Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T04:48:05.703Z Has data issue: false hasContentIssue false

18 - Biogeochemical roles of fungi in marine and estuarine habitats

Published online by Cambridge University Press:  10 December 2009

Nicholas Clipson
Affiliation:
Department of Industrial, Microbiology University College Dublin, Belfield Dublin 4, Ireland
Marinus Otte
Affiliation:
Department of Botany, University College Dublin Belfield, Dublin 4, Ireland
Eleanor Landy
Affiliation:
School of Biomedical and Molecular Sciences University of Surrey Guildford GU2 7XH UK
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Oceans cover around 70% of the global surface area, yet remain one of the least explored regions for fungal diversity; consequently knowledge of the fungal contribution to ecosystem processes in these marine environments is extremely limited. For the purposes of this review, marine habitats are defined as those influenced in some way by seawater, generally from existing saline water bodies. In some cases, saline habitats have resulted from salt accumulation in soils originating from ancient seas. Broadly, marine ecosystems divide between those influenced in some way by terrestrial environments, generally situated close to coastal regions, and those associated with the open ocean. Broad boundaries within marine environments are detailed in Table 18.1, where coastal and open ocean, and the effect of depth within open oceans, is differentiated. Marine environments tend also to be strongly linked, representing movement between different regions of seas and oceans, as summarized in Fig. 18.1. In coastal regions, numerous types of marine environment develop, including saline wetlands and lagoons on low-energy coasts, estuarine systems where there is freshwater influx, and a range of beach and splash communities on high-energy coasts. Such ecosystems are reviewed in more detail by Packham and Willis (1997). Adjacent to coastal regions, and where continental shelves are shallow, coastal sea communities form, including coral reefs, which are found in both tropical and cold seas. A number of inland saline environments also exist, such as salt pans and salt deserts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. (1993). Saltmarsh Ecology. Cambridge: Cambridge University Press.Google Scholar
Ahammed, S. & Prema, P. (2002). Influence of media on synthesis of lignin peroxidase from Aspergillus sp. Applied Biochemistry and Biotechnology, 102, 327–36.CrossRefGoogle ScholarPubMed
Almagro, A., Prista, C., Benito, B., Loureiro-Dias, M. C. & Ramos, J. (2001). Cloning and expression of two genes coding for sodium pumps in the salt tolerant yeast Debaryomyces hansenii. Journal of Bacteriology, 183, 3251–5.CrossRefGoogle ScholarPubMed
Alongi, D. M. (1987). The distribution and composition of deep sea microbenthos in a bathyal region of the western coral sea. Deep Sea Research, 34, 1245–54.CrossRefGoogle Scholar
Apinis, A. E. & Chesters, C. G. C. (1964). Ascomycetes of some saltmarshes and sand dunes. Transactions of the British Mycological Society, 47, 419–35.CrossRefGoogle Scholar
Armstrong, W., Wright, E. J., Lythe, S. & Gaynard, T. J. (1985). Plant zonation and the effects of the spring-neap tide cycle on soil aeration in a Humber saltmarsh. Journal of Ecology, 73, 323–39.CrossRefGoogle Scholar
Bacic, M. K. & Yoch, D. C. (1998). In vivo characterization of dimethylsulfoniopropionate lyase in the fungus Fusarium lateritium. Applied and Environmental Microbiology, 64, 106–11.Google ScholarPubMed
Ballard, R. D. (1977). Notes on a major oceanographic find. Oceanus, 20, 35–44.Google Scholar
Bansal, P. K. & Mondal, A. K. (2000). Isolation and sequence of the HOG1 homologue from Debaryomyces hansenii by complementation of the hog1Delta strain of Saccharomyces cerevisiae. Yeast, 16, 81–8.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Barato, M., Basilio, M. C. & Baptista-Ferreira, J. L. (1997). Nia globospora, a new marine gasteromycete on baits of Spartina maritima in Portugal. Mycological Research, 101, 687–90.CrossRefGoogle Scholar
Barghoorn, E. S. & Linder, D. H. (1944) Marine fungi: their taxonomy and biology. Farlowia, I, 395–467.Google Scholar
Beever, R. E. & Burns, D. J. W. (1980). Phosphorus uptake, storage and utilization by fungi. Advances in Botanical Research, 8, 127–219.CrossRefGoogle Scholar
Beever, R. E. & Laracy, E. P. (1986). Osmotic adjustment in the filamentous fungus Aspergillus nidulans. Journal of Bacteriology, 168, 1358–65.CrossRefGoogle ScholarPubMed
