Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T04:07:48.480Z Has data issue: false hasContentIssue false

13 - Mineral tunnelling by fungi

Published online by Cambridge University Press:  10 December 2009

Mark Smits
Affiliation:
Laboratory of Soil Science and Geology, Wageningen University, POB 37 6700 AA, Wageningen, Netherlands
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

This chapter reviews the distribution, mechanism and impact of mineral tunnelling by soil ectomycorrhizal fungi (EMF). Most trees in boreal forests live in close relation with EMF (Smith & Read, 1997). These EMF mediate nutrient uptake; they form an extension of the tree roots. In turn they obtain carbohydrates from the tree. Over the years ectomycorrhizal (EM) research has a strong focus on nutrient acquisition by EMF from organic sources (Read, 1991). In boreal forest systems, however, minerals could also be an important nutrient source, especially for calcium, potassium and phosphorus (Likens et al., 1994, 1998; Blum et al., 2002). Recent developments in EM research suppose a role for EMF in mobilizing nutrients from minerals (see Wallander, Chapter 14, this volume).

In 1997, Jongmans et al. described small tunnel-like features in feldspar and hornblende grains from Swedish forest soils. These tunnels have the shape of fungal hyphae: a constant width between 3 and 10 μm, smooth borders and a rounded end. In that way they differ from other weathering phenomena such as etch pitches and cracks (Fig. 13.1). In some tunnels hyphae were found. Jongmans et al. (1997) postulated that EMF created these tunnels by mineral dissolution through the exudation of low-molecular-weight organic compounds and subsequent removal of the weathering products. The weathering products like calcium, magnesium and potassium are supposed to be transported to the tree roots. In this way the host tree has direct access to mineral-bound nutrients, bypassing the bulk soil solution (van Breemen et al., 2000a; Landeweert et al., 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, G., Jacks, G., Wickman, T. & Hamilton, P. J. (1990). Strontium isotopes in trees as an indicator for calcium availability. Catena, 17, 1–11.CrossRefGoogle Scholar
Ashford, A. E., Ryde, S. & Barrow, K. D. (1994). Demonstration of a short chain polyphosphate in Pisolithus tinctorius and the implications for phosphorus transport. New Phytologist, 126, 239–47.CrossRefGoogle Scholar
Ashford, A. E., Vesk, P. A., Orlovich, D. A., Markovina, A. L. & Allaway, W. G. (1999). Dispersed polyphosphate in fungal vacuoles in Eucalyptus pilularis/Pisolithus tinctorius ectomycorrhizas. Fungal Genetics and Biology, 28, 21–33.CrossRefGoogle ScholarPubMed
Banfield, J. F. & Hamers, R. J. (1997). Processes at minerals and surfaces with relevance to microorganisms and prebiotic synthesis. In Geomicrobiology: Interactions between Microbes and Minerals, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Washington DC: Mineralogical Society of America, pp. 81–122.Google Scholar
Barker, W. W., Welch, S. A. & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. In Geomicrobiology: Interactions between Microbes and Minerals, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Washington DC: Mineralogical Society of America, pp. 391–428.Google Scholar
