Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T17:18:15.318Z Has data issue: false hasContentIssue false

10 - Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility

Published online by Cambridge University Press:  10 December 2009

Marina Fomina
Affiliation:
Division of Environmental and Applied Biology, Biological Sciences Institute School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK
Euan P. Burford
Affiliation:
Division of Environmental and Applied Biology, Biological Sciences Institute School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK
Geoffrey M. Gadd
Affiliation:
Division of Environmental and Applied Biology, Biological Sciences Institute School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Fungi are chemoheterotrophic organisms, ubiquitous in subaerial and subsoil environments, and important as decomposers, animal and plant symbionts and pathogens, and spoilage organisms of natural and man-made materials (Gadd, 1993, 1999; Burford et al., 2003a). A fungal role in biogeochemical cycling of the elements (e.g. C, N, P, S, metals) is obvious and interlinked with the ability to adopt a variety of growth, metabolic and morphological strategies, their adaptive capabilities to environmental extremes and their symbiotic associations with animals, plants, algae and cyanobacteria (Burford et al., 2003a; Braissant et al., 2004; Gadd, 2004). Fungal polymorphism and reproduction by spores underpin successful colonization of different environments. Most fungi exhibit a filamentous growth habit, which provides an ability for adoption of either explorative or exploitative growth strategies, and the formation of linear organs of aggregated hyphae for protected fungal translocation (see Fomina et al., 2005b). Some fungi are polymorphic, occurring as both filamentous mycelium and unicellular yeasts or yeast-like cells, e.g. black meristematic or microcolonial fungi colonizing rocks (Sterflinger, 2000; Gorbushina et al., 2002, 2003). Fungi can also grow inside their own parental hyphae utilizing dead parts of the colony under the protection of parental cell walls (Gorbushina et al., 2003). The ability of fungi to translocate nutrients through the mycelial network is another important feature for exploring heterogeneous environments (Jacobs et al., 2002, 2004; Lindahl & Olsson, 2004).

The earliest fossil record of fungi in terrestrial ecosystems occurred during the Ordovician period (480 to 460 MYBP) (Heckman et al., 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaensen, K., Leile, D., Laere, A., Vangronsveld, J. & Colpaert, J. V. (2003). A zinc-adapted fungus protects pines from zinc stress. New Phytologist, 161, 549–55.CrossRefGoogle Scholar
Ahonen-Jonnarth, U., Hees, P. A. W., Lundström, U. S. & Finlay, R. D. (2000). Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytologist, 146, 557–67.CrossRefGoogle Scholar
Arnott, H. J. (1995). Calcium oxalate in fungi. In Calcium Oxalate in Biological Systems, ed. Khan, S. R.. Boca Raton: CRC Press, pp. 73–111.Google Scholar
Arocena, J. M., Glowa, K. R., Massicotte, H. B. & Lavkulich, L. (1999). Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the AE horizon of a Luvisol. Canadian Journal of Soil Sciences, 79, 25–35.CrossRefGoogle Scholar
Arocena, J. M., Zhu, L. P. & Hall, K. (2003). Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau, China. Earth Surface Processes and Landforms, 28, 1429–37.CrossRefGoogle Scholar
Arvieu, J. C., Leprince, F., & Plassard, C. (2003). Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Annals of Forest Sciences, 60, 815–21.CrossRefGoogle Scholar
Babich, H. & Stotzky, G. (1977). Reduction in the toxicity of cadmium to microorganisms by clay minerals. Applied and Environmental Microbiology, 33, 696–705.Google Scholar
Baldrian, P. (2003). Interaction of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32, 78–91.CrossRefGoogle Scholar
Banfield, J. F. & Nealson, K. H. (eds.) (1997). Geomicrobiology: Interactions between Microbes and Minerals. Washington, DC: Mineralogical Society of America.Google Scholar
Banfield, J. F., Barker, W. W., Welch, S. A. & Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3404–11.CrossRefGoogle ScholarPubMed
Barker, W. W. & Banfield, J. F. (1996). Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chemical Geology, 132, 55–69.CrossRefGoogle Scholar
Barker, W. W. & Banfield, J. F. (1998). Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiology Journal, 15, 223–44.CrossRefGoogle Scholar
