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Objective. *e aim of the study is to investigate the potential role of keratoconus (KC) in the diagnosis of keratoconus (KC).
Methods. GSE151631 and GSE77938 were downloaded from the comprehensive gene expression database (GEO). By using the
random forest model (RF), support vector machine model (SVM), and generalized linear model (GLM), important immune-
related genes were identified as biomarkers for KC diagnosis. Results. *rough the LASSO, RFE, and RF algorithms and
comparing the three sets of DEGs, a total of 8 overlapping DEGs were obtained. We took 8 DEGs as the final optimal combination
of DEGs: AREG, BBC3, DUSP2, map3k8, Smad7, CDKN1A, JUN, and LIF. Conclusion. Abnormal cell proliferation, apoptosis,
and autophagy defects are related to KC, which may be the etiology and potential target of KC.

1. Introduction

Keratoconus (KC) is a bilateral progressive, noninflamma-
tory corneal stromal thinning disease. It is characterized by
corneal conical dilation and a series of corneal curvature
changes. *e suspicious factors related to its occurrence
include genetic mechanisms, family-related, allergic dis-
eases, and specific diseases [1]. In the early stage of onset, it is
mainly manifested in the continuous growth of myopia and
astigmatism, which seriously affects the vision of patients. If
it continues to develop, the final result is corneal trans-
plantation [2]. *e etiology of KC is not clear. So, exploring
its etiology and pathogenesis and taking effective control
measures are the fundamental to prevent and treat kera-
toconus. With the technological development of molecular
biology, research on KC has gone deep into the molecular
level. *e cornea is located in the front of the eye, and its
anatomical structure is relatively clear, which is convenient
for technical operation and observation of the gene trans-
fection process. At the same time, the particularity of corneal

immune amnesty makes it an ideal target organ for mo-
lecular therapy [3].

In this paper, multiple KC-related high-throughput
detection data are collected for analysis, and the KC sig-
nificantly related genes are compared and screened. *e
important genes significantly related to immunity are
screened by using the sample immune evaluation and
WGCNA algorithms, and then, the internal correlation of
the pathway is analyzed by combining the KEGG cross talk
between the important genes. Finally, different optimization
algorithms are used to further screen the characteristic
genes, and the sample diagnosis classification model is
constructed. *e purpose of this study was to explore the
role of immune-related genes in KC by comparing the
complete gene expression profile data downloaded from the
gene expression comprehensive database (GEO), and we
further try to use immune-related genes as diagnostic bio-
markers of KC patients, which may be helpful to the di-
agnosis and treatment of KC. In addition, we also studied the
potential relationship between immune cells and KC.
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2. Methods

2.1. Data Search and Information. In NCBI GEO (https://
www.ncbi.nlm.nih.gov/GEO/), we search the database with
“keratoconus” as the keyword, and the data filtering criteria
are as follows: (1) transcriptome expression profile data of
human corneal tissue samples; (2) classification of patients
with KC and Ctrl control samples; (3) the number of samples
available for inclusion in the analysis shall not be less than
20.*ree sets of datasets meeting the requirements (all high-
throughput detection expression profile data) were obtained.
*e information is shown in Table 1. We combined the first
two datasets (GSE151631 and GSE77938) in Table 1 as the
main analysis dataset of this analysis and remaining
GSE112155 as the verification dataset of this analysis.

2.2. Screening of Significantly Differentially Expressed Genes.
We removed the batch effect, combined the samples, and
screened the significantly differentially expressed genes. We
removed the batch effect, combined the samples, and screened
the significantly differentially expressed genes becauseof the level
of gene expression in batch is different from that in r3.0 6.1 SVA
in language Package (https://www.bioconductor.org/packages/
release/bioc/html/sva.html). Version 3.38.0 removed the batch
effect of GSE151631 and GSE77938 datasets and then obtained
the combined expression level data.

In the combined expression profile dataset, we used R3 6.1
limma package version 3.36.0 in language (https://www.
bioconductor.org/packages/release/bioc/html/edgeR.html). *e
differentially expressed genes (DEGs) between KC vs. Ctrl
groups were screened, and FDR<0.05 and |log2fc|>1 were
selected as the threshold for screening DEGs.*en, based on the
DEGs obtained by screening, the R3 Pheatmap package in 6.1
language (version 1.0.8) was used (https://cran.r-project.org/
package�pheatmap). Bi-directional hierarchical clustering
based on Euclidean distance is performed on the expression
values and displayed with a heat map.

