Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T13:57:04.448Z Has data issue: false hasContentIssue false

7 - The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor

Published online by Cambridge University Press:  10 December 2009

Sarah Watkinson
Affiliation:
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
Dan Bebber
Affiliation:
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
Peter Darrah
Affiliation:
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
Mark Fricker
Affiliation:
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
Monika Tlalka
Affiliation:
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
Lynne Boddy
Affiliation:
Cardiff School of Biosciences, Cardiff University, Main Building Park Place, Cardiff CF10 3TL, UK
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

The mycelium of woodland fungi can act both as a reservoir and as a distribution system for nutrients, owing to its physiological and developmental adaptations to life at the interface between organic and mineral soil horizons. The mobility of accumulated nitrogen and phosphorus within the mycelial networks of cord-forming wood decay fungi and ectomycorrhiza enables fungi to play key roles as wood decomposers and root symbionts. The dynamics of nitrogen movement have been less investigated than phosphorus owing to lack of a suitable tracer. We have developed a new technique for tracing nitrogen translocation in real time, using 14C as a marker for nitrogen by incorporating it into a non-decomposed amino acid that tracks the mycelial free amino acid pool. Its movement can be imaged by counting photon emissions from a scintillant screen in contact with the mycelial system. This method allows real-time imaging at high temporal and spatial resolution, for periods of weeks and areas up to 1 m2, in microcosms that mimic the mineral/organic soil interface of the forest floor. The results reveal a hitherto unsuspected dynamism and responsiveness in amino acid flows through mycelial networks of cord-forming, wood-decomposing basidiomycetes. We interpret these in the light of current understanding of the pivotal role of fungi in boreal and temperate forest floor nutrient cycling, and attempt to formulate key questions to investigate the effects of mycelial nitrogen translocation on forest floor decomposition and nitrogen absorption.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7, 220–3.CrossRefGoogle ScholarPubMed
Aber, J. D. & Magill, A. H. (2004). Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. Forest Ecology and Management, 196, 1–5.CrossRefGoogle Scholar
Aber, J. P. & Melillo, J. M. (1982). Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Canadian Journal of Botany, 60, 2263–9.CrossRefGoogle Scholar
Agerer, R. (2001). Exploration types of ectomycorrhizae. Mycorrhiza, 11, 107–14.CrossRefGoogle Scholar
Anderson, J. M., Ineson, P. & Huish, S. A. (1983). Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands. Soil Biology and Biochemistry, 15, 463–7.CrossRefGoogle Scholar
Arnolds, E. J. M. (1997). Biogeography and conservation. In The Mycota, vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. T. & Söderström, B., Berlin: Springer-Verlag, pp. 115–31.Google Scholar
Bååth, E. & Söderström, B. (1979). Fungal biomass and fungal immobilisation of plant nutrients in Swedish coniferous forest soils. Revue d'Ecologie et de Biologie du Sol, 16, 477–89.Google Scholar
Bago, B., Pfeffer, P. & Shachar-Hill, Y. (2001). Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis?New Phytologist, 149, 4–8.CrossRefGoogle Scholar
Barron, G. L. (1992). Ligninolytic and cellulolytic fungi as predators and parasites. In The Fungal Community: Its Organization and Role in the Ecosystem, ed. Carroll, G. C. & Wicklow, D. J.. New York: Marcel Dekker, pp. 311–54.Google Scholar
Beare, M. H., Parmelee, R. W., Hendrix, P. F.et al. (1992). Microbial and faunal interactions and effects on litter nitrogen and decomposition in ecosystems. Ecological Monographs, 62, 569–91.CrossRefGoogle Scholar
Bending, G. D. & Read, D. J. (1995). The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist, 130, 401–9.CrossRefGoogle Scholar
Berntson, G. M. & Aber, J. D. (2000). Fast nitrate immobilisation in nitrogen saturated temperate forest soils. Soil Biology and Biochemistry, 32, 151–6.CrossRefGoogle Scholar
Blagodatskaya, E. & Anderson, T. H. (1998). Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and Q CO2 of microbial communities in forest soils. Soil Biology and Biochemistry, 30, 1269–74.CrossRefGoogle Scholar
Boddy, L. (1993). Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycological Research, 97, 641–55.CrossRefGoogle Scholar
Boddy, L. (1999). Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia, 91, 13–32.CrossRefGoogle Scholar
Boddy, L. & Watkinson, S. C. (1995). Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany, 73 (Suppl.1), S1377–83.CrossRefGoogle Scholar
Boswell, G. P., Jacobs, H., Davidson, F. A., Gadd, G. M. & Ritz, K. (2002). Functional consequences of nutrient translocation in mycelial fungi. Journal of Theoretical Biology, 217, 459–77.CrossRefGoogle ScholarPubMed
Bringmark, L. (1980). Ion leaching through a podsol in a Scots pine stand. In Ecological Bulletin, Vol. 32. Structure and Function of Northern Coniferous Forests – an Ecosystem Study, ed. T. Persson, pp. 357–61.
