We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
FFD (free-form deformation method) is one of the most commonly used parameterisation methods at present. It places the parameterised objects inside the control volume through coordinate system transformation, and controls the control volume through control points, thus realising the deformation control of its internal objects. Firstly, this paper systematically analyses and compares the characteristics and technical requirements of Bernstein, B-spline and NURBS (non-uniform rational b-splines) basic functions that can be adopted by FFD, and uses the minimum number of control points required to achieve the specified control effect threshold to express the control capability. Aiming at the problem of discontinuity at the right end in the actual calculation of B-spline basis function, a method of adding a small epsilon is proposed to solve it. Then, three basic functions are applied to the FFD parameterisation method, respectively, and the differences are compared from two aspects of the accurate expression of the model and the ability of deformation control. It is found that the BFFD (b-spline free-form deformation) approach owns better comprehensive performance when the control points are distributed correctly. In this paper, the BFFD method is improved, and a p-BFFD (reverse solution points based BFFD) method based on inverse solution is proposed to realise the free distribution of control points under the specified topology. Further, for the lifting body configuration, the control points of the p-BFFD method are brought closer to the airframe forming the EDGE-p-BFFD (edge constraints based p-BFFD) method. For the case in this paper, the proposed EDGE-p-BFFD method not only has fairly high parameterisation accuracy, but also reduces the expression error from 1.01E-3 to 1.25E-4, which is nearly ten times. It can also achieve effective lifting body guideline constraints, and has the ability of local deformation adapting to the configuration characteristics. In terms of the proportion of effective control points, the EDGE-p-BFFD method increases the proportion of effective control points from 36.7% to 50%, and the more control points, the more obvious the proportion increase effect. The new method also has better effect on the continuity of geometric deformation. At the same time, this paper introduces the independent deformation method of the upper and lower surfaces based on the double control body frames, which effectively avoids the deformation coupling problem of the simultaneous change of the upper and lower surfaces caused by the movement of control points in the traditional single control framework.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and
$S/N$
in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three
$60\,\mathrm{deg}^{2}$
regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of
$z \lesssim 0.08$
. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of
$z \approx 0.014$
is relatively low compared to the full WALLABY survey. The median galaxy H i mass is
$2.3 \times 10^{9}\,{\rm M}_{{\odot}}$
. The target noise level of
$1.6\,\mathrm{mJy}$
per 30′′ beam and
$18.5\,\mathrm{kHz}$
channel translates into a
$5 \sigma$
H i mass sensitivity for point sources of about
$5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$
across 50 spectral channels (
${\approx} 200\,\mathrm{km \, s}^{-1}$
) and a
$5 \sigma$
H i column density sensitivity of about
$8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$
across 5 channels (
${\approx} 20\,\mathrm{km \, s}^{-1}$
) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
Using detailed data on company visits by Chinese mutual funds, we provide direct evidence of mutual fund information acquisition activities and the consequent informational advantages mutual funds establish in local firms. Mutual funds are more likely to visit local and nearby firms both in and outside of their portfolios, but the ease of travel between fund and firm locations can substantially alleviate geographic distance constraints. Company visits by mutual funds are strongly associated with both fund trading activities and fund trading performance. Our results show that geographic constraints and costly information acquisition amplify information asymmetry in financial markets.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
Psychotic-like experiences (PLEs) are risk factors for the development of psychiatric conditions like schizophrenia, particularly if associated with distress. As PLEs have been related to alterations in both white matter and cognition, we investigated whether cognition (g-factor and processing speed) mediates the relationship between white matter and PLEs.
Methods
We investigated two independent samples (6170 and 19 891) from the UK Biobank, through path analysis. For both samples, measures of whole-brain fractional anisotropy (gFA) and mean diffusivity (gMD), as indications of white matter microstructure, were derived from probabilistic tractography. For the smaller sample, variables whole-brain white matter network efficiency and microstructure were also derived from structural connectome data.
Results
The mediation of cognition on the relationships between white matter properties and PLEs was non-significant. However, lower gFA was associated with having PLEs in combination with distress in the full available sample (standardized β = −0.053, p = 0.011). Additionally, lower gFA/higher gMD was associated with lower g-factor (standardized β = 0.049, p < 0.001; standardized β = −0.027, p = 0.003), and partially mediated by processing speed with a proportion mediated of 7% (p = < 0.001) for gFA and 11% (p < 0.001) for gMD.