Bennett, P. C., Rogers, J. R. & Choi, W. J. (2001). Silicates, silicate weathering, and microbial ecology. Geomicrobiology Journal, 18, 3–19.Google Scholar
Blaudez, D., Botton, B. & Chalot, M. (2000). Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology, 146, 1109–17.CrossRefGoogle ScholarPubMed
Braissant, O., Cailleau, G., Aragno, M. & Verrecchia, E. P. (2004). Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology, 2, 59–66.CrossRefGoogle Scholar
Brandl, H. (2001). Heterotrophic leaching. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 383–423.CrossRefGoogle Scholar
Bruand, A. & Duval, O. (1999). Calcified fungal filaments in the petrocalcic horizon of Eutrochrepts in Beauce, France. Soil Science Society of America Journal, 63, 164–9.CrossRefGoogle Scholar
Burford, E. P., Fomina, M. & Gadd, G. M. (2003a). Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67, 1127–55.CrossRefGoogle Scholar
Burford, E. P., Kierans, M. & Gadd, G. M. (2003b). Geomycology: fungi in mineral substrata. Mycologist, 17, 98–107.CrossRefGoogle Scholar
Burgstaller, W. & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology, 27, 91–116.CrossRefGoogle Scholar
Callot, G., Guyon, A. & Mousain, D. (1985a). Inter-relation entre aiguilles de calcite et hyphes mycéliens. Agronomie, 5, 209–16.CrossRefGoogle Scholar
Callot, G., Mousain, D. & Plassard, C. (1985b). Concentration of calcium carbonate on the walls of fungal hyphae. Agronomie, 5, 143–50.CrossRefGoogle Scholar
Callot, G., Maurette, M., Pottier, L. & Dubois, A. (1987). Biogenic etching of microfractures in amorphous and crystalline silicates. Nature, 328, 147–9.CrossRefGoogle Scholar
Calvet, F. (1982). Constructive micrite envelope developed in vadose continental environment in pleistocene eoliantes of Mallorca (Spain). Acta Geologica Hispanica, 17, 169–78.Google Scholar
Casarin, V., Plassard, C., Souche, G. & Arvieu, J.-C. (2003). Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie, 23, 461–9.CrossRefGoogle Scholar
Castro, I. M., Fietto, J. L. R., Vieira, R. X.et al. (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57, 39–49.CrossRefGoogle Scholar
Chander, K., Dyckmans, J., Joergensen, R. G., Meyer, B. & Raubuch, M. (2001). Different sources of heavy metals and their long-term effects on soil microbial properties. Biology and Fertility of Soils, 34, 241–7.CrossRefGoogle Scholar
Chantigny, M. H., Angers, D. A., Prevost, D., Vezina, L. P. & Chalifour, F. P. (1997). Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Science Society of America Journal, 61, 262–7.CrossRefGoogle Scholar
Clausen, C. A. & Green, F. (2003). Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. International Biodeterioration and Biodegradation, 51, 139–44.CrossRefGoogle Scholar
Colpaert, J. V. & Assche, J. A. (1992). Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil, 143, 201–11.CrossRefGoogle Scholar
Colpaert, J. V. & Assche, J. A. (1993). The effect of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytologist, 123, 325–33.CrossRefGoogle Scholar
Cromack, K. Jr, Solkins, P., Grausten, W. C.et al. (1979). Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biology and Biochemistry, 11, 463–8.CrossRefGoogle Scholar
Torre, M. A., Gomez-Alarcon, G.Vizcaino, C. & Garcia, M. T. (1993) Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochemistry, 19, 129–47.CrossRefGoogle Scholar
Denny, H. J. & Wilkins, D. A. (1987). Zinc tolerance in Betula ssp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytologist, 106, 545–53.Google Scholar
Devevre, O., Garbaye, J. & Botton, B. (1996). Release of complexing organic acids by rhizosphere fungi as a factor in Norway Spruce yellowing in acidic soils. Mycological Research, 100, 1367–74.CrossRefGoogle Scholar
Diercks, M., Sand, W. & Bock, E. (1991). Microbial corrosion of concrete. Experientia, 47, 514–16.CrossRefGoogle Scholar
Dutton, M. V. & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–95.CrossRefGoogle Scholar
Easton, R. M. (1997). Lichen-rock-mineral interactions: an overview. In Biological–Mineralogical Interactions, Vol. 21, eds. McIntosh, J. M. & Groat, L. A.. Mineralogical Association of Canada Short Course Series, Ottawa, Ontario, Canada, pp. 209–39.Google Scholar
Eckhardt, F. E. W. (1985). Solubilisation, transport, and deposition of mineral cations by microorganisms – efficient rock-weathering agents. In The Chemistry of Weathering, ed. J. Drever, Nato Asi Ser C, 149, 161–73.