Caddick, M. X. (2002). What's for dinner – what shall I choose?Microbiology Today, 29, 132–4.Google Scholar
Caddick, M. X. (2004). Nitrogen regulation in mycelial fungi. In The Mycota, Vol. III. Biochemistry and Molecular Biology, 2nd en, ed. Brambl, R. & Marzluf, G. A.. Berlin: Springer-Verlag, pp. 349–68.CrossRefGoogle Scholar
Cain, M. L., Subler, S., Evans, J. P. & Fortin, M.-S. (1999). Sampling spatial and temporal variation in soil nitrogen availability. Oecologia, 118, 397–404.CrossRefGoogle ScholarPubMed
Cairney, J. W. G. (1992). Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycological Research, 96, 135–41.CrossRefGoogle Scholar
Cairney, J. W. G., Jennings, D. H. & Veltkamp, C. J. (1989). A scanning electron microscope study of the internal structure of mature linear mycelial organs of four basidiomycete species. Canadian Journal of Botany, 67, 2266–71.CrossRefGoogle Scholar
Carreiro, M. M., Sinsabaugh, R. L., Reperet, D. A. & Parkhurst, D. F. (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359–65.CrossRefGoogle Scholar
Cooper, T. G. (1996). Regulation of allantoin metabolism in Saccharomyces cerevisiae. In The Mycota, Vol. III. Biochemistry and Molecular Biology, ed. Brambl, R. & Marzluf, G. A., Heidelberg: Springer-Verlag, pp. 139–69.CrossRefGoogle Scholar
Cooper, T. G. (2004). Integrated regulation of the nitrogen-carbon interface. In: Topics in Current Genetics, Vol. 7. Nutrient-induced Responses in Eukaryotic Cells, ed. Winderickx, J. & Taylor, P. M.. Berlin: Springer-Verlag, pp. 225–57.CrossRefGoogle Scholar
Cromack, K. & Caldwell, B. A. (1992). The role of fungi in litter decomposition and nutrient cycling. In The Fungal Community: Its Organization and Role in the Ecosystem, ed. Carroll, G. C. & Wicklow, D. J.. New York: Marcel Dekker, pp. 653–68.Google Scholar
Currie, W. S. (1999). The responsive C and N biogeochemistry of the temperate forest floor. Trends in Ecology and Evolution 14, 316–20.CrossRefGoogle Scholar
Currie, W. S., Nadelhoffer, K. J. & Aber, J. D. (1999). Soil detrital processes controlling the movement of 15N tracers to forest vegetation. Ecological Applications, 9, 87–102.Google Scholar
Dafodu, W. (2003). The British Survey of Fertilizer Practice. London: Crown Publications.Google Scholar
Davidson, E. A., Hart, S. C. & Firestone, K. (1992). Internal cycling of nitrate in soils of a mature coniferous forest. Ecology, 73, 1148–56.CrossRefGoogle Scholar
Davidson, F. A. & Olsson, S. (2000). Translocation induced outgrowth of fungi in nutrient-free environments. Journal of Theoretical Biology, 205, 73–84.CrossRefGoogle ScholarPubMed
Davis, R. H. (1996). Polyamines in fungi. In The Mycota, Vol. III. Biochemistry and Molecular Biology, ed. Brambl, R. & Marzluf, G. A.. Heidelberg: Springer-Verlag, pp. 347–56.CrossRefGoogle Scholar
Dighton, J. (1997). Nutrient cycling by saprotrophic fungi in terrestrial habitats. In The Mycota, Vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. W. & Söderström, B.. Berlin: Springer-Verlag, pp. 271–93.Google Scholar
Dighton, J. (2003). Fungi in Ecosystem Processes. New York: Marcel Dekker.
