Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T06:06:54.358Z Has data issue: false hasContentIssue false

9 - Biodegradation and biodeterioration of man-made polymeric materials

Published online by Cambridge University Press:  10 December 2009

Hristo A. Sabev
Affiliation:
Faculty of Life Sciences, University of Manchester, UK
Sarah R. Barratt
Affiliation:
Faculty of Life Sciences, University of Manchester, UK
Malcom Greenhalgh
Affiliation:
Manchester, UK
Pauline S. Handley
Affiliation:
Faculty of Life Sciences, University of Manchester, UK
Geoffrey D. Robson
Affiliation:
University of Manchester, UK
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Man-made polymeric materials are ubiquitous in our everyday lives and have an enormous range of applications from man-made textiles to plastics, coatings, paints and additives. As a consequence, a vast array of man-made polymers accumulates in the environment and landfill waste sites where they cause considerable water and land pollution problems. Over the last few decades, plastics and plasticizers in particular, due to their wide production and distribution, have led to a large increased environmental burden (Bouwer, 1992). According to recent estimates, the annual production of plastics in the world exceeds more than 140 million tonnes per year (Shimao, 2001). Plastics possess a number of key characteristics including weight, inertness, flexibility and low production costs that make them widespread in many areas of human life. However, it is their inertness and durability, valuable during their use, that becomes a particular problem later during their disposal. Contrary to other synthetic chemicals and pesticides, synthetic polymers do not generally possess particular toxicological problems, unless supplied with protective agents such as biocides (Bentivegna & Piatkowski, 1998) or particular plasticizers, such as phthalates (Staples et al., 1997; Zeng et al., 2002). Plastics however contribute greatly to the amount of municipal solid waste (Palmisano & Pettigrew, 1992) and are an increasing problem due to improper disposal (Alexander, 1994). The UK alone consumed 4.7 million tonnes of plastics in 2002 with most of the material being used in packaging and the building/construction industries (Fig. 9.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akutsu, Y., Nakajima-Kambe, T., Nomura, N. & Nakahara, T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64, 62–7.Google ScholarPubMed
Albertsson, A. C. & Karlsson, S. (1988). The 3 stages in degradation of polymers – polyethylene as a model substance. Journal of Applied Polymer Science, 35, 1289–302.CrossRefGoogle Scholar
Albertsson, A. C., Barenstedt, C. & Karlsson, S. (1994). Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polymerica, 45, 97–103.CrossRefGoogle Scholar
Alexander, M. (1994). Biodegradation and Bioremediation. London: Academic Press.Google Scholar
Allen, A. B., Hilliard, N. P. & Howard, G. T. (1999). Purification and characterization of a soluble polyurethane degrading enzyme from Comamonas acidovorans. International Biodeterioration and Biodegradation, 43, 37–41.CrossRefGoogle Scholar
Andrady, A. L. (1994). Assessment of environmental biodegradation of synthetic-polymers. Journal of Macromolecular Science, 34, 25–76.CrossRefGoogle Scholar
Andrews, J. H., Harris, R. F., Spear, R. N., Gee, W. L. & Nordheim, E. V. (1994). Morphogenesis and adhesion of Aureobasidium pullulans. Canadian Journal of Microbiology, 40, 6–17.CrossRefGoogle Scholar
Augusta, J., Muller, R. J. & Widdecke, H. (1993). A rapid evaluation plate-test for the biodegradability of plastics. Applied Microbiology and Biotechnology, 39, 673–8.CrossRefGoogle Scholar
Barratt, S. R., Ennos, A. R., Greenhalgh, M., Robson, G. D. & Handley, P. S. (2003). Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. Journal of Applied Microbiology, 95, 78–85.CrossRefGoogle Scholar
Benedict, C. V., Cook, W. J., Jarrett, P.et al. (1983). Fungal degradation of polycaprolactones. Journal of Applied Polymer Science, 28, 327–34.CrossRefGoogle Scholar
Bentham, R. H., Morton, L. H. G. & Allen, N. G. (1987). Rapid assessment of the microbial deterioration of polyurethanes. International Biodeterioration, 23, 377–86.CrossRefGoogle Scholar