Bell, L. S., Boyde, A. & Jones, S. J. (1991). Diagenetic alteration to teeth Insitu illustrated by backscattered electron imaging. Scanning, 13, 173–83.CrossRefGoogle Scholar
Bénézeth, P., Diakonov, I. I., Pokrovski, G. S.et al. (1997). Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of a-GaOOH in acidic solutions from 150 to 250 ℃ and hydrolysis constants of gallium (III) to 300 ℃. Geochimica et Cosmochimica Acta, 61, 1345–57.CrossRefGoogle Scholar
Berner, R. A. (1995). Chemical weathering and its effect on atmospheric CO2 and climate. In Chemical Weathering Rates in Silicate Minerals, ed. White, A. F. & Brantley, S. L.. Washington DC: Mineralogical Society of America, pp. 565–83.Google Scholar
Blum, J. D., Klaue, A., Nezat, C. A.et al. (2002). Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 417, 729–31.CrossRefGoogle ScholarPubMed
Brandes, B., Godbold, D. L., Kuhn, A. J. & Jentschke, G. (1998). Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytologist, 140, 735–43.CrossRefGoogle Scholar
Brandtberg, P. O. & Simonsson, M. (2003). Aluminum and iron chemistry in the O horizon changed by a shift in tree species composition. Biogeochemistry, 63, 207–28.CrossRefGoogle Scholar
Bücking, H. & Heyser, W. (1999). Elemental composition and function of polyphosphates in ectomycorrhizal fungi – an X-ray microanalytical study. Mycological Research, 103, 31–9.CrossRefGoogle Scholar
Chang, T. T. & Li, C. Y. (1998). Weathering of limestone, marble, and calcium phosphate by ectomycorrhizal fungi and associated microorganisms. Taiwan Journal of Forest Science, 13, 85–90.Google Scholar
Chou, L. & Wollast, R. (1985). Steady-state kinetics and dissolution mechanisms of albite. American Journal of Science, 285, 963–93.CrossRefGoogle Scholar
Danielsson, R. M. & Visser, S. (1989). Effects of forest soil acidification on ectomycorrhizal and vesicular-arbuscular mycorrhizal development. New Phytologist, 112, 41–7.CrossRefGoogle Scholar
Davidson, F. A. (1998). Modelling the qualitative response of fungal mycelia to heterogeneous environments. Journal of Theoretical Biology, 195, 281–92.CrossRefGoogle ScholarPubMed
Davidson, F. A. & Olsson, S. (2000). Translocation induced outgrowth of fungi in nutrient-free environments. Journal of Theoretical Biology, 205, 73–84.CrossRefGoogle ScholarPubMed
Delcourt, P. A., Petty, W. H. & Delcourt, H. R. (1996). Late-Holocene formation of Lake Michigan beach ridges correlated with a 70-yr oscillation in global climate. Quaternary Research, 45, 321–6.CrossRefGoogle Scholar
Dickie, I. A., Xu, B. & Koide, R. T. (2002). Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist, 156, 527–35.CrossRefGoogle Scholar
Dijkstra, F. & Smits, M. (2002). Tree species effects on calcium cycling: the role of calcium uptake in deep soil. Ecosystems, 5, 385–98.CrossRefGoogle Scholar
Dye, T. J., Lucy, D. & Pollard, A. M. (1995). The occurrence and implications of postmortem pink teeth in forensic and archaeological cases. International Journal of Osteoarchaeology, 5, 339–48.CrossRefGoogle Scholar
Egli, S. (1981). Mycorrhizae and their vertical distribution in oak stands. Schweizerische Zeitschrift für Forstwesen, 132, 345–53.Google Scholar
Faarinen, M. (2003). Development of the Lund AMS facility for detection of 26Al – with applications in plant ecology. Unpublished Ph.D. thesis, Lund University, Lund.