Dighton, J. & Boddy, L. (1989). Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In Nitrogen, Phosphorus and Sulphur Utilization by Fungi, ed. Boddy, L., Marchant, R. & Read, D. J.. Cambridge: Cambridge University Press, pp. 269–98.Google Scholar
Dixon, R. K., Brown, S., Houghton, R. A.et al. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–90.CrossRefGoogle ScholarPubMed
Downs, M. R., Nadelhoffer, K. J., Melillo, J. M. & Aber, J. D. (1996). Immobilization of a 15N-labelled nitrate addition by decomposing forest litter. Oecologia, 105, 141–50.CrossRefGoogle Scholar
Ettema, C. H. & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology and Evolution 17, 177–83.CrossRefGoogle Scholar
Falkowski, P., Scholes, R. J., Boyle, E.et al. (2000). The global carbon cycle: a test of our knowledge of Earth as a system. Science, 290, 291–6.CrossRefGoogle ScholarPubMed
Fenn, M. E., Poth, M. A., Aber, J. D.et al. (1997). Nitrogen excess in North American Ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706–33.CrossRefGoogle Scholar
Frankland, J. C. (1982). Biomass and nutrient cycling by decomposer basidiomycetes. In Decomposer Basidiomycetes: Their Biology and Ecology, ed. Frankand, J. C., Hedger, J. N. & Swift, M. J.. Cambridge: Cambridge University Press, pp. 241–61.Google Scholar
Frey, S. D., Elliott, E. T., Paustian, K. & Peterson, G. A. (2000). Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology and Biochemistry, 32, 689–98.CrossRefGoogle Scholar
Frey, S. D., Six, J. & Elliott, E. T. (2003). Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biology and Biochemistry, 35, 1001–4.CrossRefGoogle Scholar
Fricker, M. D., Bebber, D., Tlalka, M. et al. (2005). Inspiration from microbes: from patterns to networks. In Complex Systems and Inter-Disciplinary Science, ed. Arthur, B. W., Axtell, R., Bornholdt, S.et al. London: World Scientific Publishing Co., (in press).Google Scholar
Galloway, J. N., Aber, J. D., Erisman, J. W.et al. (2003). The nitrogen cascade. Bioscience, 53, 341–56.CrossRefGoogle Scholar
Govindarajulu, M., Pfeffer, P. E., Jin, H.et al. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819–23.CrossRefGoogle ScholarPubMed
Griffin, D. H. (1994). Fungal Physiology, 2nd edn. Chichester: Wiley-Liss.Google Scholar
Guo, D., Mou, P., Jones, R. H. & Mitchell, R. J. (2004). Spatio-temporal patterns of soil available nutrients following experimental disturbance in a pine forest. Oecologia, 138, 613–21.Google Scholar
Hanks, J. N., Hearnes, J. M., Gathman, A. C. & Lilly, W. W. (2003). Nitrogen starvation-induced changes in amino acid and free ammonium pools in Schizophyllum commune colonies. Current Microbiology, 47, 444–449.CrossRefGoogle ScholarPubMed
Harmon, M. E., Franklin, J. F., Swanson, F. J.et al. (1986). Ecology of coarse woody debris in temperate ecosystems. Recent Advances in Ecological Research, 15, 133–302.CrossRefGoogle Scholar
Hart, S. C. & Firestone, M. K. (1991). Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest. Biogeochemistry, 12, 103–28.CrossRefGoogle Scholar
Hart, S. C., Nason, G. E., Myrold, D. D. & Perry, D. A. (1994). Dynamics of gross nitrogen transformations in an old growth forest: the carbon connection. Ecology, 75, 880–91.CrossRefGoogle Scholar