Bentivegna, C. S. & Piatkowski, T. (1998). Effects of tributyltin on medaka (Oryzias latipes) embryos at different stages of development. Aquatic Toxicology, 44, 117–28.CrossRefGoogle Scholar
Booth, G. H. & Robb, J. A. (1968). Bacterial degradation of plasticised PVC – Effect of some physical properties. Journal of Applied Chemistry, 18, 194.CrossRefGoogle Scholar
Booth, G. H., Cooper, A. W. & Robb, J. A. (1968). Bacterial degradation of plasticised PVC. Journal of Applied Bacteriology, 31, 305–10.CrossRefGoogle Scholar
Boubendir, A. (1993). Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin. Dissertation Abstracts International, 53, 4632.Google Scholar
Bouwer, E. J. (1992). Bioremediation of organic contaminants in the subsurface. In Environmental Microbiology, ed. Mitchell, R.. New York: Wiley-Liss, pp. 287–318.Google Scholar
Breslin, V. T. & Swanson, R. L. (1993). Deterioration of starch-plastic composites in the environment. Journal of the Air and Waste Management Association, 43, 325–35.CrossRefGoogle Scholar
Cain, R. B. (1992). Microbial degradation of synthetic polymers. In Microbial Control of Pollution, ed. Fry, J. C., Gadd, G. M., Herbert, R. A., Jones, C. W. & Watson-Craik, I. A.. Cambridge: Cambridge University Press, pp. 293–338.Google Scholar
Cameron, J. A., Bunch, C. L. & Huang, S. J. (1987). Microbial degradation of synthetic polymers. In Biodeterioration, 7th edn, ed. Houghton, D. R., Smith, R. N. & Eggins, H. O. W.. London: Elsevier Applied Science, pp. 553–61.Google Scholar
Catley, B. J. (1971). Role of pH and nitrogen limitation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Applied Microbiology, 22, 650–4.Google ScholarPubMed
Chandra, R. & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23, 1273–335.CrossRefGoogle Scholar
Christensen, G. D., Baldassarri, L. & Simpson, W. A. (1995). Methods for studying microbial colonisation of plastics. Methods in Enzymology, 253, 477–500.CrossRefGoogle Scholar
Cooke, W. B. (1959). An ecological life history of Aureobasidium pullulans (de Bary) Arnaud. Mycopathologia et Mycologia Applicata, 12, 1–45.CrossRefGoogle Scholar
Crabbe, J. R., Campbell, J. R., Thompson, L., Walz, S. L. & Schultz, W. W. (1994). Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration and Biodegradation, 33, 103–13.CrossRefGoogle Scholar
Crang, R. E. & Pechak, D. G. (1978). Aureobasidium pullulans: fine structure and development. Journal of Coatings Technology, 50, 36–42.Google Scholar
Darby, R. T. & Kaplan, A. M. (1968). Fungal susceptibility of polyurethanes. Applied Microbiology, 16, 900–4.Google ScholarPubMed
De Henau, H. (1998). Biodegradation. In Handbook of Ecotoxicology, ed. Calow, P.. London: Blackwell Science, pp. 355–77.Google Scholar
Deguchi, T., Kakezawa, M. & Nishida, T. (1997). Nylon biodegradation by lignin-degrading fungi. Applied and Environmental Microbiology, 63, 329–31.Google ScholarPubMed
Deguchi, T., Kitaoka, Y., Kakezawa, M. & Nishida, T. (1998). Purification and characterization of a nylon-degrading enzyme. Applied and Environmental Microbiology, 64, 1366–71.Google ScholarPubMed
Eastwood, I. M. (1994). Problems with biocides and biofilms. In Bacterial Biofilms and their Control in Medicine and Industry, eds. Wimpenny, P. J., Nichols, W., Stickler, D. & Lappin-Scott, H.. Cardiff: Bioline, pp. 169–72.Google Scholar
Filip, Z. (1978). Decomposition of polyurethane in garbage landfill leakage water and by soil microorganisms. European Journal of Applied Microbiology and Biotechnology, 5, 225–31.CrossRefGoogle Scholar
Filip, Z. (1979). Polyurethane as the sole nutrient source for Aspergillus niger and Cladosporium herbarum. European Journal of Applied Microbiology, 7, 277–80.CrossRefGoogle Scholar
Flemming, H. C. (1998). Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polymer Degradation and Stability, 59, 309–15.CrossRefGoogle Scholar
Gartshore, J., Cooper, D. G. & Nicell, J. A. (2003). Biodegradation of plasticizers by Rhodotorula rubra. Environmental Toxicology and Chemistry, 22, 1244–51.CrossRefGoogle ScholarPubMed
Gaylarde, C. C. & Morton, L. H. G. (1999). Deteriogenic biofilms on buildings and their control: a review. Biofouling, 14, 59–74.CrossRefGoogle Scholar
Griffin, G. J. L. (1980). Synthetic-polymers and the living environment. Pure and Applied Chemistry, 52, 399–407.CrossRefGoogle Scholar
