Z accumulation at EAST and compared to that of low-Z carbon. The exhaust of ${\textrm{C}^{6 + }}$ toward the scrape-off layer accompanying an overall suppression of heavier ${\textrm{W}^{30 + }}$ is observed when using RMPs.
To investigate the vision loss burden due to vitamin A deficiency (VAD) at the global, regional and national levels by year, age, sex and socio-economic status using prevalence and years lived with disability (YLD).
Prevalence and YLD data were extracted from the Global Burden of Disease (GBD) Study 2017. The association of age-standardised YLD rates and human development index (HDI) was tested by Pearson correlation and linear regression analyses. The Gini coefficient and concentration index (CI) were calculated to demonstrate the trends in between-country inequality in vision loss burden due to VAD.
Participants:
All participants met the GBD inclusion criteria.
Results:
The age-standardised prevalence rate increased by 9·2 %, while the age-standardised YLD rates rose by 10·8 % from 1990 to 2017. Notably, the vision loss burden caused by VAD showed a declining trend since 2014. The vision loss burden was more concentrated in the post-neonatal age group and decreased with increasing age. The age-standardised YLD rates were inversely correlated with HDI (r = –0·2417, P = 0·0084). The CI and Gini coefficients indicated that socio-economic-related and between-country inequality declined from 2000 to 2017. VAD was the eighth leading cause of the age-standardised prevalence rate and ninth leading cause of age-standardised YLD rate among fifteen causes of vision loss in 2017.
Conclusion:
VAD has become one of the significant leading causes of vision loss globally. Efforts to control vision impairment related to VAD are needed, especially for children in countries with lower socio-economic status.
Steam jet milling was applied for the first time to ultra-fine grind the filter cake (moisture content 23.80%) produced by a kaolin concentrator. The material was dehydrated and dried simultaneously during grinding, and the final ground sample met the moisture content requirement for powder products of <2%. The particle size of the ground kaolin samples decreased and the particle-size distribution was more concentrated, indicating that the steam jet milling was more effective for kaolin processing than the conventional dry grinding process. In addition, steam jet milling can improve the whiteness and decrease the crystal order of the samples, thus improving the kaolin properties in follow-up applications.
The purpose of our study was to elucidate the functions of miR-30c-5p on adenomyosis for exploring novel treatment strategies. We first detected the expression of miR-30c-5p in clinical adenomyotic tissues and isolated endometrial cells from adenomyotic tissues. Next, gain and loss-of-function assays were performed to detect the effect of miR-30c-5p on adenomyotic endometrial cells. Further, luciferase assay and real-time polymerase chain reaction as well as western blot were conducted to investigate the potential target of miR-30c-5p; and transwell assay, wound-healing assay and CCK-8 assay were used to evaluate the effects of miR-30c-5p and its target on regulating biological functions of adenomyotic endometrial cells. Our results found that miR-30c-5p was down-regulated in both adenomyosis tissues and adenomyotic epithelial cells, which correlated with dysmenorrhea, longer duration of symptoms and more menstrual bleeding. Moreover, the overexpression of miR-30c-5p inhibited the proliferation, migration and invasion of adenomyotic epithelial cells, where miR-30c-5p knockdown had an opposite effect. Furthermore, we confirmed mitogen-activated protein kinase 1 (MAPK1) was one of the direct targets of miR-30c-5p, indicating its important role in miR-30c-5p-mediated suppression of proliferation, invasion and migration in adenomyotic epithelial cells. This study showed that the interaction of miR-30c-5p with MAPK1 can regulate the proliferation, invasion and migration in adenomyotic epithelial cells.
Background:
Infection prevention and control (IPC) workflows are often retrospective and manual. New tools, however, have entered the field to facilitate rapid prospective monitoring of infections in hospitals. Although artificial intelligence (AI)–enabled platforms facilitate timely, on-demand integration of clinical data feeds with pathogen whole-genome sequencing (WGS), a standardized workflow to fully harness the power of such tools is lacking. We report a novel, evidence-based workflow that promotes quicker infection surveillance via AI-assisted clinical and WGS data analysis. The algorithm suggests clusters based on a combination of similar minimum inhibitory concentration (MIC) data, timing of sample collection, and shared location stays between patients. It helps to proactively guide IPC professionals during investigation of infectious outbreaks and surveillance of multidrug-resistant organisms and healthcare-acquired infections. Methods: Our team established a 1-year workgroup comprised of IPC practitioners, clinical experts, and scientists in the field. We held weekly roundtables to study lessons learned in an ongoing surveillance effort at a tertiary care hospital—utilizing Philips IntelliSpace Epidemiology (ISEpi), an AI-powered system—to understand how such a tool can enhance practice. Based on real-time case discussions and evidence from the literature, a workflow guidance tool and checklist were codified. Results: In our workflow, data-informed clusters posed by ISEpi underwent triage and expert follow-up analysis to assess: (1) likelihood of transmission(s); (2) potential vector(s) identity; (3) need to request WGS; and (4) intervention(s) to be pursued, if warranted. In a representative sample (spanning October 17, 2019, to November 7, 2019) of 67 total isolates suggested for inclusion in 19 unique cluster investigations, we determined that 9 investigations merited follow-up. Collectively, these 9 investigations involved 21 patients and required 115 minutes to review in ISEpi and an additional 70 minutes of review outside of ISEpi. After review, 6 investigations were deemed unlikely to represent a transmission; the other 3 had potential to represent transmission for which interventions would be performed. Conclusions: This study offers an important framework for adaptation of existing infection control workflow strategies to leverage the utility of rapidly integrated clinical and WGS data. This workflow can also facilitate time-sensitive decisions regarding sequencing of specific pathogens given the preponderance of available clinical data supporting investigations. In this regard, our work sets a new standard of practice: precision infection prevention (PIP). Ongoing effort is aimed at development of AI-powered capabilities for enterprise-level quality and safety improvement initiatives.