Heal, O. W. & Dighton, J. (1986). Nutrient cycling and decomposition in natural terrestrial ecosystems. In Microfloral and Faunal Interactions, ed. Mitchell, M. J. & Nakas, J. P.. Dordrecht: Martin Nijhoff/Dr W Junk, pp. 14–73.Google Scholar
Hibbett, D. S., Gilbert, L. B. & Donoghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506–8.CrossRefGoogle ScholarPubMed
Hirobe, M., Koba, K. & Tokuchi, N. (2003). Dynamics of the internal soil nitrogen cycles under moder and mull forest floor types on a slope in a Cryptomeria japonica D. Don plantation. Ecological Research, 18, 5–64.CrossRefGoogle Scholar
Hobbie, E. A., Macko, S. A. & Shugart, H. H. (1999). Insights into carbon and nitrogen dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia, 118, 353–60.CrossRefGoogle ScholarPubMed
Hodge, A., Robinson, D. & Fitter, A. (2000). Are micro-organisms more effective than plants at competing for nitrogen?Trends in Plant Science, 5, 304–8.CrossRefGoogle Scholar
Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A. & Gadd, G. M. (2002). Solubilisation of calcium phosphate as a consequence of carbon translocation in Rhizoctonia solani. FEMS Microbiology Ecology, 40, 65–71.CrossRefGoogle Scholar
Jennings, D. H. (1987). The translocation of solutes in fungi. Biological Reviews, 62, 215–43.CrossRefGoogle Scholar
Jennings, D. H. (1995). The Physiology of Fungal Nutrition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kaye, J. P. & Hart, S. C. (1997). Competition for nitrogen between plants and soil micro-organisms. Trends in Ecology and Evolution, 12, 139–43.CrossRefGoogle Scholar
Keyser, P., Kirk, T. K. & Zeykus, I. G. (1978). Ligninolytic system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology, 135, 790–7.Google ScholarPubMed
Kingsnorth, C. S., Eastwood, D. C. & Burton, K. S. (2001). Cloning and post-harvest expression of serine proteinase transcripts in the cultivated mushroom Agaricus bisporus. Fungal Genetics and Biology, 32, 135–44.CrossRefGoogle Scholar
Kirk, T. K. & Fenn, P. (1982). Formation and action of the ligninolytic system in basidiomycetes. In: Decomposer Basidiomycetes, ed. Frankland, J. C., Hedger, J. N. & Swift, M. J. Cambridge: Cambridge University Press, pp. 67–90.Google Scholar
Klionsky, D. J., Herman, P. K. & Emr, S. D. (1990). The fungal vacuole: composition, function and biogenesis. Microbiological Reviews, 54, 226–92.Google ScholarPubMed
Klironomos, J. N. & Hart, H. H. (2001). Animal nitrogen swap for plant carbon. Nature, 410, 651–2.CrossRefGoogle ScholarPubMed
Korsaeth, A., Molstad, L. & Bakken, L. R. (2001). Modelling the competition for nitrogen between plants and microflora as a function of soil heterogeneity. Soil Biology and Biochemistry, 33, 215–26.CrossRefGoogle Scholar
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–7.CrossRefGoogle ScholarPubMed
Leake, J., Johnson, D., Donnelly, D. & Boddy, L. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Canadian Journal of Botany, 82, 1016–45.CrossRefGoogle Scholar
Levi, M. P. & Cowling, E. B. (1969). Role of nitrogen in wood deterioration. VII. Physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen. Phytopathology, 59, 460–8.Google Scholar
Lilly, W. W., Wallweber, G. J. & Higgins, S. M. (1991). Proteolysis and amino acid recycling during nitrogen deprivation in Schizophyllum commune. Current Microbiology, 23, 27–32.CrossRefGoogle Scholar