Griffin, G. J. L. & Uribe, M. (1984). Biodegradation of plasticised polyvinyl chloride. In Biodeterioration 6, Slough, UK: C. A. B. International, pp. 648–57.Google Scholar
Grima, S., Bellon-Maurel, V., Feuilloley, P. & Silvestre, F. (2000). Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations. Journal of Polymers and the Environment, 8, 183–95.CrossRefGoogle Scholar
Gross, R. A. & Kalra, B. (2002). Biodegradable polymers for the environment. Science, 297, 803–7.CrossRefGoogle ScholarPubMed
Gu, J. D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration and Biodegradation, 52, 69–91.CrossRefGoogle Scholar
Gumargalieva, K. Z., Zaikov, G. E., Semenov, S. A. & Zhdanova, O. A. (1999). The influence of biodegradation on the loss of a plasticiser from poly(vinyl chloride). Polymer Degradation and Stability, 63, 111–12.CrossRefGoogle Scholar
Hamilton, N. F. (1983). Biodeterioration of flexible polyvinyl chloride films by fungal organisms. In Biodeterioration 5, ed. Oxley, T. A. & Barry, S.. Chichester: John Wiley & Sons, pp. 663–78.Google Scholar
Hazen, K. C. & Glee, P. M. (1995). Adhesion of fungi. Adhesion of microbial pathogens. Methods In Enzymology, 253, 414–24.CrossRefGoogle Scholar
Howard, G. T. (2002). Biodegradation of polyurethane: a review. International Biodeterioration and Biodegradation, 49, 245–52.CrossRefGoogle Scholar
Howard, G. T. & Blake, R. C. (1998). Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. International Biodeterioration and Biodegradation, 42, 213–20.CrossRefGoogle Scholar
Howard, G. T., Ruiz, C. & Newton, N. P. (1999). Growth of Pseudomonas chlororaphis on a polyester-polyurethane and the purification and characterization of a polyurethanase-esterase enzyme. International Biodeterioration and Biodegradation, 43, 7–12.CrossRefGoogle Scholar
Howard, G. T., Crother, B. & Vicknair, J. (2001). Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis. International Biodeterioration and Biodegradation, 47, 141–9.CrossRefGoogle Scholar
Huang, S. J. & Byrne, C. A. (1980). Biodegradable polymers: photolysis and fungal degradation of poly(arylene keto esters). Journal of Applied Polymer Science, 35, 1951–60.CrossRefGoogle Scholar
Imam, S. H. & Gould, J. M. (1990). Adhesion of an amylolytic arthrobacter sp to starch-containing plastic films. Applied and Environmental Microbiology, 56, 872–76.Google ScholarPubMed
Ishigaki, T., Sugano, W., Nakanishi, A.et al. (2004). The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere, 54, 225–33.CrossRefGoogle ScholarPubMed
Jarerat, A. & Tokiwa, Y. (2001a). Degradation of poly(tetramethylene succinate) by thermophilic actinomycetes. Biotechnology Letters, 23, 647–51.CrossRefGoogle Scholar
Jarerat, A. & Tokiwa, Y. (2001b). Degradation of poly(L-lactide) by a fungus. Macromolecular Bioscience, 1, 136–40.3.0.CO;2-3>CrossRefGoogle Scholar
Kalb, P. D., Heiser, J. H. & Colombo, P. (1993). Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes. ACS Symposium Series, 518, 439–49.Google Scholar
Karpagam, S. & Lalithakumari, D. (1999). Plasmid-mediated degradation of o- and p-phthalate by Pseudomonas fluorescens. World Journal of Microbiology and Biotechnology, 15, 565–9.CrossRefGoogle Scholar
Kay, M. J., Morton, L. H. G. & Prince, E. L. (1991). Bacterial-degradation of polyester polyurethane. International Biodeterioration, 27, 205–22.CrossRefGoogle Scholar
Kim, D. Y. & Rhee, Y. H. (2003). Biodegradation of microbial and synthetic polyesters by fungi. Applied Microbiology and Biotechnology, 61, 300–8.CrossRefGoogle ScholarPubMed
Krochta, J. M. & Muler-Johnston, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technology, 51, 61–74.Google Scholar
Kumar, C. G. & Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42, 9–27.CrossRefGoogle ScholarPubMed
Kumar, C. G., Kalpagam, V. & Nandi, U. S. (1982). Biodegradable polymers: prospects, problems, and progress. Journal of Macromolecular Science, C22, 225–60.CrossRefGoogle Scholar
Lorenz, J. (1990). Biostabilizers, In Plastics Additives Handbook, ed. Gachter, R. & Muller, H.. Munich: Henser Publishers, pp. 791–809.Google Scholar
Lugauskas, A., Levinskaite, L. & Peciulyte, D. (2003). Micromycetes as deterioration agents of polymeric materials. International Biodeterioration and Biodegradation, 52, 233–42.CrossRefGoogle Scholar