Funding: Philips Healthcare provided support for this study.
Disclosures: Alan Doty and Juan Jose Carmona report salary from Philips Healthcare.
Disorder of hepatic glucose metabolism is the characteristic of late-pregnant sows. The purpose of our study was to look into the mechanism of garcinol on the improvement of hepatic gluconeogenic enzyme in late-pregnant sows. Thirty second- and third-parity sows (Duroc × Yorkshire × Landrace, n 10/diet) were fed a basal diet (control) or that diet supplemented with 100 mg/kg (Low Gar) or 500 mg/kg (High Gar) garcinol from day 90 of gestation to the end of farrowing. The livers were processed to measure enzymatic activity. Hepatocytes from pregnant sows were transfected with P300/CBP-associating factor (PCAF) small interfering RNA (siRNA) or treated with garcinol. Dietary garcinol had no effect on average daily feed intake, body weight (BW), backfat and BW gain of late-pregnant sows. Garcinol promoted plasma glucose levels in pregnant sows and newborn piglets. Garcinol up-regulated hepatic gluconeogenic enzyme expression and decreased PCAF activity. Garcinol had no effect on the expression of PPAR-γ co-activator 1α (PGC-1α) and Forkhead box O1 (FOXO1) but significantly increased their activity and decreased their acetylation in late-pregnant sows. Transfection of PCAF siRNA to hepatocytes of pregnant sows increased PGC-1α and FOXO1 activities. Furthermore, in hepatocytes of pregnant sows, garcinol treatment also up-regulated the activities of PGC-1α and FOXO1 and inhibited the acetylation of PGC-1α and FOXO1. Garcinol improves hepatic gluconeogenic enzyme expression in late-pregnant sows, and this may be due to the mechanism of down-regulating the acetylation of PGC-1α and FOXO1 induced by PCAF in isolated hepatocytes.
Due to urbanisation in China, about 7.74 million older people have migrated to urban centres, where their adult children reside and work, to care for their grandchildren. While older migrants may benefit from family reunion and mutual support, empirical studies have identified challenges to adaptation, integration and mental health. Employing a systematic literature review approach, this paper examines recent empirical studies on the mental health of older migrants migrating along with adult children in China, focusing on mental health and wellbeing outcomes and determinants and directions for social work interventions. It identifies directions for considering diversity in conceptualisations of mental health and in theoretical perspectives to enrich understanding of the experiences of Chinese older migrants migrating along with adult children and potential interventions.
Most skarns are found near the pluton or in lithologies containing at least some limestone. However, recent research has shown that neither a pluton nor limestone is necessarily required to form a skarn deposit. The newly discovered Bagenheigeqier Pb–Zn skarn deposit is located in NE China. The skarn and Pb–Zn orebodies occur in volcanic lithologies of the Baiyin’gaolao Formation and are controlled by NE–SW-trending faults. The nearest pluton is a granite porphyry, at a distance of 20–250 m from the orebodies. Five paragenetic stages at Bagenheigeqier are recognized: (I) skarn; (II) oxide; (III) early sulphide; (IV) late sulphide; and (V) late quartz–calcite. The fluid inclusions from stages II to V homogenized at temperatures of 402–452, 360–408, 274–319 and 167–212°C, respectively. The hydrogen and oxygen isotope compositions (δ18OH2O, –12.4‰ to +9.3‰; δDH2O, –156.5‰ to –99.1‰) indicate that the ore-fluids were primarily of magmatic origin, with the proportion of meteoric water increasing during the progression of ore formation. Sulphur isotope values (δ34SVCDT, 1.4–5.5‰), lead isotope values (206Pb/204Pb, 18.184–18.717; 207Pb/204Pb, 15.520–15.875; 208Pb/204Pb, 37.991–38.379) and the initial 187Os/188Os ratios of the pyrite (0.307 ± 0.06) suggest that the ore metals were derived from the granite porphyry and Baiyin’gaolao Formation. Re–Os dating of pyrite intergrown with galena and sphalerite yielded a well-constrained isochron age of 151.2 ± 4.7 Ma, which is coeval with the laser ablation – inductively coupled plasma – mass spectrometry zircon U–Pb age of 154 ± 1 Ma for the granite porphyry. The deposit was therefore formed during Late Jurassic time.