Bergbauer, M. & Newell, S. Y. (1992). Contribution to lignocellulose degradation and DOC formation from a saltmarsh macrophyte by the ascomycete Phaeosphaeria spartinicola. FEMS Microbiology Ecology, 86, 341–8.CrossRefGoogle Scholar
Blomberg, A. & Adler, L. (1993). Tolerance of fungi to NaCl. In Stress Tolerance of Fungi, ed. Jennings, D. H.. New York: Marcel Dekker, pp. 233–56.Google Scholar
Bohnert, H. J., Ayoubi, P., Borchert, C.et al. (2001). A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 39, 295–311.CrossRefGoogle Scholar
Bongiorni, L. & Dini, F. (2002). Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aquatic Microbial Ecology, 30, 49–56.CrossRefGoogle Scholar
Boyd, P. W. (2002). The role of iron in the biogeochemistry of the Southern Ocean and equatorial Pacific: a comparison of in situ iron enrichments. Deep Sea Research Part II – Topical Studies in Oceanograph, 49, 1803–21.CrossRefGoogle Scholar
Boyle, P. J. (1976). Ergot epiphytic on Spartina sp. in Ireland. Irish Journal of Agricultural Research, 15, 419–24.Google Scholar
Buchalo, A. S., Nevo, E., Wasser, S. P., Oren, A. & Molitoris, H. P. (1998). Fungal life in the extremely hypersaline Dead Sea: first records. Proceedings of the Royal Society, London Series B, 265, 1461–5.CrossRefGoogle ScholarPubMed
Buchan, A., Newell, S. Y., Butler, M.et al. (2003). Dynamics of bacterial and fungal communities on decaying saltmarsh grass. Applied and Environmental Microbiology, 69, 6676–87.CrossRefGoogle Scholar
Burgath, K. P. & Vonstackelberg, U. (1995). Sulfide-impregnated volcanics and ferromanganese incrustations from the southern Lau basin (Southwest Pacific). Marine Georesources and Geotechnology, 13, 263–308.CrossRefGoogle Scholar
Burge, M. N. & Perkins, E. J. (1977). Studies in the Distribution and Biological Impact of the Effluent Released by Albright and Wilson Ltd., Whitehaven. Cumbria Sea Fisheries Committee Scientific Report 77/3.
Carvalho, L. M., Cacador, I. & Martins-Loucao, M. A. (2001). Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza, 11, 303–9.CrossRefGoogle Scholar
Clement, D. J., Stanley, M. S., O'Neil, J.et al. (1999). Complementation cloning of salt tolerance determinants from the marine hyphomycete Dendryphiella salina in Aspergillus nidulans. Mycological Research, 103, 1252–8.CrossRefGoogle Scholar
Clipson, N. J. W. & Jennings, D. H. (1992). Dendryphiella salina and Debaryomyces hanseii: Models for ecophysiological adaptation to salinity by fungi that grow in the sea. Canadian Journal of Botany. 70, 2097–105.CrossRefGoogle Scholar
Clipson, N. J. W., Hajibagheri, H. A. & Jennings, D. H. (1990). X-ray microanalysis of the marine fungus Dendryphiella salina at different salinities. Journal of Experimental Botany, 41, 199–202.CrossRefGoogle Scholar
Clipson, N. J. W. Landy, E. T. & Otte, M. L. (2001). Fungi. In European Register of Marine Species: A Checklist of the Marine Species in Europe and a Bibliography of Identification Guides, ed. Costello, M., Emblow, C. & White, R. J., Patriomoines Naturels, 50, 15–19. Paris: Publications Scientifiques du MNHN.Google Scholar
Cooke, J. C., Butler, R. H. & Madolo, G. (1993). Some observations on the vertical distribution of vesicular arbuscular mycorrhizae in roots of salt marsh grasses growing in saturated soils. Mycologia, 85, 547–50.CrossRefGoogle Scholar
Cotton, A. D. (1907–1911). Notes on marine pyrenomycetes. Transactions of the British Mycological Society, 3, 94.CrossRefGoogle Scholar
Craig, P. J. (1980). Metal cycles and biological methylation. In The Handbook of Environmental Chemistry, Vol. 1, Part A. The Natural Environment and the Biogeochemical Cycles, ed. Hutzinger, O.. Berlin: Springer-Verlag, pp. 170–227.Google Scholar
Davis, D. J., Burlak, C. & Money, N. P. (2000). Osmotic pressure of fungal compatible osmolytes. Mycological Research, 104, 800–4.CrossRefGoogle Scholar
Dickinson, C. H. (1965). The mycoflora associated with Halimione portulacoides III. Fungi on green and moribund leaves. Transactions of the British Mycological Society, 48, 603–10.CrossRefGoogle Scholar
Dickinson, C. H. & Kent, J. W. (1972). Critical analysis of fungi in two sand dune soils. Transactions of the British Mycological Society, 58, 269–80.CrossRefGoogle Scholar
Dickinson, C. H. & Morgan-Jones, G. O. (1966). The mycoflora associated with Halimione portulacoides IV. Observations on some species of Sphaeropsidales. Transactions of the British Mycological Society, 49, 43–55.CrossRefGoogle Scholar
Dickinson, C. H. & Pugh, G. J. F. (1965). The mycoflora associated with Halimione portulacoides. I. The establishment of the root surface flora of mature plants. Transactions of the British Mycological Society, 48, 381–90.CrossRefGoogle Scholar