McNeill, I. C. (1991). Fundamental aspects of polymer degradation. In Polymers in Conservation, ed. Allen, N. C., Edge, M. & Horie, C. V.. Cambridge: The Royal Society of Chemistry, pp. 15–17.Google Scholar
Meier, L. (1990). Plasticisers. In Plastics Additives Handbook, ed. Gachter, R. & Muller, H.. Munich: Henser Publishers, pp. 327–422.Google Scholar
Mohanty, A. K., Misra, M. & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering, 276, 1–24.3.0.CO;2-W>CrossRefGoogle Scholar
Morton, L. H. G. & Surman, S. B. (1994). Biofilms in biodeterioration – a review. International Biodeterioration and Biodegradation, 34, 203–21.CrossRefGoogle Scholar
Muller, R. J., Kleeberg, I. & Deckwer, W. D. (2001). Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology, 86, 87–95.CrossRefGoogle ScholarPubMed
Murphy, C. A., Cameron, J. A., Huang, S. J. & Vinopal, R. T. (1996). Fusarium polycaprolactone depolymerase is a cutinase. Applied and Environmental Microbiology, 62, 456–60.Google ScholarPubMed
Nakajima-Kambe, T., Onuma, F., Akutsu, Y. & Nakahara, T. (1995). Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans strain TB-35. Journal of Fermentation and Bioengineering, 83, 456–60.CrossRefGoogle Scholar
Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Onuma, F. & Nakahara, T. (1999). Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Applied Microbiology and Biotechnology, 51, 134–40.CrossRefGoogle ScholarPubMed
Owen, S., Otani, T., Masaoka, S. & Ohe, T. (1996). The biodegradation of low-molecular-weight urethane compounds by a strain of Exophiala jeanselmei. Bioscience Biotechnology and Biochemistry, 60, 244–8.CrossRefGoogle ScholarPubMed
Palmisano, A. C. & Pettigrew, C. A. (1992). Biodegradability of plastics. Bioscience, 42, 680–5.CrossRefGoogle Scholar
Pathirana, R. A. & Seal, K. J. (1984). Studies on polyurethane deteriorating fungi. 1. Isolation and characterization of the test fungi employed. International Biodeterioration, 20, 163–8.Google Scholar
Pavlath, A. E. & Robertson, G. H. (1999). Biodegradable polymers vs. recycling: what are the possibilities?Critical Reviews in Analytical Chemistry, 29, 231–41.CrossRefGoogle Scholar
Pereira, P. T., Carvalho, M. M., Girio, F. M., Roseiro, J. C. & Amaral-Collaco, M. T. (2002). Diversity of microfungi in the phylloplane of plants growing in a Mediterranean ecosystem. Journal of Basic Microbiology, 42, 396–407.3.0.CO;2-L>CrossRefGoogle Scholar
Pommer, E. H. & Lorenz, G. (1985). The behaviour of polyester and polyether polyurethanes towards microorganisms. In Biodeterioration and Biodegradation of Polymers 1, ed. Seal, K. J.. New York: Biodeterioration Society, pp. 77–86.Google Scholar
Pranamuda, H., Tokiwa, Y. & Tanaka, H. (1995). Microbial degradation of an aliphatic polyester with a high-melting point, poly(tetramethylene succinate). Applied and Environmental Microbiology, 61, 1828–32.Google Scholar
Rabinovich, M. L., Melnik, M. S. & Boloboba, A. V. (2002). Microbial cellulases. Applied Biochemistry and Microbiology, 38, 305–21.CrossRefGoogle Scholar
Rehm, T. (2002). Polyvinyl chloride (PVC). Kunststoffe – Plast Europe, 92, 22–3.Google Scholar
Roberts, W. T. & Davidson, P. M. (1986). Growth characteristics of selected fungi on polyvinyl chloride film. Applied and Environmental Microbiology, 51, 673–6.Google ScholarPubMed
Rowe, L. & Howard, G. T. (2002). Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. International Biodeterioration and Biodegradation, 50, 33–40.CrossRefGoogle Scholar
Ruiz, C. & Howard, G. T. (1999). Nucleotide sequencing of a polyurethanase gene (pulA) from Pseudomonas fluorescens. International Biodeterioration and Biodegradation, 44, 127–31.CrossRefGoogle Scholar
Ruiz, C., Hilliard, N. & Howard, G. T. (1999a). Growth of Pseudomonas chlororaphis on a polyester-polyurethane and the purification and characterization of a polyurethanase-esterase enzyme. International Biodeterioration and Biodegradation, 43, 7–12.CrossRefGoogle Scholar
Ruiz, C., Main, T., Hilliard, N. P. & Howard, G. T. (1999b). Purification and characterization of two polyurethanase enzymes from Pseudomonas chlororaphis. International Biodeterioration and Biodegradation, 43, 43–7.CrossRefGoogle Scholar
Sabev, H. A. (2004). Fungal biodeterioration and biodegradation of plasticised polyvinyl chloride in soil. Unpublished Ph.D. thesis, University of Manchester.