Ehrlich, H. L. (1996). Geomicrobiology. New York: Marcel Dekker.Google Scholar
Ehrlich, H. L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews, 45, 45–60.CrossRefGoogle Scholar
Etienne, S. & Dupont, J. (2002). Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observationsEarth Surface Processes and Landforms, 27, 737–48.CrossRefGoogle Scholar
Fletcher, M. (1987). How do bacteria attach to solid surfaces? Microbiological Sciences, 4, 133–6.Google ScholarPubMed
Folk, R. L. & Chafetz, H. S. (2000). Bacterially induced microscale and nanoscale carbonate precipitates. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 41–9.CrossRefGoogle Scholar
Fomina, M. & Gadd, G. M. (2002a). Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 106, 107–17.CrossRefGoogle Scholar
Fomina, M. & Gadd, G. M. (2002b). Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. Journal of Chemical Technology and Biotechnology, 78, 23–34.CrossRefGoogle Scholar
Fomina, M. A., Alexander, I. J., Hillier, S. & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiological Journal, 21, 351–66.CrossRefGoogle Scholar
Fomina, M. A., Alexander, I. J., Colpaert, J. V. & Gadd, G. M. (2005a). Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry, 37, 851–66.CrossRefGoogle Scholar
Fomina, M., Burford, E. P. & Gadd, G. M. (2005b) Toxic metals and fungal communities. In The Fungal Community. Its Organization and Role in the Ecosystem, ed. Dighton, J., White, J. F. & Oudemans, P.. Boca Raton: CRC Press, pp. 733–58.CrossRefGoogle Scholar
Fomina, M., Hillier, S., Charnock, J. M.et al. (2005c). Role of oxalic acid overexcretion in toxic metal mineral transformations by Beauveria caledonica. Applied and Environmental Microbiology, 71, 371–81.CrossRefGoogle Scholar
Fomina, M. A., Olishevskaya, S. V., Kadoshnikov, V. M., Zlobenko, B. P. & Podgorsky, V. S. (2005d). Concrete colonization and destruction by mitosporic fungi in model experiment. Mikrobiologichny Zhurnal, 67, 97–106 (in Russian with English summary).Google Scholar
Fujita, Y., Ferris, F. G., Lawson, D. R., Colswell, F. S. & Smith, R. W. (2000). Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal, 17, 305–18.CrossRefGoogle Scholar
Gadd, G. M. (1984). Effect of copper on Aureobasidium pullulans in solid medium: adaptation not necessary for tolerant behaviour. Transactions of the British Mycological Society, 82, 546–9.CrossRefGoogle Scholar
Gadd, G. M. (1990). Fungi and yeasts for metal accumulation. In Microbial Mineral Recovery, ed. Ehrlich, H. L. & Brierley, C.. New York: McGraw-Hill, pp. 249–275.Google Scholar
Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.CrossRefGoogle Scholar
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 47–92.CrossRefGoogle ScholarPubMed
Gadd, G. M. (2000). Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 11, 271–9.CrossRefGoogle ScholarPubMed
Gadd, G. M. (2001). Metal transformations. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 359–82.CrossRefGoogle Scholar
Gadd, G. M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist, 18, 60–70.CrossRefGoogle Scholar
Gadd, G. M. & Mowll, J. L. (1985). Copper uptake by yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans. Experimental Mycology, 9, 230–40.CrossRefGoogle Scholar
Gadd, G. M. & Sayer, J. A. (2000). Fungal transformations of metals and metalloids. In Environmental Microbe-Metal Interactions, ed. Lovley, D. R.. Washington, DC: American Society for Microbiology, pp. 237–56.CrossRefGoogle Scholar