Lindahl, B., Stenlid, J., Olsson, S. & Finlay, R. (1999). Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist, 144, 183–93.CrossRefGoogle Scholar
Lindahl, B. O., Finlay, R. D. & Olsson, S. (2001). Simultaneous, bidirectional translocation of 32P and 33P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytologist, 150, 189–94.CrossRefGoogle Scholar
Lindahl, B. O., Taylor, A. F. S. & Finlay, R. D. (2002). Defining nutritional constraints on carbon cycling in boreal forests – towards a less ‘phytocentric’ perspective. Plant and Soil, 242, 123–35.CrossRefGoogle Scholar
Lodge, D. J. (1993). Nutrient cycling by fungi in wet tropical ecosystems. In Aspects of Tropical Mycology, ed. Isaac, S., Frankland, J. C., Watling, R. & Whalley, A. J. S.. Cambridge: Cambridge University Press, pp 37–57.Google Scholar
Lodge, D. J. & Asbury, C. E. (1988). Basidiomycetes reduce export of organic matter from forest slopes. Mycologia, 80, 888–90.CrossRefGoogle Scholar
Magill, A. H., Aber, J. D., Berntson, G. M.et al. (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3, 238–53.CrossRefGoogle Scholar
Maraun, M., Martens, H., Migge, S., Theenhaus, A. & Scheu, S. (2003). Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. European Journal of Soil Biology, 39, 85–95.CrossRefGoogle Scholar
Markkola, A. M., Ohtonen, R., Tarvainen, O. & Ahonen-Jonnarth, U. (1995). Estimates of fungal biomass in Scots pine stands on an urban pollution gradient. New Phytologist, 131, 139–47.CrossRefGoogle Scholar
Marzluf, G. A. (1996). Regulation of nitrogen metabolism in mycelial fungi. In: The Mycota, Vol. III. Biochemistry and Molecular Biology, ed. Brambl, R. & Marzluf, G. A.. Berlin: Springer-Verlag, pp. 357–68.CrossRefGoogle Scholar
Merrill, W. & Cowling, E. B. (1966). The role of nitrogen in wood deterioration: amount and distribution of nitrogen in tree stems. Phytopathology, 56, 1085–90.Google Scholar
Micks, P., Downs, M. R., Magill, A. H., Nadelhoffer, K. J. & Aber, J. D. (2004). Decomposing litter as a sink for 15N-enriched additions to an oak and red pine plantation. Forest Ecology and Management, 196, 71–87.CrossRefGoogle Scholar
Miller, R. M. & Lodge, D. J. (1997). Fungal responses to disturbance: agriculture and forestry. In The Mycota, Vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. T. & Söderström, B.. Berlin: Springer-Verlag, pp. 65–84.Google Scholar
Nasholm, T., Ekblad, A., Nordin, A.et al. (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914–16.CrossRefGoogle Scholar
Neff, J. C., Townsend, A. R., Gleixner, G., Lehmann, S. J., Turnbull, J. & Bowman, W. D. (2002). Variable effects of nitrogen addition on the stability and turnover of carbon. Nature, 419, 915–17.CrossRefGoogle Scholar
Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. (1995). Polyphenol control of nitrogen release from plant litter. Nature, 377, 227–9.CrossRefGoogle Scholar
Olsson, S. (2001). Colonial growth of fungi. In The Mycota, Vol. VIII. Biology of the Fungal Cell, ed. Howard, R. J & Gow, N. A. R.. Berlin: Springer-Verlag, pp. 125–41.CrossRefGoogle Scholar
Olsson, S. (2002). Continuous imaging in fungi. New Phytologist, 152, 6–7.CrossRefGoogle Scholar
Olsson, S. & Gray, S. N. (1998). Patterns and dynamics of 32P phosphate and 14C labelled AIB translocation in intact basidiomycete mycelia. FEMS Microbiology Ecology, 26, 109–20.CrossRefGoogle Scholar