Samsonova, A. S., Aleshchenkova, Z. M., Syomochkina, N. F. & Baikova, S. V. (1996). Microbial decontamination of effluents from phthalate esters. In Biodeterioration and Biodegradation. Papers of the 10th International Biodeterioration and Biodegradation Symposium, DECHEMA Monographs, ed. Sand, W.. Frankfurt: Schon & Wetzler, pp. 607–10.Google Scholar
Sanchez, J. G., Tsuchii, A. & Tokiwa, Y. (2000). Degradation of polycaprolactone at 50 ℃ by a thermotolerant Aspergillus sp. Biotechnology Letters, 22, 849–53.CrossRefGoogle Scholar
Sawada, H. (1998). ISO standard activities in standardization of biodegradability of plastics – development of methods and definitions. Polymer Degradation and Stability, 59, 365–70.CrossRefGoogle Scholar
Scherer, T. M., Fuller, R. C., Lenz, R. W. & Goodwin, S. (1999). Hydrolase activity of an extracellular depolymerase from Aspergillus fumigatus with bacterial and synthetic polyesters. Polymer Degradation and Stability, 64, 267–75.CrossRefGoogle Scholar
Schoeman, M. W. & Dickinson, D. J. (1996). Aureobasidium pullulans can utilize simple aromatic compounds as a sole source of carbon in liquid culture. Letters in Applied Microbiology, 22, 129–31.CrossRefGoogle Scholar
Shimao, M. (2001). Biodegradation of plastics. Current Opinion in Biotechnology, 12, 242–7.CrossRefGoogle ScholarPubMed
Silley, P. & Forsythe, S. (1996). Impedance microbiology – A rapid change for microbiologists. Journal of Applied Bacteriology, 80, 233–43.CrossRefGoogle ScholarPubMed
Staples, C. A., Peterson, D. R., Parkerton, T. F. & Adams, W. J. (1997). The environmental fate of phthalate esters: a literature review. Chemosphere, 35, 667–749.CrossRefGoogle Scholar
Starnecker, A. & Menner, M. (1996a). Assessment of biodegradability of plastics under simulated composting conditions in a laboratory test system. International Biodeterioration and Biodegradation, 37, 85–92.CrossRefGoogle Scholar
Starnecker, A. & Menner, M. (1996b). Kinetics of aerobic microbial degradation of aliphatic polyesters. In Biodeterioration and Biodegradation. Papers of the 10th International Biodeterioration and Biodegradation Symposium, DECHEMA Monographs, ed. Sand, W.. Frankfurt: Schon & Wetzler, pp. 221–8.Google Scholar
Steinbuchel, A. (1996). Synthesis and production of biodegradable thermoplastics and elastomers: current state and outlook. Kautschuk Gummi Kunststoffe, 49, 120–4.Google Scholar
Stern, R. V. & Howard, G. T. (2000). The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiology Letters, 185, 163–8.CrossRefGoogle ScholarPubMed
Stranger-Johannessen, M. (1985). Microbial degradation of polyurethane products in service. In Biodeterioration and Biodegradation of Polymers 1, ed. Seal, K. J.. New York: Biodeterioration Society, pp. 264–7.Google Scholar
Subrahmanyam, S., Kodandapani, N., Ahamarshan, J. N.et al. (2001). Amperometric biochemical characterization of isolated fungal strains. Electroanalysis, 13, 1454–8.3.0.CO;2-R>CrossRefGoogle Scholar
Sugatt, R. H., O′Grady, D. P., Banergee, S., Howard, P. H. & Gledhill, W. E. (1984). Shake flask biodegradation of 14 commercial phthalate esters. Applied and Environmental Microbiology, 47, 601–6.Google ScholarPubMed
Suyama, T., Tokiwa, Y., Ouichanpagdee, P., Kanagawa, T. & Kamagata, Y. (1998). Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Applied and Environmental Microbiology, 64, 5008–11.Google ScholarPubMed