2.3. Screening of DEGs Significantly Related to Important
Immune Cells. We evaluated the sample immune cell
types based on the ssGSEa algorithm. *e concept of a
disease immune microenvironment means that a large
number of immune cells are often gathered inside and
around the disease. *ere are countless links between
these immune cells, as well as between tumor cells and
immune cells. *ere are a variety of immune cells, so the
so-called immune microenvironment, or immune infil-
tration analysis, is essential to find out the composition
proportion of immune cells in the tissue. *is paper
adopts R3 based on ssGSEa (single sample gene set en-
richment analysis) algorithm 6.1 GSVA (https://www.
bioconductor.org/packages/release/bioc/html/GSVA.
html). We used version 1.36.3 (gene set variation analysis
for microarray and RNA SEQ data) to evaluate the
immune characteristics of each sample and then used the
inter-group t-test to analyze the differences in the dis-
tribution of various types of immune cells between KC
and Ctrl groups and retained the immune cell types with

significant differences in the distribution between
groups.

We screened DEGs that are significantly related to
important immune cells. *en, the expression level of DEGs
screened in the second step and the immune cell types with
significant differences between KC vs. Ctrl groups evaluated
by ssGSEa were analyzed by R3 6.1 cor function in language
(https://77.66.12.57/R-help/cor.test.html). *e Pearson
correlation coefficient (PCC) between them was calculated.
*e DEGs with significance p value less than 0.05 and
absolute PCC values higher than 0.5 were retained as DEGs
significantly related to important immune cells.

2.4.WGCNAAlgorithmScreensModules SignificantlyRelated
toDisease Status and Immunity. Weighed gene coexpression
network analysis (WGCNA) is a bioinformatics algorithm
for constructing the coexpression network, which is used to
identify modules associated with diseases and screen im-
portant pathogenic mechanisms or potential therapeutic
targets. Based on the expression levels of all genes in the
combined samples, we used R3 6.1WGCNA package version
1.61 in language (https://cran.r-project.org/web/packages/
WGCNA/index.html). We screen modules significantly
related to the disease status and immune cells of the sample.
*e screening threshold of module division is as follows: the
module set contains at least 100 genes, cutheight� 0.995.

*en, the DEG set significantly related to important
immune cells screened in the third step is mapped to each
WGCNAmodule, and the significant enrichment parameter
fold enrichment and the enrichment significant p value in
the module are calculated by Fisher’s exact test.*e selection
of the module screening threshold p< 0.05 and fold en-
richment is >1. *e genes significantly enriched in the
module are taken as the object of further analysis and
research.

2.5. Construction of the KEGG Cross talk Network Related to
Important Genes. We used David6 8 (https://david.ncifcrf.
gov/) online analysis tools (https://david.ncifcrf.gov/). *e
important immune-related genes obtained in the fourth step
were enriched in the module by KEGG signal pathway
enrichment analysis (FDR <0.05). *en, we used R3 6.1
GSVA version 1.36.3 in language [4] Based on the expression
level of genome-wide genes in the combined samples, the
KEGG signal pathway related to significant enrichment was
quantitatively analyzed, and R3 cor function in 6.1 language
calculates the correlation PCC between the quantified KEGG
signal pathways, retains the part with the correlation sig-
nificance p value less than 0.05 and the correlation absolute
value higher than 0.5, and finally constructs the pathway
cross talk network through Cytoscape version 3.9.0 (https://
www.cytoscape.org/). *e genes involved in the KEGG cross
talk network were further analyzed as important genes.

2.6. Optimization of Immune-Related Marker Screening and
Construction of the Diagnostic Model. We used the opti-
mization algorithm to screen important immune-related
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markers. Taking the combined dataset samples as the
training set, three different optimization algorithms are used
for gene feature screening: LASSO (least absolute shrinkage
and selection operator), RFE (recursive feature extraction),
and RF (random forest). (1) We adopt Lars package version
1.2 in the R 3.6.1 language (https://cran.r-project.org/web/
packages/lars/index.html). *e target gene set was analyzed
by regression to screen the characteristic genes; (2) we use R3
6.1 caret package in the language (https://cran.r-project.org/
web/packages/caret) (version 6.0–76) RFE algorithm to
screen for the optimal combination of characteristic im-
mune-related DEGs; we use R3 randomForest package
version 4.6–14 of 6.1 (https://cran.r-project.org/web/
packages/randomForest/). *e bootstrap algorithm is used
to screen the optimal combination of characteristic im-
mune-related DEGs. *en, we compare the results of the
three algorithms and select the overlapping part as the final
combination of feature immune-related DEGs.