Conclusions
We show that lower global white matter microstructure is associated with having PLEs in combination with distress, which suggests a direction of future research that could help clarify how and why individuals progress from subclinical to clinical psychotic symptoms. Furthermore, we replicated that processing speed mediates the relationship between white matter microstructure and g-factor.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
Flexibility is one of the important mechanical performance parameters of stent. The flexibility of tapered stents, especially self-expanding tapered stents, remains unknown. In this study, we developed a new selfexpanding tapered stent for tapered arteries and performed a numerical investigation of stent flexibility by using finite element method. The effect of stent design parameters, including taper and link space width, on stent flexibility was studied. The flexibility of the proposed stent was also compared with that of traditional cylindrical stents. Results show that the tapered stent is more flexible than the traditional cylindrical stent. Furthermore, the flexibility of the tapered stent increases with increasing stent taper and stent link space width. The increase in the stent link space width can contribute to the reduction in the peak stress. Therefore, tapered stents with high link space width will improve the stent flexibility. This work provides useful information for improvement of stent design and clinical selection.
The present study was designed to detect three single nucleotide polymorphisms (SNPs) located on 22q11 that was thought as being of particularly importance for genetic research into schizophrenia. We recruited a total of 176 Chinese family trios of Han descent, consisting of mothers, fathers and affected offspring with schizophrenia for the genetic analysis. The transmission disequilibrium test (TDT) showed that of three SNPs, rs10314 in the 3′-untranslated region of the CLDN5 locus was associated with schizophrenia (χ2 = 4.75, P = 0.029). The other two SNPs, rs1548359 present in the CDC45L locus centromeric of rs10314 and rs739371 in the 5′-flanking region of the CLDN5 locus, did not show such an association. The global chi-square (χ2) test showed that the 3-SNP haplotype system was not associated with schizophrenia although the 1-df test for individual haplotypes showed that the rs1548359(C)-rs10314(G)-rs739371(C) haplotype was excessively non-transmitted (χ2 = 5.32, P = 0.02). Because the claudin proteins are a major component for barrier-forming tight junctions that could play a crucial role in response to changing natural, physiological and pathological conditions, the CLDN5 association with schizophrenia may be an important clue leading to look into a meeting point of genetic and environmental factors.
An increasing number of studies have described the relationship between velo-cardio-facial syndrome (VCFS) and schizophrenia. in a family-based study, we found that rs10314, a single nucleotide polymorphism (SNP) present in the 3’-flanking region of the CLDN5 gene, was associated with schizophrenia among a Chinese population. High false positive rate is a common problem with the association study of human diseases. It is very important to replicate an initial finding with different samples and experimental designs.
Methods:
A total of 749 patients with schizophrenia and 383 age and sex matched healthy control subjects in Chinese population were recruited. PCR-based RFLP protocol was applied to genotype rs10314 to see its disease association.
Results:
The χ2 goodness-of-fit test showed that the genotypic distributions of rs10314 were in Hardy-Weinberg equilibrium in both the patient group (χ2=1.12, P=0.289) and the control group (χ2=0.22, P=0.639). rs10314 was associated with schizophrenia with an odds ratio (OR) of 1.32 in the male subjects (χ2=5.45, P=0.02, 95% CI 1.05-1.67) but not in the female subjects (χ2=0.64, P=0.425, OR=1.14, 95% CI 0.83-1.57). the χ2 test showed a genotypic association only for combined samples (χ2=7.80, df=2, P=0.02). SNP rs10314 is a G to C base change. Frequency of the genotypes containing the C allele was significantly higher in the patient group than in the control group.
Conclusions:
The present work shows that the CLDN5 gene polymorphism is more likely to be involved in schizophrenic men than women, suggesting that this gene may contribute to the gender differences in schizophrenia.
In the 2016 election, foreign policy may have played a critically important role in swinging an important constituency to Donald Trump: voters in high-casualty communities that had abandoned Republican candidates in the mid-2000s. Trump’s iconoclastic campaign rhetoric promised a foreign policy that would simultaneously be more muscular and restrained. He promised to rebuild and refocus the military while avoiding the “stupid wars” and costly entanglements of his predecessors. At both the state and county levels, we find significant and substantively meaningful relationships between local casualty rates and support for Trump. Trump made significant electoral gains among constituencies that were exhausted and politically alienated by 18 years of fighting. Trump’s foreign policy shows a president beset by competing militaristic and isolationist impulses. Our results suggest that giving into the former may come at a significant electoral cost.
The binary metal oxides are increasingly used as supercapacitor electrode materials in energy storing devices. Particularly NiCo2O4 has shown promising electrocapacitive performance with high specific capacitance and energy density. The electrocapacitive performance of these oxides largely depends on their morphology and electrical properties governed by their energy band-gaps and defects. The morphological structure of NiCo2O4 can be altered via the synthesis route, while the energy band-gap could be altered by doping. Also, doping can enhance crystal stability and bring in grain refinement, which can further improve the much-needed surface area for high specific capacitance. Given the above, this study evaluates the electrochemical performance of Ca-doped Ni1-xCaxCo2O4 (0 ≤ x ≤ 0.8) compounds. This stipulates promising applications for electrodes in future supercapacitors.