Tansengo, M. L. & Tokiwa, Y. (1998). Thermophilic microbial degradation of polyethylene succinate. World Journal of Microbiology and Biotechnology, 14, 133–8.CrossRefGoogle Scholar
Tirpak, G. (1970). Microbial degradation of plasticised PVC. Society of Plastic Engineering Journal, 26, 511–20.Google Scholar
Tokiwa, Y. & Jarerat, A. (2004). Biodegradation of poly(L-lactide). Biotechnology Letters, 26, 771–7.CrossRefGoogle Scholar
Tokiwa, Y. & Suzuki, T. (1977). Microbial-degradation of polyesters 3. Purification and some properties of polyethylene adipate-degrading enzyme produced by Penicillium sp strain 14–3. Agricultural and Biological Chemistry, 41, 265–74.Google Scholar
Tokiwa, Y., Ando, T. & Suzuki, T. (1976). Degradation of polycaprolactone by a fungus. Journal of Fermentation Technology, 54, 603–8.Google Scholar
Tokiwa, Y., Suzuki, T. & Takeda, K. (1986). Hydrolysis of polyesters by Rhizopus arrhizus lipase. Agricultural and Biological Chemistry, 50, 1323–5.Google Scholar
Torres, A., Li, S. M., Roussos, S. & Vert, M. (1996). Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Applied and Environmental Microbiology, 62, 2393–7.Google ScholarPubMed
Turkovskii, I. I. & Yurlova, N. A. (2002). The photochemical and surface-active properties of melanins isolated from some black fungi. Microbiology, 71, 410–16.CrossRefGoogle ScholarPubMed
Uchida, H., Kambe, T. N., Akutsu, Y. S.et al. (2000). Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiology Letters, 189, 25–9.CrossRefGoogle ScholarPubMed
Upsher, F. J. & Roseblade, R. J. (1984). Assessment by tropical exposure of some fungicides in plasticized PVC. International Biodeterioration, 20, 243–52.Google Scholar
Valiente, N., Lalot, T., Brigodiot, M. & Marechal, E. (1998). Enzymic hydrolysis of phthalic unit containing copolyesters as a potential tool for block length determination. Polymer Degradation and Stability, 61, 409–15.CrossRefGoogle Scholar
Wales, D. S. & Sager, B. F. (1985). Microbial degradation of synthetic polymers. In Biodeterioration and Biodegradation of Plastics and Polymers 1, ed. Seal, K. J.. New York: Biodeterioration Society, pp. 44–8.Google Scholar
Wales, D. S. & Sager, B. F. (1988). Mechanistic aspects of polyurethane biodeterioration. In Biodeterioration, 7th edn, ed. Houghton, D. R., Smith, R. N. & Eggins, H. O. W.. London: Elsevier Applied Science, pp. 351–8.CrossRefGoogle Scholar
Webb, J. S., Mei, H. C., Nixon, M.et al. (1999). Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride. Applied and Environmental Microbiology, 65, 3575–81.Google ScholarPubMed
Webb, J. S., Nixon, M., Eastwood, I. M.et al. (2000). Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Applied and Environmental Microbiology, 66, 3194–200.CrossRefGoogle ScholarPubMed
Whitney, P. J. (1996). A comparison of two methods for testing defined formulations of PVC for resistance to fungal colonization with two methods for the assessment of their biodegradation. International Biodeterioration and Biodegradation, 37, 205–13.CrossRefGoogle Scholar
Zak, J. C. & Visser, S. (1996). An appraisal of soil fungal biodiversity: the crossroads between taxonomic and functional biodiversity. Biodiversity and Conservation, 5, 169–83.CrossRefGoogle Scholar
Zeng, F., Cui, K. Y., Fu, J. M., Sheng, G. Y. & Yang, H. F. (2002). Biodegradability of di(2-ethylhexyl) phthalate by Pseudomonas fluorescens FS1. Water Air and Soil Pollution, 140, 297–305.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×