2.7. Construction and Verification of the SVM Diagnostic
Model. We adopted SVM (support vector machine, SVM)
methods of R3.6.1 e1071 version 1.6–8 (https://cran.r-
project.org/web/packages/e1071) and constructed an SVM
classifier based on optimal feature gene combination (Core:
sigmoid kernel; cross: 100 fold cross-validation). SVM is a
supervised classification algorithm of machine learning.
*rough the eigenvalues of features in each sample, it can
distinguish and predict the samples and estimate the
probability that they belong to a certain category so as to
realize the discrimination of sample types.

*en, based on the selected characteristic immune DEG
factors, we used R3 6.1 language rmda package version 1.6
(https://cran.r-project.org/web/packages/rmda/index.html).
We analyze the decision curve of the single DEG and
multiDEG combined models, respectively and observe the
net return of each DEG factor on survival and prognosis
results so as to compare the effects of different factors on
sample types.

In addition, we also use R3.4.1 proc (https://cran.r-
project.org/web/packages/pROC/index.html). Version
1.12.1 package evaluates the constructed SVM classification
model and calculates various index values of the ROC curve:
area under the curve (AUROC), sensitivity (SEN), and
specificity (SPE). *e ROC curve is one of the main eval-
uation indexes used by classification models, especially bi-
nary classification models. Its working principle is to give a
model, input a set of data of known positive and negative
classes, and measure the performance of the model by
comparing the prediction of the model to this set of data.
AUROC is the quantitative index of the ROC curve, and its

value is distributed between 0.5 and 1. *e closer it is to 1,
the better the classifier performance. Finally, in the vali-
dation dataset GSE112155, the effectiveness of the diagnostic
model is verified.

2.8. Expression Level of Characteristic Immune DEGs and
CorrelationAnalysiswithRelated ImmuneCells. We used R3
6.1 the cor function in the language and calculated the PCC
between the expression level of characteristic immune DEGs
screened and the related immune cell types with significant
differences in distribution among groups screened in the
third step and then, we display the correlation to observe the
correlation between the expression level of characteristic
DEGs and related immune cells.

2.9. Screening of SmallMolecules of Chemical Drugs Related to
Characteristic Immune DEGs. From updated comparative
toxicology database 2021 (https://ctd.mdibl.org/), we
download all gene chemical connections and then search for
small chemical molecules directly related to KC disease in
the CTD database with “keratoconus” as the keyword. First,
we extract the small chemical molecules connected with
characteristic immune DEGs from all gene chemical con-
nections and then select the small chemical molecules di-
rectly related to KC disease from these small molecules so as
to obtain the small chemical molecules of KC disease as-
sociated with characteristic immune genes.

3. Results

3.1. Screening of Significantly Differentially Expressed Genes.
We download the corresponding expression profile data (see
Table 1 for the expression profile data of each dataset before
merging, and the data format is the gene read count ex-
pression level after standardization under the detection
platform of each dataset), as described in the method. As
described in the method, first, we remove the batch effect of
the two datasets (GSE151631 and GSE77938) through the
SVA algorithm and then merge them into one dataset. *e
sample relationship before and after batch effect removal is
shown in Figure 1. It can be seen from the figure that the two
datasets before batch effect removal are arrays, which are
obviously distributed in different regions. After batch effect
removal, the two datasets tend to be distributed together.
*e expression spectrum data of the combined datasets are
shown in Table 2.

*en, the edger algorithm is used to analyze and screen
the DEGs of the KC (44 samples) vs. Ctrl (32 samples)
groups in the combined dataset, and a total of 1246 DEGs
meeting the threshold conditions are obtained. *e test

Table 1: *e expression profile data of each dataset before merging, and the data format is the gene read count expression level after
standardization under the detection platform of each dataset.

ID Platform #Total sample #Normal #KC
GSE151631 GPL16791 Illumina HiSeq 2500 26 7 19
GSE77938 GPL18460 Illumina HiSeq 1500 50 25 25
GSE112155 GPL18573 Illumina NextSeq 500 20 10 10
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volcanic diagram is shown in Figure 2(a), and the list of
DEGs is shown in Table 3. *e sample clustering heat map is
made based on the DEG expression level obtained by
screening, as shown in Figure 2(b). It can be seen from the
cluster diagram that different types of samples can be
separated based on the DEG expression value obtained by
screening, and the color is clear, indicating that the DEGs
obtained by screening have expression characteristics.