Faarinen, M., Magnusson, C. E., Hellborg, R.et al. (2001). Al-26 investigations at the AMS-laboratory in Lund. Journal of Inorganic Biochemistry, 87, 57–61.CrossRefGoogle Scholar
Falandysz, J., Szymczyk, K., Ichihashi, H.et al. (2001). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives and Contaminants, 18, 503–13.CrossRefGoogle ScholarPubMed
Fransson, P. M. A., Taylor, A. F. S. & Finlay, R. D. (2000). Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiology, 20, 599–606.CrossRefGoogle Scholar
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 47–92.CrossRefGoogle ScholarPubMed
Gautier, J. M., Oelkers, E. H. & Schott, J. (1994). Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150 ℃ and pH-9. Geochimica et Cosmochimica Acta, 58, 4549–60.CrossRefGoogle Scholar
Giesler, R., Högberg, M. & Högberg, P. (1998). Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology, 79, 119–37.CrossRefGoogle Scholar
Giesler, R., Ilvesniemi, H., Nyberg, L.et al. (2000). Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma, 94, 249–63.CrossRefGoogle Scholar
Glowa, K. R., Arocena, J. M. & Massicotte, H. B. (2003). Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiology Journal, 20, 99–111.CrossRefGoogle Scholar
Goodman, D. M. & Trofymow, J. A. (1998). Distribution of ectomycorrhizas in microhabitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver island. Soil Biology and Biochemistry, 30, 2127–38.CrossRefGoogle Scholar
Hacket, C. (1976). Microscopical focal destruction (tunnels) in exhumed human bone. Medicine Science and the Law, 21, 243–64.CrossRefGoogle Scholar
Hagerberg, D., Thelin, G. & Wallander, H. (2003). The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant and Soil, 252, 279–90.CrossRefGoogle Scholar
Heinonsalo, J., Jorgensen, K. S. & Sen, R. (2001). Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiology Ecology, 36, 73–84.CrossRefGoogle ScholarPubMed
Heinonsalo, J., Hurme, K. R. & Sen, R. (2004). Recent C14-labelled assimilate allocation to Scots pine seedling root and mycorrhizosphere compartments developed on reconstructed podzol humus, E- and B-mineral horizons. Plant and Soil, 259, 111–21.CrossRefGoogle Scholar
Hoffland, E., Giesler, R., Jongmans, T. & Breemen, N. (2002). Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems, 5, 11–22.CrossRefGoogle Scholar
Hoffland, E., Giesler, R., Jongmans, A. G. & Breemen, N. (2003). Feldspar tunneling by fungi along natural productivity gradients. Ecosystems, 6, 739–46.CrossRefGoogle Scholar
Hoffland, E., Kuyper T, W., Wallander, H.et al. (2004). The role of fungi in weathering. Frontiers in Ecology, 2, 258–64.CrossRefGoogle Scholar
Högberg, P., Nordgren, A., Buchmann, N.et al. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789–92.CrossRefGoogle ScholarPubMed
Huggett, R. J. (1998). Soil chronosequences, soil development, and soil evolution: a critical review. Catena, 32, 155–72.CrossRefGoogle Scholar
Jongmans, A. G., Breemen, N., Lundström, U. S.et al. (1997). Rock-eating fungi. Nature, 389, 682–3.CrossRefGoogle Scholar
Kinraide, T. B. (1991). Identity of the rhizotoxic aluminum species. Plant and Soil, 134, 167–78.CrossRefGoogle Scholar
Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W. & Breemen, N. (2001). Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology and Evolution, 16, 248–54.CrossRefGoogle ScholarPubMed
Landeweert, R., Leeflang, P., Kuyper, T. W.et al. (2003). Molecular identification of ectomycorrhizal mycelium in soil horizons. Applied and Environmental Microbiology, 69, 327–33.CrossRefGoogle ScholarPubMed
Lasaga, A. & KirkPatrick, R. (1981) Kinetics of Geochemical Processes. Washington, DC: Mineralogical Society of America.Google Scholar
Lasaga, A. C. & Luttge, A. (2003). A model for crystal dissolution. European Journal of Mineralogy, 15, 603–15.CrossRefGoogle Scholar