Olsson, S. & Hansson, B. S. (1995). The action potential-like activity found in fungal mycelium is sensitive to stimulation. Naturwissenschaften, 82, 30–1.CrossRefGoogle Scholar
Paustian, K. & Schnurer, J. (1987). Fungal growth response to carbon and nitrogen limitation: application of a model to field and laboratory data. Soil Biology and Biochemistry, 19, 621–9.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2000). Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301–9.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2001a). Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant, Cell and Environment, 24, 1219–26.CrossRefGoogle Scholar
Perez-Moreno, J. & Read, D. J. (2001b). Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests. Proceedings of the Royal Society London B, 268, 1329–55.CrossRefGoogle Scholar
Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–9.CrossRefGoogle Scholar
Rayner, A. D. M. (1991). The challenge of the individualistic mycelium. Mycologia, 83, 48–71.CrossRefGoogle Scholar
Rayner, A. D. M. (1994). Pattern generating processes and fungal communities. In Beyond the Biomass: Compositional and Functional Analysis of Microbial Communities, ed. Ritz, K., Dighton, J. & Giller, K. E.. Chichester: John Wiley, pp. 247–58.Google Scholar
Rayner, A. D. M. & Boddy, L. (1988). Fungal Decomposition of Wood: its Biology and Ecology. Chichester: John Wiley International.Google Scholar
Rayner, A. D. M., Griffith, G. S. & Ainsworth, A. M. (1995). Mycelial interconnectedness. In The Growing Fungus, ed. Gow, N. A. R. & Gadd, G. M.. London: Chapman & Hall, pp. 21–40.CrossRefGoogle Scholar
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–91.CrossRefGoogle Scholar
Richter, D. D. & Markewitz, D. (2001). Understanding Soil Change. Cambridge: Cambridge University Press.Google Scholar
Richter, D. D., Markewitz, D., Trumbore, S. A. & Wells, G. P. (1999). Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400, 56–8.CrossRefGoogle Scholar
Roosen, J., Oesterhelt, C., Pardons, K., Swinnen, E. & Winderickx, J. (2004). Integration of nutrient signalling pathways in the yeast Saccharomyces cerevisiae. In Topics in Current Genetics, Vol. 7. Nutrient-induced Responses in Eukaryotic Cells, ed. Winderickx, J. & Taylor, P. M.. Berlin: Springer-Verlag, pp. 277–318.CrossRefGoogle Scholar
Rosen, S., Sjollema, K. S., Veenhuis, M. & Tunlid, A. (1997). A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiology, 143, 2593–604.CrossRefGoogle Scholar
Schimel, D. S. (1995). Terrestial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.CrossRefGoogle Scholar
Sievering, H. (1999). Nitrogen deposition and carbon sequestration. Nature, 400, 629–90.CrossRefGoogle Scholar
Simard, S. W., Perry, D. A., Jones, M. D.et al. (1997). Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388, 579–82.CrossRefGoogle Scholar
Sinsabaugh, R. L. & Liptak, M. A. (1997). Enzymatic conversion of plant biomass. In The Mycota, Vol. IV. Environmental and Microbial Relationships, ed. Wicklow, D. T. & Söderström., B.Berlin: Springer-Verlag, pp. 347–57.Google Scholar
Sinsabaugh, R. L., Carreiro, M. M. & Repert, D. A. (2002). Allocation of extracellular enzymatic activity in relation to litter decomposition, N deposition and mass loss. Biogeochemistry, 60, 1–24.CrossRefGoogle Scholar