3.2. Screening of DEGs Significantly Related to Important
Immune Cells. Based on the gene expression profile data
detected in the combined samples, the immune fine of each
sample is calculated by the ssGSEa algorithm. According to
the division of cell types, the proportion of 28 immune cell

types is obtained. *e display diagram is shown in Figure 3.
*en, we compare the proportion of various immune cells in
kcvs. According to the differences between Ctrl groups, 18
kinds of immune cells with significant differences were
obtained: gamma delta Tcell, type 17 T helper cell, CD56dim
natural killer cell, monocyte, natural killer cell, activated
CD8 Tcell, image dendritic cell, effector memory CD4 Tcell,
type 1 T helper cell, memory B cell, effector memory CD8
T cell, regulatory T cell type 2 T helper cell, CD56bright
natural killer cell, myeloid-derived suppressor cell, neu-
trophil, eosinophil, and central memory CD4 T cell. *en,
the expression level of DEGs was screened in Step 1, and 18
immune cell types with significant differences between KC
vs. Ctrl groups evaluated by ssGSEa were analyzed by R3 6.1;
the cor function in the language calculates the PCC between
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Figure 1: (a) Without batch effect eliminate. (b) With batch effect eliminate.

Table 2: After batch effect removal, the two datasets tend to be distributed together. *e expression spectrum data of the combined datasets
are shown in Table 2.

ID Color Module size #Immune related DEGs
Enrichment information

Enrichment fold [95%CI] Phyper
Module 1 Black 151 68 2.347 [1.723 – 3.171] 8.15E− 08
Module 2 Blue 553 289 2.724 [2.319 – 3.195] 2.20E− 16
Module 3 Brown 328 34 0.540 [0.366 – 0.776] 4.62E− 04
Module 4 Green 173 — — —
Module 5 Yellow green 107 2 0.0975 [0.0116 – 0.361] 2.09E− 06
Module 6 Grey 1277 231 0.943 [0.804 –1.103] 4.82E− 01
Module 7 Magenta 131 96 3.819 [2.879 – 5.052] 2.20E− 16
Module 8 Pink 147 2 0.0709 [0.00849 – 0.261] 4.23E− 09
Module 9 Purple 109 54 2.582 [1.815 – 3.636] 1.49E− 07
Module 10 Red 163 117 3.741 [2.897 – 4.819] 2.20E− 16
Module 11 Turquoise 2133 91 0.222 [0.177 – 0.277] 2.20E− 16
Module 12 Yellow 181 62 1.786 [1.306 – 2.414] 2.70E− 04
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them. Only the DEGs with a correlation significance p value
less than 0.05 and a PCC absolute value higher than 0.5 are
retained as the DEGs significantly related to important
immune cells. A total of 6716 pairs of correlation action pairs
were obtained and involved 1046 DEGs.

3.3.WGCNAAlgorithm for ScreeningDisease Progression and
Immune-RelatedModules. *e expression levels of all genes
detected in the combined samples were analyzed. In order to
meet the preconditions of scale-free network distribution as
much as possible, we need to explore the value of the weight
parameter power of the adjacency matrix. We set the se-
lection range of network construction parameters and cal-
culate the scale-free distribution topology matrix. As shown
in Figure 4(a), we select the value of power when the square
value of the correlation coefficient reaches 0.9 for the first

time, that is, power = 22.*en, the average node connectivity
of the constructed coexpression network is 1, which fully
conforms to the nature of a small-world network. *en, we
calculate the dissimilarity coefficient between nodes and
obtain the systematic clustering tree. We set the minimum
number of genes in each module as 100 and the pruning
height as cutheight = 0.995. As shown in Figure 4(b), a total
of 12 modules are obtained. Finally, we calculated the
correlation between the 18 important immune information
screened in the second step and each module divided, as
shown in Figure 5.

After calculation, according to the Fisher algorithm
described in the method, 1046 immune-related DEGs sig-
nificantly related to important immune cells screened in the
second step are mapped to each WGCNA module. *e
results are shown in Table 2. *e results showed that the
DEGs significantly related to important immune cells were

Normal VS Keratoconus volcano plot

6

−1
* L

og
 1

0 
(F

D
R)

4

2

0

−6 −3 0
Log 2 FC

abs (Log2FC)
2
4
6
8

(a)

KC
CTRL

�e sample clustering heat map

6
4
2
0

−2
−4
−6

(b)

Figure 2: (a) Normal vs keratoconus volcano plot. (b) *e sample clustering heat map.

Table 3: *e list of DEGs is shown in Table 3.