Lawrence, G. B., David, M. B. & Shortle, W. C. (1995). A new mechanism for calcium loss in forest-floor soils. Nature, 378, 162–5.CrossRefGoogle Scholar
Leski, T., Rudawska, M. & Kieliszewska-Rokicka, B. (1995). Intraspecific aluminium response in Suillus luteus (L.) S. F.Gray., an ectomycorrhizal symbiont of Scots Pine. Acta Societatis Botanicorum Poloniae, 64, 97–105.CrossRefGoogle Scholar
Leyval, C., Laheurte, F., Belgy, G. & Berthelin, J. (1990). Weathering of micas in the rhizospheres of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis, 9, 105–9.Google Scholar
Likens, G. E., Driscoll, C. T., Buso, D. C.et al. (1994). The biogeochemistry of potassium in the Hubbard Brook Experimental Forest, New Hampshire. Biogeochemistry, 25, 61–125.CrossRefGoogle Scholar
Likens, G. E., Driscoll, C. T., Buso, D. C.et al. (1998). The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry, 41, 89–173.CrossRefGoogle Scholar
Ma, J. F. & Hiradate, S. (2000). Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta, 211, 355–60.CrossRefGoogle Scholar
Ma, J. F., Hiradate, S., Nomoto, K., Iwashita, T. & Matsumoto, H. (1997). Internal detoxification mechanism of Al in hydrangea – identification of Al form in the leaves. Plant Physiology, 113, 1033–9.CrossRefGoogle ScholarPubMed
Ma, J. F., Hiradate, S. & Matsumoto, H. (1998). High aluminum resistance in buckwheat – II. Oxalic acid detoxifies aluminum internally. Plant Physiology, 117, 753–9.CrossRefGoogle Scholar
Martin, F., Rubini, P., Côté, R. & Kottke, I. (1994). Aluminium polyphosphate complexes in the mycorrhizal basidiomycete Laccaria bicolor: A 27Al-nuclear magnetic resonance study. Planta, 194, 241–6.CrossRefGoogle Scholar
Mulder, J., Wit, H. A., Boonen, H. W. J. & Bakken, L. R. (2001). Increased levels of aluminium in forest soils: effects on the stores of soil organic carbon. Water Air and Soil Pollution, 130, 989–94.CrossRefGoogle Scholar
Müller, M., Anke, M. & Illing-Günther, H. (1997). Aluminium in wild mushrooms and cultivated Agaricus bisporus. Zeitschrift für Lebensmitteluntersuchung und Forschung A, 205, 242–7.Google Scholar
Ochs, M. (1996). Influence of humified and non-humified natural organic compounds on mineral dissolution. Chemical Geology, 132, 119–24.CrossRefGoogle Scholar
Ochs, M., Brunner, I., Strumm, W. & Cosovic, B. (1993). Effects of root exudates and humic substances on weathering kinetics. Water Air and Soil Pollution, 68, 213–29.CrossRefGoogle Scholar
Oelkers, E. H., Schott, J. & Devidal, J. L. (1994). The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochimica et Cosmochimica Acta, 58, 2011–24.CrossRefGoogle Scholar
Paris, F., Bonnaud, P., Ranger, J. & Lapeyrie, F. (1995a). In vitro weathering of phlogopite by ectomycorrhizal fungi: I. Effect of K+ and Mg2 + deficiency on phyllosilicate evolution. Plant and Soil, 177, 191–201.CrossRefGoogle Scholar
Paris, F., Bonnaud, P., Ranger, J., Robert, M. & Lapeyrie, F. (1995b). Weathering of ammonium- or calcium-saturated 2:1 phyllosilicates by ectomycorrhizal fungi in vitro. Soil Biology and Biochemistry, 27, 1237–44.CrossRefGoogle Scholar
Paris, F., Botton, B. & Lapeyrie, F. (1996). In vitro weathering of phlogopite by ectomycorrhizal fungi. II. Effect of K+ and Mg+ deficiency and N sources on accumulation of oxalate and H+. Plant and Soil, 179, 141–50.CrossRefGoogle Scholar
Petty, W. H., Delcourt, P. A. & Delcourt, H. R. (1996). Holocene lake-level fluctuations and beach-ridge development along the northern shore of Lake Michigan, USA. Journal of Paleolimnology, 15, 147–69.CrossRefGoogle Scholar
Piepenbrink, H. (1986). Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation. Journal of Archaeological Science, 13, 417–30.CrossRefGoogle Scholar