Gadd, G. M., Burford, E. P. & Fomina, M. (2003). Biogeochemical activities of microorganisms in mineral transformations: consequences for metal and nutrient mobility. Journal of Microbiology and Biotechnology, 13, 323–31.Google Scholar
Galli, U., Schuepp, H. & Brunold, C. (1994). Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92, 364–8.CrossRefGoogle Scholar
Gaylarde, C. C. & Morton, L. H. G. (1999). Deteriogenic biofilms on buildings and their control: a review. Biofouling, 14, 59–74.CrossRefGoogle Scholar
Geesey, G. (1993). A Review of the Potential for Microbially Influenced Corrosion of High-Level Nuclear Waste Containers. San Antonio, TX: Nuclear Regulatory Commission.Google Scholar
Gerrath, J. F., Gerrath, J. A. & Larson, D. W. (1995). A preliminary account of endolithic algae of limestone cliffs of the Niagara Escarpment. Canadian Journal of Botany, 73, 788–93.CrossRefGoogle Scholar
Gharieb, M. M. & Gadd, G. M. (1999). Influence of nitrogen source on the solubilization of natural gypsum. Mycological Research, 103, 473–81.CrossRefGoogle Scholar
Gharieb, M. M., Kierans, M. & Gadd, G. M. (1999). Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycological Research, 103, 299–305.CrossRefGoogle Scholar
Gomes-Alarcon, G., Munor, M. L. & Flores, M. (1994). Excretion of organic acids by fungal strains isolated from decayed sandstones. International Biodeterioration and Biodegradation, 34, 169–80.CrossRefGoogle Scholar
Gorbushina, A. A. & Krumbein, W. E. (2000). Subaerial microbial mats and their effects on soil and rock. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 161–9.CrossRefGoogle Scholar
Gorbushina, A. A., Krumbein, W. E., Hamann, R.et al. (1993). On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiology Journal, 11, 205–21.CrossRefGoogle Scholar
Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein, W. E. & Vendrell-Saz, M. (2001). Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiology Journal, 18, 117–32.Google Scholar
Gorbushina, A. A., Krumbein, W. E. & Volkmann, M. (2002). Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. Astrobiology, 2, 203–13.CrossRefGoogle ScholarPubMed
Gorbushina, A. A., Whitehead, K., Dornieden, T.et al. (2003). Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Canadian Journal of Botany, 81, 131–8.CrossRefGoogle Scholar
Grote, G. & Krumbein, W. E. (1992). Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiology Journal, 10, 49–57.CrossRefGoogle Scholar
Gu, J. D., Ford, T. E., Berke, N. S. & Mitchell, R. (1998). Biodeterioration of concrete by the fungus Fusarium. International Biodeterioration and Biodegradation, 41, 101–9.CrossRefGoogle Scholar
Hagerberg, D., Thelin, G. & Wallander, H. (2003). The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant and Soil, 252, 279–90.CrossRefGoogle Scholar
Hammes, F. & Verstraete, W. (2002). Key roles of pH, and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1, 3–7.CrossRefGoogle Scholar
Heckman, D. S., Geiser, D. M., Eidell, B. R.et al. (2001). Molecular evidence for the early colonisation of land by fungi and plants. Science, 293, 1129–33.CrossRefGoogle Scholar
Henderson, M. E. K. & Duff, R. B. (1963). The release of metallic and silicate ions from minerals, rocks and soils by fungal activity. Journal of Soil Science, 14, 236–46.CrossRefGoogle Scholar
Hirsch, P., Eckhardt, F. E. W. & Palmer, R. J. Jr. (1995). Fungi active in weathering rock and stone monuments. Canadian Journal of Botany, 73, 1384–90.CrossRefGoogle Scholar
Hochella, M. F. (2002). Sustaining Earth: thoughts on the present and future roles in mineralogy in environmental science. Mineralogical Magazine, 66, 627–52.CrossRefGoogle Scholar