Term Count p value FDR
hsa04514: cell adhesion molecules 25 1.11E− 08 6.41E− 07
hsa04010: MAPK signaling pathway 35 6.19E− 08 1.96E− 06
hsa04060: cytokine-cytokine receptor interaction 32 2.02E− 06 2.44E− 05
hsa04612: antigen processing and presentation 15 3.66E− 06 4.01E− 05
hsa04610: complement and coagulation cascades 15 1.04E− 05 1.09E− 04
hsa04640: hematopoietic cell lineage 15 6.10E− 05 5.61E− 04
hsa04510: focal adhesion 21 2.89E− 04 2.37E− 03
hsa04630: JAK-STAT signaling pathway 18 4.42E− 04 3.28E− 03
hsa04350: TGF-beta signaling pathway 13 5.36E− 04 3.85E− 03
hsa04115: p53 signaling pathway 11 8.85E− 04 6.12E− 03
hsa05200: pathways in cancer 36 5.14E− 03 2.82E− 02
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significantly enriched in the six modules: black, blue, ma-
genta, purple, red, and yellow, including 68, 289, 96, 54, 117,
and 62 immune-related DEGs, respectively.

3.4. Construction of the KEGG Cross talk Network Related to
Important Genes. *rough KEGG signal pathway enrich-
ment analysis of 686 genes significantly enriched in 6
modules, a total of 12 significantly related frontal KEGG
signal pathways were obtained, as shown in Figure 6(a), and
the data information is shown in Table 3. *en, the quan-
titative analysis of 12 KEGG signal pathways with significant
enrichment correlation was carried out, and 50 pairs of
interconnected pairs were obtained after retaining the
connection pairs with a p value less than 0.05 and an ab-
solute value of a correlation p value higher than 0.5 so as to
construct the cross talk network of the KEGG signal
pathway, as shown in Figure 6(b). We will take the immune-
related genes involved in 12 internally related KEGG sig-
naling pathways (146 in total) as the follow-up analysis
object.

3.5. Optimization of Immune-Related Marker Screening and
Construction of the Diagnostic Model. We screened impor-
tant immune-related markers with an optimization algo-
rithm. Based on the expression level of 146 DEGs
participating in the KEGG cross talk network screened in the

previous step in the combined dataset, LASSO, RFE, and RF
algorithms are used to screen the optimal combination of
DEGs, respectively. *e parameter diagram of the algorithm
screening is shown in Figure 7. In LASSO, RFE, and RF
algorithms, we screened 15, 19, and 18 DEGs, respectively.
By comparing these three sets of DEGs, we got a total of 8
overlapping DEGs. We took 8 DEGs as the final optimal
combination of DEGs: AREG, BBC3, DUSP2, map3k8,
Smad7, CDKN1A, JUN, and LIF.

An RFE algorithm based on the support vector machine
(SVM) is a sequence backward selection algorithm based on
the maximum interval principle of SVM. It trains samples
through the model, sorts the scores of each feature, removes
the features with the minimum feature score, and then trains
the model again with the remaining features for the next
iteration. Finally, the required characteristic factors are
selected. We select the following parameter: cross: 100-fold
cross-validation. We select the result with the highest ac-
curacy in cross-validation as the optimal feature diagnosis
gene combination under this algorithm. As shown in
Figure 7(a), the number of factors with the highest accuracy
is 19, and the accuracy is 0.9339.

LASSO regression is a model that adds the constraint
term of the L1 norm to the cost function of a linear re-
gression model. It carries out variable screening and com-
plexity adjustment through the control parameter lambda,
which is widely used in the field of medicine. Cross-
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Figure 3: Based on the gene expression profile data detected in the combined samples, the immune fine of each sample is calculated by
ssGSEa algorithm. According to the division of cell types, the proportion of 28 immune cell types is obtained. *e display diagram is shown
in Figure 3.
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validation fitting then selects the model and has a more
accurate estimation of the performance of the model. At this
time, the minimum MSE value will be generated, that is,
where the red-dotted line crosses as shown in Figure 7(b). At
this time, the minimum ordinate MSE value of 0.1332 will be
obtained (at this time, the abscissa log (lambda) value is
−2.2554), and the nonzero parameter factor under this
model is the optimal gene combination under this algorithm.

3.6. Construction and Verification of the SVM Diagnostic
Model. For the eight characteristic genes screened, we used

the decision line method to observe each gene in the training
and validation datasets.

*e decisive role in sample determination and the results
are shown in Figure 8. After the classifier is trained and the
ROC curve is constructed, as shown in Figure 9, the algo-
rithm is verified based on the SVM training data.

We visually displayed the expression levels of 8 genes in
the combined sample and validation dataset GSE112155, as
shown in Figures 10 and 11. *e results showed that the
expression levels of 8 genes in the GSE112155 validation
dataset were completely consistent with the expression
differences in the combined training dataset, including
AREG, BBC3, CDKN1A, DUSP2, and JUN. *e expression
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Figure 4: As shown in Figure 4(a), we select the value of power when the square value of correlation coefficient reaches 0.9 for the first time,
that is, power = 22. As shown in Figure 4(b), a total of 12 modules are obtained.
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levels of the five genes were significantly different between
groups.