Poole, D. F. G. & Tratman, E. K. (1978). Postmortem changes in human-teeth from late upper Paleolithic-Mesolithic occupants of an English limestone cave. Archives of Oral Biology, 23, 1115–20.CrossRefGoogle Scholar
Poszwa, A., Dambrine, E., Pollier, B. & Atteia, O. (2000). A comparison between Ca and Sr cycling in forest ecosystems. Plant and Soil, 225, 299–310.CrossRefGoogle Scholar
Rambold, G. & Agerer, R. (1997). DEEMY – The concept of a characterization and determination system for ectomycorrhizae. Mycorrhiza, 7, 113–16.CrossRefGoogle Scholar
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–91.CrossRefGoogle Scholar
Ritchie, G. S. P. (1995). Soluble aluminium in soils: principles and practicalities. Plant and Soil, 171, 17–27.CrossRefGoogle Scholar
Romao, P. M. S. & Rattazzi, A. (1996). Biodeterioration on megalithic monuments. Study of lichens' colonization on Tapadao and Zambujeiro dolmens (Southern Portugal). International Biodeterioration and Biodegradation, 37, 23–35.CrossRefGoogle Scholar
Rosling, A., Landeweert, R., Lindahl, B.et al. (2003). Vertical distribution of ectomycorrhizal root tips in a podzol soil profile. New Phytologist, 159, 775–83.CrossRefGoogle Scholar
Rudawska, M. & Leski, T. (1998). Aluminium tolerance of different Paxillus involutus Fr. strains originating from polluted and nonpolluted sites. Acta Societatis Botanicorum Poloniae, 67, 115–22.CrossRefGoogle Scholar
Rustad, L. E. & Cronan, C. S. (1988). Element loss and retention during litter decay in a red spruce stand in Maine. Canadian Journal of Forest Research, 18, 947–53.CrossRefGoogle Scholar
Rustad, L. E. & Cronan, C. S. (1995). Biogeochemical controls on aluminum chemistry in the O horizon of a red spruce (Picea rubens Sarg.) stand in central Maine, USA. Biogeochemistry, 29, 107–29.CrossRefGoogle Scholar
Shepherd, V. A., Orlovich, D. A. & Ashford, A. E. (1993a). Cell-to-cell transport via motile tubules in growing hyphae of a fungus. Journal of Cell Science, 105, 1173–8.Google Scholar
Shepherd, V. A., Orlovich, D. A. & Ashford, A. E. (1993b). A dynamic continuum of pleiomorphic tubules and vacuoles in growing hyphae of a fungus. Journal of Cell Science, 104, 495–507.Google Scholar
Shiller, A. M. & Frilot, D. M. (1996). The geochemistry of gallium relative to aluminum in Californian streams. Geochimica et Cosmochimica Acta, 60, 1323–8.CrossRefGoogle Scholar
Smith, S. E. & Read, D. J. (1997) Mycorrhizal Symbiosis. San Diego: Academic Press.Google Scholar
Smits, M., Hoffland, E. & Breemen, N. (2005). Contribution of mineral tunneling to total feldspar weathering. Geoderma, 125, 59–69.CrossRefGoogle Scholar
Soggnaes, R. (1950). Histological studies of ancient and recent teeth with special regard to differential diagnosis between intra-vitam and post mortem characteristics. American Journal of Physical Anthropology, 8, 269–70.Google Scholar
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.CrossRefGoogle Scholar
Sverdrup, H. (1990). Kinetics of Base Cation Release due to Chemical Weathering. Lund: Lund University Press.Google Scholar
Sverdrup, H. (1996). Geochemistry, the key to understanding environmental chemistry. Science of the Total Environment, 183, 67–87.CrossRefGoogle Scholar
Sverdrup, H., Hagen-Thorn, A., Holmqvist, J. et al. (2002). Biogeochemical processes and mechanisms. In Developing Principles and Models for Sustainable Forestry in Sweden, ed. Sverdrup, H. & Stjernquist, I.. Dordrecht: Kluwer Academic Publishers, pp. 91–196.CrossRefGoogle Scholar
Tedersoo, L., Koljalg, U., Hallenberg, N. & Larsson, K. H. (2003). Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytologist, 159, 153–65.CrossRefGoogle Scholar
Ugolini, F. C., Dahlgren, R., Righi, D. & Chauvel, A. (1987). The mechanism of podzolization as revealed by soil solution studies. In Podzols et Podzolisation, Proceedings, Symposium, 10–11 April 1986. Poitiers: CNRS, pp. 195–203.Google Scholar