Hoffland, E., Giesler, R., Jongmans, T. & Breemen, N. (2002). Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence. Ecosystems, 5, 11–22.CrossRefGoogle Scholar
Howlett, N. G. & Avery, S. V. (1997). Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 48, 539–45.CrossRefGoogle ScholarPubMed
Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A. & Gadd, G. M. (2002). Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 40, 65–71.CrossRefGoogle ScholarPubMed
Jacobs, H., Boswell, G. P., Scrimgeour, C. M.et al. (2004). Translocation of carbon by Rhizoctonia solani in nutritionally-heterogeneous environments. Mycological Research, 108, 453–62.CrossRefGoogle Scholar
Jones, M. D. & Hutchinson, T. C. (1988). Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. II Uptake of nickel, calcium, magnesium, phosphorus and iron. New Phytologist, 108, 461–70.CrossRefGoogle Scholar
Jongmans, A. G., Breemen, N., Lungstrom, U.et al. (1997). Rock-eating fungi. Nature, 389, 682–3.CrossRefGoogle Scholar
Kahle, C. F. (1977). Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicristisation. Sedimentology, 24, 413–35.CrossRefGoogle Scholar
Khan, M. & Scullion, J. (2000). Effect of soil on microbial responses to metal contamination. Environmental Pollution, 110, 115–25.CrossRefGoogle ScholarPubMed
Kikuchi, Y. & Sreekumari, K. R. (2002). Microbially influenced corrosion and biodeterioration of structural metals. Journal of the Iron and Steel Institute of Japan, 88, 620–8.CrossRefGoogle Scholar
Klappa, C. F. (1979). Calcified filaments in quaternary calcretes: organo-mineral interactions in the subaerial vadose environment. Journal of Sedimentary Petrology, 49, 955–68.CrossRefGoogle Scholar
Kumar, R. & Kumar, A. V. (1999). Biodeterioration of Stone in Tropical Environments: An Overview. The J. Paul Getty Trust, USA.Google Scholar
Lapeyrie, F., Chilvers, G. A. & Bhem, C. A. (1987). Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch.ex fr.). New Phytologist, 106, 139–46.CrossRefGoogle Scholar
Lapeyrie, F., Picatto, C., Gerard, J. & Dexheimer, J. (1990). TEM study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis, 9, 163–6.Google Scholar
Lapeyrie, F., Ranger, J. & Vairelles, D. (1991). Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Canadian Journal of Botany, 69, 342–6.CrossRefGoogle Scholar
Lee, G.-H. & Stotzky, G. (1999). Transformation and survival of donor, recipient, and transformants of Bacillus subtilis in vitro and in soil. Soil Biology and Biochemistry, 31, 1499–508.CrossRefGoogle Scholar
Leyval, C. & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In Trace Elements in the Rhizosphere, ed. Gobran, G. R., Wenzel, W. W. & Lombi, E.. Boca Raton: CRC Press, pp. 165–85.Google Scholar
Lindahl, B. D. & Olsson, S. (2004). Fungal translocation – creating and responding to environmental heterogeneity. Mycologist, 18, 79–88.CrossRefGoogle Scholar
Little, B. & Staehle, R. (2001). Fungal influenced corrosion in post-tension structures. The Electrochemical Society Interface, Winter 2001, 44–8.Google Scholar
Lotareva, O. V. & Prozorov, A. A. (2000). Effect of the clay minerals montmorillonite and kaolinite on the generic transformation of competent Bacillus subtilis cells. Microbiology, 69, 571–4.CrossRefGoogle Scholar
Lunsdorf, H., Erb, R. W., Abraham, W. R. & Timmis, K. N. (2000). ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environmental Microbiology, 2, 161–8.CrossRefGoogle ScholarPubMed