3.7. Expression Level of Characteristic Immune DEGs and
Correlation Analysis with Related Immune Cells. We use R3
6.1 cor function in the language to calculate the PCC be-
tween the expression level of 8 characteristic immune DEGs
in the combined samples and the 18 immune cell types with
significant differences in the distribution between the groups
previously screenedand then display the correlation to ob-
serve the correlation between the expression level of char-
acteristic DEGs and related immune cells, and the results are
shown in Figure 12. *e results show that the six immune
cells of natural killer cell, memory B cell, effector memory
CD8 T cell, regulatory T cell, myeloid-derived suppressor
cell, and eosinophil have a high positive correlation with
eight characteristic genes and are positively correlated with
the remaining 12 immune cells: gamma delta Tcell, type 17 T
helper cell, and CD56dim natural killer cell. Monocyte,
activated CD8 T cell, image dendritic cell, effector memory
CD4 T cell, type 1 T helper cell, type 2 T helper cell,

CD56bright natural killer cell, neutrophil, and central
memory CD4 Tcell were negatively correlated with the eight
characteristic genes.

4. Discussion

Keratoconus is an asymmetric binocular disease [5]. *e
cornea thins and protrudes in the shape of a lower temporal
cone. *is corneal deformation will significantly reduce the
visual quality. It usually occurs in adolescence and then
enters adolescence [5]. Although the etiology is unknown, it
is related to genetic factors [6], such as environmental
factors [7, 8].

We study the role of immune-related genes through
machine learning. *e differential expression of KC im-
mune- related genes was obtained. Based on the differential
expression of immune-related genes, a KC diagnostic model
was established.

Based on the gene expression profile data detected in the
combined samples, the immune fine of each sample is
calculated by the ssGSEA algorithm. *e proportion of 28
immune cell types was obtained. *en, we compare the
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Figure 5: Finally, calculate the correlation between the 18 important immune information screened in the second step and each module
divided, as shown in Figure 5.
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proportion of various immune cells in kcvs. According to the
differences between Ctrl groups, 18 kinds of immune cells
with significant differences were obtained: gamma delta

T cell, type 17 T helper cell, CD56dim natural killer cell,
monocyte, natural killer cell, activated CD8 T cell, image
dendritic cell, effector memory CD4 T cell, type 1 T helper

hsa05200:Pathways in cancer

hsa0410:MAPK signaling pathway

hsa04060:Cytokine-cytokine receptor interaction

hsa04514:Cell adhesion molecules

hsa04510:Focal adhesion

hsa04630:JAK-STAT signaling pathway

has04640:Hematopoietic cell lineage

hsa04612:Antigen proecessing and presentation

hsa04610:Complement and coagulation cascades

hsa04350:TGF-beta signaling pathway

hsa04210:Apoptosis

hsa04115:p53 signaling pathway
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Figure 6: *rough KEGG signal pathway enrichment analysis of 686 genes significantly enriched in 6 modules, a total of 12 significantly
related frontal KEGG signal pathways were obtained, as shown in Figure 6(a). *en, the quantitative analysis of 12 KEGG signal pathways
with significant enrichment correlation was carried out, and 50 pairs of interconnected pairs were obtained after retaining the connection
pairs with P value less than 0.05 and absolute value of correlation p value higher than 0.5, so as to construct the cross talk network of KEGG
signal pathway, as shown in Figure 6(b).
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cell, memory B cell, effector memory CD8 T cell, regulatory
T cell, type 2 T helper cell, CD56bright natural killer cell
myeloid-derived suppressor cell, neutrophil, eosinophil, and
central memory CD4 T cell.

*e combination of KEGG and KEGG-cross parameters
in the optimized network is obtained based on the com-
bination of KEGG-cross parameters in the previous step, as
shown in Figure 6. In LASSO, RFE, and RF algorithms, we
screened 15, 19, and 18 DEGs, respectively. By comparing
these three sets of DEGs, we got a total of 8 overlapping
DEGs. We took 8 DEGs as the final optimal combination of
DEGs: AREG, BBC3, DUSP2, map3k8, Smad7, CDKN1A,
JUN, and LIF.

We visually displayed the expression levels of 8 genes in
the combined sample and validation dataset GSE112155.*e

results showed that the expression levels of 8 genes in the
GSE112155 validation dataset were completely consistent
with the expression differences in the combined training
dataset, and the expression levels of AREG, BBC3,
CDKN1A, DUSP2, and JUN were significantly different in
the comparison between groups.