Breemen, N., Finlay, R. D., Lundström, U. S.et al. (2000a). Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry, 49, 53–67.CrossRefGoogle Scholar
Breemen, N., Lundstrom, U. S. & Jongmans, A. G. (2000b). Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma, 94, 163–71.CrossRefGoogle Scholar
Väre, H. (1990). Aluminum polyphosphate in the ectomycorrhizal fungus Suillus variegatus (Fr.) O. Kunze as revealed by energy dispersive spectrometry. New Phytologist, 116, 663–8.CrossRefGoogle Scholar
Vogt, K. A., Dahlgren, R. A., Ugolini, F. C.et al. (1987). Aluminium, Fe, Ca, Mg, K, M, Cu, Zn and P in above- and belowground biomass. II. Pools and circulation in a subalpine Abies amabilis stand. Biogeochemistry, 4, 295–311.CrossRefGoogle Scholar
Wallander, H. (2000). Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant and Soil, 218, 249–56.CrossRefGoogle Scholar
Wallander, H. & Wickman, T. (1999). Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza, 9, 25–32.CrossRefGoogle Scholar
Wallander, H., Wickman, T. & Jacks, G. (1997). Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil, 196, 123–31.CrossRefGoogle Scholar
Wallander, H., Johansson, L. & Pallon, J. (2002). PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiology Ecology, 39, 147–56.CrossRefGoogle ScholarPubMed
Wallander, H., Mahmood, S., Hagerberg, D., Johansson, L. & Pallon, J. (2003). Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology, 44, 57–65.Google ScholarPubMed
Wallander, H., Goransson, H. & Rosengren, U. (2004). Production, standing biomass and natural abundance of N15 and C13 in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia, 139, 89–97.CrossRefGoogle Scholar
Watmough, S. A. & Dillon, P. J. (2003). Ecology – mycorrhizal weathering in base-poor forests. Nature, 423, 823–4.CrossRefGoogle Scholar
Welch, S. A., Taunton, A. E. & Banfield, J. F. (2002). Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, 19, 343–67.CrossRefGoogle Scholar
Werelds, R. (1962). Nouvelles observations sur les dégradations post-mortem de la dentine et du cément des dents inhumées. Bulletin du Groupment Internationale pour la Recherche Scientifique en Stomatologie, 5, 559–91.Google Scholar
White, A. F. (1995). Chemical weathering rates of silicate minerals in soils. In Chemical Weathering Rates of Silicate Minerals, ed. White, A. F. & Brantley, S. L.. Washington, DC: Mineralogical Society of America, pp. 407–61.Google Scholar
Zhou, Z. H. & Hogetsu, T. (2002). Subterranean community structure of ectomycorrhizal fungi under Suillus grevillei sporocarps in a Larix kaempferi forest. New Phytologist, 154, 529–39.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mineral tunnelling by fungi
    • By Mark Smits, Laboratory of Soil Science and Geology, Wageningen University, POB 37 6700 AA, Wageningen, Netherlands
  • Edited by Geoffrey Michael Gadd, University of Dundee
  • Book: Fungi in Biogeochemical Cycles
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550522.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mineral tunnelling by fungi
    • By Mark Smits, Laboratory of Soil Science and Geology, Wageningen University, POB 37 6700 AA, Wageningen, Netherlands
  • Edited by Geoffrey Michael Gadd, University of Dundee
  • Book: Fungi in Biogeochemical Cycles
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550522.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mineral tunnelling by fungi
    • By Mark Smits, Laboratory of Soil Science and Geology, Wageningen University, POB 37 6700 AA, Wageningen, Netherlands
  • Edited by Geoffrey Michael Gadd, University of Dundee
  • Book: Fungi in Biogeochemical Cycles
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550522.014
Available formats
×