A flexible surface-enhanced Raman scattering (SERS) substrate was prepared by vacuum evaporation of silver on the surface of woven nylon fabrics. SERS properties of the Ag-coated nylon fabrics varied as the thickness of silver coatings changed, relative to the morphologies and distribution of silver nanoparticles (NPs) on fiber. The SERS enhancement performance of Ag-coated nylon fabrics was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP). The results suggested that the nylon fabrics coated with 10 nm thickness Ag NPs coatings possessed high SERS activity and its detection concentration for PATP is as low as 10−9 M. Furthermore, sensitive SERS signals with excellent reproducibility (Relative standard deviation = 8.25%) and stability (30 days) have been demonstrated. In addition, the SERS nylon fabrics have been applied to rapidly detect thiram pesticides on cucumber, which indicated a great potential for trace analysis.
Earlier studies examining structural brain abnormalities associated with cognitively derived subgroups were mainly cross-sectional in design and had mixed findings. Thus, we obtained cross-sectional and longitudinal data to characterize the extent and trajectory of brain structure abnormalities underlying distinct cognitive subtypes (“preserved,” “deteriorated,” and “compromised”) seen in psychotic spectrum disorders.
Methods.
Data from 364 subjects (225 patients with psychotic conditions and 139 healthy controls) were first used to determine the relationship of cognitive subtypes with cross-sectional measures of subcortical volume and cortical thickness. To probe neurodevelopmental abnormalities, brain structure laterality was examined. To examine whether neuroprogressive abnormalities persist, longitudinal brain structural changes over 5 years were examined within a subset of 101 subjects. Subsequent discriminant analysis using the identified brain measures was performed on an independent subject group.
Results.
Cross-sectional comparisons showed that cortical thinning and limbic volume reductions were most widespread in “deteriorated” cognitive subtype. Laterality comparisons showed more rightward amygdala lateralization in “compromised” than “preserved” subtype. Longitudinal comparisons revealed progressive hippocampal shrinkage in “deteriorated” compared with healthy controls and “preserved” subtype, which correlated with worse negative symptoms, cognitive and psychosocial functioning. Post-hoc discrimination analysis on an independent group of 52 subjects using the identified brain structures found an overall accuracy of 71% for classification of cognitive subtypes.
Conclusion.
These findings point toward distinct extent and trajectory of corticolimbic abnormalities associated with cognitive subtypes in psychosis, which can allow further understanding of the biological course of cognitive functioning over illness course and with treatment.
Ketosis is a metabolic disease of dairy cows often characterized by high concentrations of ketone bodies and fatty acids, but low milk protein and milk production. The Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) and the mechanistic target of rapamycin (mTOR) signaling pathways are central for the regulation of milk protein synthesis. The effect of high levels of fatty acids on these pathways and β-casein synthesis are unknown in dairy cows with clinical ketosis. Mammary gland tissue and blood samples were collected from healthy (n = 15) and clinically-ketotic (n = 15) cows. In addition, bovine mammary epithelial cells (BMEC) were treated with fatty acids, methionine (Met) or prolactin (PRL), respectively. In vivo, the serum concentration of fatty acids was greater (P > 0.05) and the percentage of milk protein (P > 0.05) was lower in cows with clinical ketosis. The JAK2-STAT5 and mTOR signaling pathways were inhibited and the abundance of β-casein was lower in mammary tissue of cows with clinical ketosis (P > 0.05). In vitro, high levels of fatty acids inhibited the JAK2-STAT5 and mTOR signaling pathways (P > 0.05) and further decreased the β-casein synthesis (P > 0.05) in BMEC. Methionine or PRL treatment, as positive regulators, activated the JAK2-STAT5 and mTOR signaling pathways to increase the β-casein synthesis. Importantly, the high concentration of fatty acids attenuated the positive effect of Met or PRL on mTOR, JAK2-STAT5 pathways and the abundance of β-casein (P > 0.05). Overall, these data indicate that the high concentrations of fatty acids that reach the mammary cells during clinical ketosis inhibit mTOR and JAK2-STAT5 signaling pathways, and further suppress β-casein synthesis.