In this paper, multiple KC-related high-throughput
detection data are collected for analysis, and the KC sig-
nificantly related genes are compared and screened. *e
important genes significantly related to immunity are
screened by using the sample immune evaluation and
WGCNA algorithm, and then, the internal correlation of the
pathway is analyzed by combining the KEGG cross talk
between the important genes. Finally, different optimization
algorithms are used to further screen the characteristic
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Figure 7: We screened important immune related markers by optimization algorithm. Based on the expression level of 146 DEGs
participating in KEGG cross talk network screened in the previous step in the combined data set,Lasso, RFE and RF algorithms are used to
screen the optimal combination of DEGs respectively. *e parameter diagram of algorithm screening is shown in Figure 7.
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genes, and the sample diagnosis classification model is
constructed.

Amphiregulin (AREG), one of the ligands of epidermal
growth factor receptor (EGFR) 3, has been observed in
malignant astrocytoma 4–6 and is responsible for activating
complex pathway networks, including Ras/MAPK, PI3K/
Akt, PLC c, and stat. *e regulation of the listed signal

cascade promotes a variety of cellular responses, such as
invasiveness, motility, angiogenesis, and proliferation
[9, 10]. AREG mRNA consists of six exons and is translated
into 252 AA type I transmembrane glycoprotein precursor,
pre-AREG. Pro-AREG is expressed on the cell surface, with a
hydrophilic extracellular N-terminal, heparin-binding (HB)
domain, and EGF-like domain, followed by a parallel
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Figure 8: *e decisive role in sample determination, and the results are shown in Figure 8.
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membrane handle, including an “exodomain shedding”
cutting site (lys187), a hydrophobic transmembrane domain,
and a short hydrophilic intracellular cytoplasmic tail [11].
*e cleavage of pre-AREG occurs at two N-terminal sites,
producing two main soluble forms of AREG (∼19 and

∼21 kDa). In addition, the exodomain shedding of pro-
AREG can produce a larger soluble protein of 43 kDa, which
is proportional to the whole exodomain.*e shedding of the
extracellular pre-AREG domain can be initiated by the
TACE enzyme, which is a member of the disintegrin and
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Figure 9: After the classifier is trained and the ROC curve is constructed, as shown in Figure 9.
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Figure 10: We visually displayed the expression levels of 8 genes in the combined sample, as shown in Figure 10.
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metalloproteinase (Adam) family. After pre-AREG cleavage
at lys187, the secretory mature ligand and its blood receptor,
epidermal growth factor receptor (EGFR) [4, 9], showed
autocrine or paracrine factors on adjacent cells. *e

interaction between AREG and EGFR triggers a large
number of intracellular signal cascades, such as survival
PI3K/Akt and mitotic MAPK pathway [9, 12]. *ere are
studies indicating that AREG plays a role in astrocytoma
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Figure 11: We visually displayed the expression levels of 8 genes in the validation data set GSE112155, as shown in Figure 11.
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Figure 12: We use R3 6.1 the cor function in the language calculates the PCC between the expression level of 8 characteristic immune DEGs
in the combined samples and the 18 immune cell types with significant differences in the distribution between the groups previously
screened, and then displays the correlation to observe the correlation between the expression level of characteristic DEGs and related
immune cells and the results are shown in Figure 12.
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pathogenesis, which indicates the direction for future re-
search of AREG as a tumorigenic factor and promising
biomarker in astrocytomas [13]. Our results showed that the
expression of AREG in the corneal tissue of KC patients was
downregulated compared with the normal control group.
*is may affect cell mitosis and cause KC.

BBC3 (BCL2-binding component 3), a molecule called
p53 upregulated modulator of apoptosis (PUMA), is a
member of BCL-2 (B-cell lymphoma 2) family β that plays
an important role in cell death. *e family contains a BCL2-
like domain. As an effective activator of apoptosis, BBC3 is
expressed in many cells, such as neurons, intestinal, and
immune cells and participates in a variety of pathological
processes [14, 15]. Recent studies [16] have shown that the
BBC3 signal mediates ROS production, DNA damage-de-
pendent cell cycle arrest, and caspase-independent apoptosis
in macrophages through the mitochondrial pathway, em-
phasizing the potential role of BBC3 in the progression of
some diseases caused by macrophage dysfunction. Auto-
phagy is an evolutionarily highly conserved process that
affects cell development. In the process of autophagy,
proteins and organelles in cells are phagocytized, degraded,
and recycled by autophagosomes [17]. However, more and
more studies [18, 19] show that autophagy is inhibited by
tumor promoters and promoted by tumor suppressors in
stress cells related to tumor promotion, suggesting that
autophagy may be a negative regulator of cell survival. Some
studies [20] have shown that BBC3 can further enhance
apoptosis by inducing autophagy through Bax activation and
mitochondrial outer membrane permeability. In addition,
the interaction between autophagy and apoptosis has been
widely studied and has been shown to affect many physi-
ological and pathological processes [21, 22]. Autophagy is an
important survival-promoting mechanism to maintain
metabolic homeostasis under short-term mild stress.
However, the apoptotic signaling cascade is initiated after
autophagy is overactivated [22, 23]. Our results showed that
the expression of BBC3 in corneal tissue of KC patients was
downregulated compared with the normal control group.
*is may affect cell macrophage function and lead to KC.