Stark, J. M. & Hart, S. C. (1997). High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature, 385, 61–4.CrossRefGoogle Scholar
Stark, N. (1972). Nutrient cycling pathways and litter fungi. Bioscience, 22, 355–60.CrossRefGoogle Scholar
Swift, M. J., Heal, O. W. & Anderson, J. M. (1979). Decomposition in Terrestrial Ecosystems. Oxford: Blackwell Scientific.Google Scholar
Tamm, C. O. (1982). Nitrogen cycling in undisturbed and manipulated boreal forest. Philosophical Transactions of the Royal Society, London; series B. 296, 419–25.CrossRef
Thompson, W. (1984). Distribution, development and functioning of mycelial cord systems of decomposer basidiomycetes of the deciduous woodland floor. In The Ecology and Physiology of the Fungal Mycelium, ed. Jennings, D. H. & Rayner., A. D. M.Cambridge: Cambridge University Press, pp. 185–214.Google Scholar
Thrane, C., Kaufmann, B., Stumm, B. M. & Olsson, S. (2004). Activation of caspase-like activity and poly(ADP-ribose) polymerase degradation during sporulation in Aspergillus nidulans. Fungal Genetics and Biology, 41, 361–8.CrossRefGoogle ScholarPubMed
Tietema, A., Emmett, B. A., Gundersen, P., Kjonaas, O. J. & Koopmans, C. J. (1998). The fate of 15N-labelled nitrogen deposition in coniferous forests. Forest Ecology and Management, 101, 19–27.CrossRefGoogle Scholar
Tlalka, M., Watkinson, S. C., Darrah, P. R. & Watkinson, S. C. (2002). Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes. New Phytologist, 153, 173–84.CrossRefGoogle Scholar
Tlalka, M., Darrah, P. R., Hensman, D., Watkinson, S. C. & Fricker, M. D. (2003). Noncircadian oscillations in amino acid transport have complementary profiles in assimilatory and foraging hyphae of Phanerochaete velutina. New Phytologist 158, 325–35.CrossRefGoogle Scholar
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Henricks, D. M. (1997). Mineral control of soil carbon storage and turnover. Nature, 389, 170–3.CrossRefGoogle Scholar
Townsend, A. R., Braswell, B. H., Holland, E. A. & Penner, J. E. (1996). Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 6, 806–14.CrossRefGoogle Scholar
Venables, C. E. & Watkinson, S. C. (1989). Medium-induced changes in patterns of free and combined amino acids in mycelium of Serpula lacrymans. Mycological Research, 92, 273–7.CrossRefGoogle Scholar
Vestgarden, L. S., Nilsen, P. & Abramasen, G. (2004). Nitrogen cycling in Pinus sylvestris stands exposed to different nitrogen inputs. Scandinavian Journal of Forest Research, 19, 38–47.CrossRefGoogle Scholar
Vitousek, P. M. & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: how can it occur?Biogeochemistry, 13, 87–119.CrossRefGoogle Scholar
Wadekar, R. V., North, M. J. & Watkinson, S. C. (1995). Proteolytic enzymes in two wood decaying basidiomycete fungi, Serpula lacrymans and Coriolus versicolor. Microbiology, 141, 1575–83.CrossRefGoogle Scholar
Waldrop, M. P., Zak, D. R. & Sinsabaugh, R. L. (2004). Microbial community responses to nitrogen deposition in Northern forest ecosystems. Soil Biology and Biochemistry, 36, 1443–51.CrossRefGoogle Scholar
Wallander, H. & Nylund, J.-E. (1991). Effects of excess nitrogen on carbohydrate concentration and mycorrhizal development of Pinus sylvestris L. seedlings. New Phytologist, 119, 405–11.CrossRefGoogle Scholar
Wallenda, T. & Kottke, I. (1998). Nitrogen deposition and mycorrhizas. New Phytologist, 139, 169–87.CrossRefGoogle Scholar