Enhancing the supply of arginine (Arg), a semi-essential amino acid, has positive effects on immune function in dairy cattle experiencing metabolic stress during early lactation. Our objective was to determine the effects of Arg supplementation on biomarkers of liver damage and inflammation in cows during early lactation. Six Chinese Holstein lactating cows with similar BW (508 ± 14 kg), body condition score (3.0), parity (4.0 ± 0), milk yield (30.6 ± 1.8 kg) and days in milk (20 ± days) were randomly assigned to three treatments in a replicated 3 × 3 Latin square design balanced for carryover effects. Each period was 21 days with 7 days for infusion and 14 days for washout. Treatments were (1) Control: saline; (2) Arg group: saline + 0.216 mol/day l-Arg; and (3) Alanine (Ala) group: saline + 0.868 mol/day l-Ala (iso-nitrogenous to the Arg group). Blood and milk samples from the experimental cows were collected on the last day of each infusion period and analyzed for indices of liver damage and inflammation, and the count and composition of somatic cells in milk. Compared with the Control, the infusion of Arg led to greater concentrations of total protein, immunoglobulin M and high density lipoprotein cholesterol coupled with lower concentrations of haptoglobin and tumor necrosis factor-α, and activity of aspartate aminotransferase in serum. Infusion of Ala had no effect on those biomarkers compared with the Control. Although milk somatic cell count was not affected, the concentration of granulocytes was lower in response to Arg infusion compared with the Control or Ala group. Overall, the biomarker analyses indicated that the supplementation of Arg via the jugular vein during early lactation alleviated inflammation and metabolic stress.
We report the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2) (ACTO) in the frequency range of 40 Hz–2.5 MHz and in the temperature range of 293–473 K. The experimental results show that substituting for Ca improves the loss tangent of CaCu3Ti4O12 (CCTO). Although the dielectric constants largely decrease, they remain at a high level of 103. To identify the observed dielectric performances of ACTO, scanning electron microscopy and complex impedance measurements were conducted. The conducting mechanism for the grain of ACTO was found to be ion jumping rather than electron hopping (for the grain of CCTO). The results show that the decreased dielectric constant may be related to the decreased grain size, the different carrier in the grain, the different grain boundary properties, or a combination of these factors. All these factors are associated with the deficiency of oxygen vacancies in the samples of ACTO. The decreased loss tangent may be due to the increase in the grain boundary resistance.
This paper considers the integrated guidance and control (IGC) problem for impact angle constrained interception against manoeuvring targets with actuator saturation constraint. Based on the backstepping technique, an adaptive IGC law is presented to address this problem, where a fixed-time differentiator is proposed to estimate the derivatives of virtual control inputs to avoid the inherent problem of “explosion of complexity” suffered by the typical backstepping. Furthermore, an auxiliary first-order filter is introduced into the IGC law to cope with the actuator saturation constraint. The stability of the closed-loop system is strictly proved. Finally, the superiority of the proposed IGC law is verified by comparison simulations.
This study aims to investigate the prevalence and genotype distribution of anal human papillomavirus (HPV) infection among men with different sexual orientations with or without human immunodeficiency virus (HIV) in China. A cross-sectional study was conducted during 2016–2017 in Taizhou City, Zhejiang Province. Convenient sampling was used to recruit male participants from HIV voluntary counselling and testing clinics and Center for Disease Control and Prevention. A face-to-face questionnaire interview was administered and an anal-canal swab was collected for HPV genotyping. A total of 160 HIV-positive and 113 HIV-negative men participated in the study. The prevalence of any type HPV was 30.6% for heterosexual men, 74.1% for homosexual and 63.6% for bisexual men among HIV-positive participants, while the prevalence was 8.3%, 29.2% and 23.8% respectively among HIV-negatives. The most prevalent genotypes were HPV-58 (16.9%), HPV-6 (15.6%) and HPV-11 (15.0%) among HIV-positive men, and were HPV-16 (4.4%), HPV-52 (4.4%) and HPV-6 (3.5%) among HIV-negative men. Having ever had haemorrhoids and having ever seen blood on tissue after defaecation was associated with HPV infection. One-fourth of the HPV infections in this study population can be covered by the quadrivalent vaccine in market. The highly prevalent anal HPV infection among men especially HIV-infected men calls for close observation and further investigation for anal cancer prevention.
A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW) and even 100 PW, capable of reaching intensities of $10^{23}~\text{W}/\text{cm}^{2}$ in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity $I_{S}=2.3\times 10^{29}~\text{W}/\text{cm}^{2}$ at which the theory of quantum electrodynamics (QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of ${\geqslant}10~\text{PW}$ focused to intensities ${\geqslant}10^{22}~\text{W}/\text{cm}^{2}$.