Cyclin-dependent kinase inhibitor 1a (CDKN1A) is a
cell cycle inhibitor that is directly controlled by p53 de-
pendent or independent pathways and participates in ter-
minal differentiation, stem cell renewal, apoptosis, and cell
migration.

CDKN1A, also known as p21, encodes an effective
cyclin-dependent kinase inhibitor [24, 25]. In developing
mouse embryos, CDKN1A expression is associated with cell
cycle arrest before terminal differentiation in a variety of
tissues [26]. It is well known that overexpression of p21 can
induce cell differentiation in a variety of normal and tumor
cells, which is mediated by inducing cell cycle regression
[27]. p21 functions as a positive or negative regulator of
differentiation in a dependent manner [28].

DUSP2, also known as phosphatase that activates cell 1,
belongs to a subfamily that mainly plays a role in the nucleus
and mainly inactivates ERK.

DUSP2, originally named activated cell phosphatase 1
(PAC-1), is one of the members of bispecific phosphatase

(DUSP) and acts as a negative regulator of MAPK through
dephosphorylation of phosphotyrosine and phosphoserine/
threonine residues [29]. Since DUSP2 was originally found
in stimulated human peripheral T cells, most of our current
understanding of this phosphatase is about its role in im-
mune response and inflammation [29, 30]. In addition, it has
also been suggested that DUSP2 plays a role in apoptosis and
cancer [31–33]. *e JUN gene, as a downstream tran-
scription factor of the JNK signaling pathway, initiates gene
transcription and participates in cell proliferation and
differentiation.

Oncogene JUN encodes protein c-JUN, a component
AP-1 transcriptional complex that regulates a wide range of
series of cellular processes, including cell proliferation and
death, survival, and differentiation [34–36].

It is interesting to observe that the expression of
amphiregulin, BBC3, cyclin, DUSP2, and JUN in KC is
relatively lower than that in the control group. *en, we
constructed a nomogram model for diagnosing KC by using
amphiregulin, BBC3, cyclin, DUSP2, and JUN. We found
that the model has the extraordinary predictive ability, and
patients can benefit from the nomogram model at a high-
risk threshold of 0 to 1. All these results suggest that ab-
normal cell proliferation, differentiation, and imbalance of
autophagy are one of the most important factors in the
pathogenesis of KC. *ese results may be helpful for the
further study of KC. In conclusion, we studied the potential
correlation between abnormal cell proliferation and differ-
entiation, imbalance of autophagy, and KC throughmachine
learning and found a close relationship between them.
Compared with the control group, some genes related to cell
proliferation and autophagy, such as amphiregulin, BBC3,
cyclin, DUSP2, and JUN, are underexpressed in KC.
*erefore, abnormal cell proliferation and differentiation
and an imbalance of autophagy may play an important role
in the formation of KC.

Data Availability

*e datasets (GSE151631, GSE77938, and GSE112155) used
are available from the comprehensive gene expression da-
tabase (GEO) at the NCBI GEO (https://www.ncbi.nlm.nih.
gov/GEO/) database.

Ethical Approval

Ethical approval was not required for this study.

Consent

Consent was not applicable for this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Authors’ Contributions

Lin Wang, YuQing Wang, and Wencheng Zhao planned the
experiment; Lin Wang, YuQing Wang, Juan Liu, and

14 Genetics Research

https://doi.org/10.1155/2022/5878460 Published online by Cambridge University Press

https://www.ncbi.nlm.nih.gov/GEO/
https://www.ncbi.nlm.nih.gov/GEO/
https://doi.org/10.1155/2022/5878460


Wencheng Zhao conducted the experiment; Lin Wang,
YuQing Wang, Juan Liu, and Wencheng Zhao wrote the
manuscript.

Acknowledgments

*is work was supported by grants from the National
Natural Science Foundation of China (Grant No. 81700818),
the Heilongjiang Postdoctoral Research Initiation Fund
(Grant No. LBH-Q15105), and the Research and Innovation
Fund of the First Hospital of Harbin Medical University
(Grant No. 2017B016).

References
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