Wang, J. & Bakken, L. R. (1997). Competition for nitrogen during decomposition of plant residues in soil: effect of spatial placement of N-rich and N-poor plant residues. Soil Biology and Biochemistry, 29, 153–162.Google Scholar
Wardle, D. A. (2002). Monographs in Population Biology, Vol. 34. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton: Princeton University Press.Google Scholar
Wardle, D. A., Bardgett, R. D., Klironomos, J. N.et al. (2004a). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–33.CrossRefGoogle Scholar
Wardle, D. A., Walker, L. R. & Bardgett, R. D. (2004b). Mature forest ecosystems eventually decline as soil properties deteriorate and phosphorus becomes depleted. Science, 305, 509–13.CrossRefGoogle Scholar
Watkinson, S. C. (1975). The relation between nitrogen nutrition and formation of mycelial strands in Serpula lacrymans. Transactions of the British Mycological Society, 64, 195–200.CrossRefGoogle Scholar
Watkinson, S. C. (1977). The effect of amino acids on coremium development in Penicillium claviforme. Journal of General Microbiology, 101, 269–75.CrossRefGoogle Scholar
Watkinson, S. C. (1984). Inhibition of growth and development of Serpula lacrymans by the non-metabolized amino acid analogue 2-aminoisobutyric acid. FEMS Microbiology Letters, 24, 247–50.Google Scholar
Watkinson, S. C. (1999). Metabolism and differentiation in basidiomycete mycelium. In The Fungal Colony, ed. Gow, N. A. R., Robson, G. D. and Gadd, G. M.. Cambridge: Cambridge University Press, pp. 126–56.CrossRefGoogle Scholar
Watkinson, S. C., Davison, E. M. & Bramah, J. (1981). The effect of nitrogen availability on growth and cellulolysis by Serpula lacrymans. New Phytologist, 89, 295–305.CrossRefGoogle Scholar
Watkinson, S. C., Burton, K. S. & Wood, D. A. (2001). Characteristics of intracellular peptidase and proteinase activities from the mycelium of a cord-forming wood decay fungus, Serpula lacrymans. Mycological Research, 105, 698–704.CrossRefGoogle Scholar
Watkinson, S. C., Burton, K, Darrah, P. R.et al. (2005). New approaches to investigating the function of mycelial networks. Mycologist, 19, 11–17.CrossRefGoogle Scholar
Wells, J. M. & Boddy, L. (1995). Phosphorus translocation by saprotrophic basidiomycete mycelial cord systems on the floor of a mixed deciduous woodland. Mycological Research, 99, 977–80.CrossRefGoogle Scholar
Wells, J. M., Boddy, L. & Donnelly, D. P. (1998). Wood decay and phosphorus translocation by the cord forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytologist, 138, 607–17.CrossRefGoogle Scholar
Wells, J. M., Harris, M. J. & Boddy, L. (1999). Dynamics of mycelial growth and phosphorus partitioning in developing mycelial cord systems of Phanerochaete velutina: dependence on carbon availability. New Phytologist, 142, 325–34.CrossRefGoogle Scholar
Wessels, J. G. H. (1999). Fungi in their own right. Fungal Genetics and Biology, 27, 134–45.CrossRefGoogle ScholarPubMed
Winderickx, J. G. & Taylor, P. M. (eds.) (2004). Topics in Current Genetics, Vol. 7, Nutrient-induced Responses in Eukaryotic Cells. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Zogg, G. P., Zak, D. R., Pregitzer, K. S. & Burton, A. J. (2000). Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology, 81, 1858–66.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×