McEldowney, S. & Fletcher, M. (1986). Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces. Journal of General Microbiology, 132, 513–23.Google Scholar
Magyarosy, A., Laidlaw, R. D., Kilaas, R.et al. (2002). Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology, 59, 382–8.Google ScholarPubMed
Mandal, S. K., Roy, A. & Banerjee, P. C. (2002). Iron leaching from china clay by fungal strains. Transactions of the Indian Institute of Metals, 55, 1–7.Google Scholar
Manley, E. & Evans, L. (1986). Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Science, 141, 106–12.CrossRefGoogle Scholar
Manoli, F., Koutsopoulos, E. & Dalas, E. (1997). Crystallization of calcite on chitin. Journal of Crystal Growth, 182, 116–24.CrossRefGoogle Scholar
Marshall, K. C. (1988). Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Canadian Journal of Microbiology, 34, 593–606.CrossRefGoogle Scholar
Martin, J. P., Filip, Z. & Haider, K. (1976). Effect of montmorillonite and humate on growth and metabolic activity of some actinomyces. Soil Biology and Biochemistry, 8, 409–13.CrossRefGoogle Scholar
Martino, E., Perotto, S., Parsons, R. & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133–41.CrossRefGoogle Scholar
Meharg, A. A. (2003). The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research, 107, 1253–65.CrossRefGoogle ScholarPubMed
Merz-Preiβ, M. (2000). Calcification in cyanobacteria. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 51–5.CrossRefGoogle Scholar
Mironenko, N. V., Alekhina, I. A., Zhdanova, N. N. & Bulat, S. A. (2000). Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: a case study of strains inhabiting Chernobyl Reactor No. 4. Ecotoxicology and Environmental Safety, 45, 177–87.CrossRefGoogle ScholarPubMed
Money, N. P. (2004). The fungal dining habit – a biomechanical perspective. Mycologist, 18, 71–6.CrossRefGoogle Scholar
Money, N. P. & Howard, R. J. (1996). Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genetics and Biology, 20, 217–27.CrossRefGoogle Scholar
Monger, C. H. & Adams, H. P. (1996). Micromorphology of calcite-silica deposits, Yucca Mountain, Nevada. Soil Science Society of America Journal, 60, 519–30.CrossRefGoogle Scholar
Muller, B., Burgstaller, W., Strasser, H., Zanella, A. & Schinner, F. (1995). Leaching of zinc from an industrial filter dust with Penicillium, Pseudomonas and Corynebacterium: citric acid is the leaching agent rather than amino acids. Journal of Industrial Microbiology, 14, 208–12.CrossRefGoogle Scholar
Nica, D., Davis, J. L., Kirby, L., Zuo, G. & Roberts, D. J. (2000). Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. International Biodeterioration and Biodegradation, 46, 61–8.CrossRefGoogle Scholar
Olsson, P. A. & Wallander, H. (1998). Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiology Ecology, 27, 195–205.CrossRefGoogle Scholar
Paris, F., Bonnaud, P., Ranger, J. & Lapeyrie, F. (1995). In vitro weathering of phlogopite by ectomycorrhizal fungi I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant Soil, 177, 191–201.CrossRefGoogle Scholar
Pereira, M. O., Vieira, M. J. & Melo, L. F. (2000). The effect of clay particles on the efficacy of a biocide. Water Science and Technology, 41, 61–4.CrossRefGoogle Scholar
Perfettini, J. V., Revertegat, E. & Langomazino, N. (1991). Evaluation of cement degradation by the metabolic activities of two fungal strains. Experientia, 47, 527–33.CrossRefGoogle Scholar
Perotto, S. & Martino, E. (2001). Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnologica, 13, 55–63.Google Scholar
Puget, P., Angers, D. A. & Chenu, C. (1999). Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology and Biochemistry, 31, 55–63.CrossRefGoogle Scholar
Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.CrossRefGoogle Scholar
Ritz, K. & Young, I. M. (2004). Interaction between soil structure and fungi. Mycologist, 18, 52–9.CrossRefGoogle Scholar
Rivadeneyra, M. A., Delgado, R., Delgado, G.et al. (1993). Precipitation of carbonates by Bacillus sp. isolated from saline soils. Geomicrobiology Journal, 11, 175–84.CrossRefGoogle Scholar
Roberts, D. J., Nica, D., Zuo, G. & Davis, J. L. (2002). Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration and Biodegradation, 49, 227–34.CrossRefGoogle Scholar
Rodriguez Navarro, , Sebastian, C., , E. & Rodriguez Gallego, M. (1997). An urban model for dolomite precipitation: authigenic dolomite on weathered building stones. Sedimentary Geology, 109, 1–11.CrossRefGoogle Scholar
Sand, W. & Bock, E. (1991a). Biodeterioration of mineral materials by microorganisms – Biogenic sulphuric and nitric-acid corrosion of concrete and natural stone. Geomicrobiology Journal, 9, 129–38.CrossRefGoogle Scholar
Sand, W. & Bock, E. (1991b). Biodeterioration of ceramic materials by biogenic acids. International Biodeterioration, 27, 175–83.CrossRefGoogle Scholar
Sarret, G., Manceau, A., Cuny, D.et al. (1998). Mechanisms of lichen resistance to metallic pollution. Environmental Science and Technology, 32, 3325–30.CrossRefGoogle Scholar
Sarret, G., Saumitou-Laprade, P., Bert, V.et al. (2002). Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiology, 130, 1815–26.CrossRefGoogle ScholarPubMed
Sayer, J. A. & Gadd, G. M. (2001). Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycological Research, 105, 1261–7.CrossRefGoogle Scholar
Sayer, J. A., Kierans, M. & Gadd, G. M. (1997). Solubilization of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 154, 29–35.CrossRefGoogle Scholar
Sayer, J. A., Cotter-Howells, J. D., Watson, C., Hillier, S. & Gadd, G. M. (1999). Lead mineral transformation by fungi. Current Biology, 9, 691–4.CrossRefGoogle ScholarPubMed
Staley, J. T., Palmer, F. & Adams, J. B. (1982). Microcolonial fungi: common inhabitants on desert rocks. Science, 215, 1093–5.CrossRefGoogle ScholarPubMed
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.CrossRefGoogle Scholar
Stotzky, G. (1966). Influence of clay minerals on microorganisms-II. Effect of various clay species, homoionic clays, and other particles on bacteria. Canadian Journal of Microbiology, 12, 831–48.CrossRefGoogle Scholar
Stotzky, G. (2000). Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality, 29, 691–705.CrossRefGoogle Scholar
Styriakova, I. & Styriak, I. (2000). Iron removal from kaolins by bacterial leaching. Ceramics-Silikaty, 44, 135–41.Google Scholar
Thompson, J. B. & Ferris, F. G. (1990). Cyanobacterial precipitation of gypsum, calcite and magnesite from natural alkaline lake water. Geology, 18, 995–8.2.3.CO;2>CrossRefGoogle Scholar
Thomson-Eagle, E. T. & Frankenberger, W. T. (1992). Bioremediation of soils contaminated with selenium. In Advances in Soil Science, ed. Lal, R. & Stewart, B. A.. New York: Springer-Verlag, pp. 261–309.Google Scholar
Tisdall, J. M., Smith, S. E. & Rengasamy, P. (1997). Aggregation of soil by fungal hyphae. Australian Journal of Soil Research, 35, 55–60.CrossRefGoogle Scholar
Turnau, K., Kottke, I. & Dexheimer, J. (1996). Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycological Research, 100, 16–22.CrossRefGoogle Scholar
Urzi, C., Garcia-Valles, M. T., Vendrell, M. & Pernice, A. (1999). Biomineralization processes of the rock surfaces observed in field and in laboratory. Geomicrobiology Journal, 16, 39–54.Google Scholar
Lelie, D., Schwitzguebel, J. P., Glass, D. J., Vangronsveld, J. & Baker, A. (2001). Assessing phytoremediation's progress in the United States and Europe. Environmental Science and Technology, 35, 446A–52A.CrossRefGoogle ScholarPubMed
Hees, P. A. V., Goldbold, D. L., Jentschke, G. & Jones, D. L. (2003). Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. European Journal of Soil Science, 54, 697–706.CrossRefGoogle Scholar
Leerdam, D. M., Williams, P. A. & Cairney, J. W. G. (2001). Phosphate-solubilizing abilities of ericoid mycorrhizal endophytes of Woollsia pungens (Epacridaceae). Australian Journal of Botany, 49, 75–80.CrossRefGoogle Scholar
Tichelen, K. K., Colpaert, J. V. & Vangronsveld, J. (2001). Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist, 150, 203–13.CrossRefGoogle Scholar
Verrecchia, E. P. (2000). Fungi and sediments. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 69–75.CrossRefGoogle Scholar
Verrecchia, E. P., Dumont, J. L. & Rolko, K. E. (1990). Do fungi building limestones exist in semi-arid regions? Naturwissenschaften, 77, 584–6.CrossRefGoogle Scholar
Vettori, C., Gallori, E. & Stotzky, G. (2000). Clay minerals protect bacteriophage PBS1 of Bacillus subtilis against inactivation and loss of transducing ability by UV radiation. Canadian Journal of Microbiology, 46, 770–3.CrossRefGoogle ScholarPubMed
Vodnik, D., Byrne, A. R. & Gogala, N. (1998). The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycological Research, 102, 953–8.CrossRefGoogle Scholar
Volkmann, M., Whitehead, K., Rutters, H., Rullkotter, J. & Gorbushina, A. A. (2003). Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Communications in Mass Spectrometry, 17, 897–902.CrossRefGoogle ScholarPubMed
von Knorre, H. & Krumbein, W. E. (2000). Bacterial calcification. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 25–31.CrossRefGoogle Scholar
Wainwright, M., Tasnee, A. A. & Barakah, F. (1993). A review of the role of oligotrophic microorganisms in biodeterioration. International Biodeterioration and Biodegradation, 31, 1–13.CrossRefGoogle Scholar
Warren, L. A., Maurice, P. A., Parmer, N. & Ferris, F. G. (2001). Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal, 18, 93–115.Google Scholar
Warscheid, T. & Krumbein, W. E. (1994). Biodeterioration processes on inorganic materials and means of countermeasures. Materials and Corrosion, 45, 105–13.CrossRefGoogle Scholar
Watts, H. J., Very, A. A., Perera, T. H. S., Davies, J. M. & Gow, N. A. R. (1998). Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology, 144, 689–95.CrossRefGoogle ScholarPubMed
Webley, D. M., Henderson, M. E. F. & Taylor, I. F. (1963). The microbiology of rocks and weathered stones. Journal of Soil Science, 14, 102–12.CrossRefGoogle Scholar
Wenzel, C. L., Ashford, A. E. & Summerell, B. A. (1994). Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of warratah [Telopea speciosissima (Sm.) R. Br.]. New Phytologist, 128, 487–96.CrossRefGoogle Scholar
Whitelaw, M. A., Harden, T. J. & Helyar, K. R. (1999). Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 31, 655–65.CrossRefGoogle Scholar
Wollenzien, U., Hoog, G. S., Krumbein, W. E. & Urzi, C. (1995). On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Science of the Total Environment, 167, 287–94.CrossRefGoogle Scholar
Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. (2000). Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104, 1421–26.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×