Duffy, A. P., Curran, P. M. T. & Muircheartaigh, I. M. O. (1991). Effect of temperature and nutrients on spore germination in marine and non-marine fungi. Cryptogamic Botany, 23, 125–9.Google Scholar
Duhig, N. C., Davidson, G. J. & Stolz, J. (1992). Microbial involvement in the formation of Cambrian sea-floor silica iron-oxide deposits, Australia. Geology, 20, 511–14.2.3.CO;2>CrossRefGoogle Scholar
Edwards, J., Chamberlain, D., Brosnan, G.et al. (1998). A comparative physiological study of Dendryphiella salina and D. arenaria in relation to adaptation to life in the sea. Mycological Research, 102, 1198–202.CrossRefGoogle Scholar
Ellis, M. B. & Ellis, J. P. (1997). Microfungi on Land Plants – An Identification Handbook. London: The Richmond Publishing Company Limited.Google Scholar
Elmsley, J. (1980). The phosphorus cycle. In The Handbook of Environmental Chemistry, Vol. 1, Part A. The Natural Environment and the Biogeochemical Cycles, ed. Hutzinger, O.. Berlin: Springer-Verlag, pp. 147–67.Google Scholar
Faison, B. D., Clark, T. M., Lewis, S. N.et al. (1991). Degradation of organic sulfur compounds by a coal-solubilizing fungus. Applied Biochemistry and Biotechnology, 28/29, 237–51.CrossRefGoogle Scholar
Farrant, C., Hyde, K. D. & Jones, E. B. G. (1985). Further studies on lignicolous marine fungi from Danish sand dunes. Transactions of the British Mycological Society, 85, 164–7.CrossRefGoogle Scholar
Feeney, N., Curran, P. M. T. & O'Muircheartaigh, I. G. (1992). Biodeterioration of woods by marine fungi and Chaetomium globosum in response to an external nitrogen source. International Biodeterioration and Biodegradation, 29, 123–33.CrossRefGoogle Scholar
Flowers, T. J., Hajibagheri, M. A. & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 6, 313–37.CrossRefGoogle Scholar
Gadanho, M., Almeida, J. & Sampaio, J. P. (2003). Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek, 84, 217–27.CrossRefGoogle Scholar
Geiser, D. M., Taylor, J. W., Ritchie, K. B. & Smith, G. W. (1998). Cause of sea fan death in the West Indies. Nature, 394, 137–8.CrossRefGoogle Scholar
Gessner, R. V. (1977). Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from a Rhode Island estuary. Mycologia, 69, 477–91.CrossRefGoogle Scholar
Gessner, R. V. & Kohlmeyer, J. (1976). Geographical distribution and taxonomy of fungi from salt marsh Spartina. Canadian Journal of Botany, 54, 2023–37.CrossRefGoogle Scholar
Goodman, P. J., Braybrooks, E. M. & Lambert, J. M. (1959). Investigations into die-back of Spartina townsendii agg. I. The present status of Spartina townsendii in Britain. Journal of Ecology, 47, 651–77.CrossRefGoogle Scholar
Grasso, S., Bruni, V. & Maio, G. (1997). Marine fungi in Terra Nova Bay. New Microbiology, 20, 371–6.Google ScholarPubMed
Hendrarto, I. B. & Dickinson, C. H. (1984). Soil and root micro-organisms in four salt marsh communities. Transactions of the British Mycological Society, 83, 615–20.CrossRefGoogle Scholar
Hernandez-Saavedra, N. Y. & Romero-Geraldo, R. (2001). Cloning and sequencing the genomic encoding region of copper-zinc superoxide dismutase enzyme from several marine strains of the genus Debaryomyces (Lodder and Kreger-van Rij). Yeast, 18, 1227–38.CrossRefGoogle Scholar
Hooley, P., Fincham, D. A., Whitehead, M. P. & Clipson, N. J. W. (2003). Fungal osmotolerance. Advances in Applied Microbiology, 53, 177–211.CrossRefGoogle ScholarPubMed
Hutzinger, O. (Ed.) (1980). The Handbook of Environmental Chemistry, Vol. 1, Part A. The Natural Environment and the Biogeochemical Cycles. Berlin: Springer-Verlag.Google Scholar
Jefferies, R. L., Davy, A. J. & Rudmik, T. (1979). The growth strategies of coastal halophytes. In Ecological Processes in Coastal Environments, ed. Jefferies, R. L. & Davy, A. J.. Oxford: Blackwell, pp. 243–68.Google Scholar
Jennings, D. H. (1989). Some perspectives on nitrogen and phosphorus metabolism in fungi. In Nitrogen, Phosphorus and Sulphur Utilization by Fungi, ed. Boddy, L., Marchant, R. & Read, D. J.. Cambridge: Cambridge University Press, pp. 1–32.Google Scholar
Jennings, D. H. (1995). The Physiology of Fungal Nutrition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jennings, D. H. & Burke, R. M. (1990). Compatible solutes – the mycological dimension and their role as physiological buffering agents. New Phytolologist, 116, 277–83.CrossRefGoogle Scholar
Johnson, T. W. & Sparrow, F. K. (1961). Fungi in Oceans and Estuaries. Weinhein: Cramer.Google Scholar
Jones, E. B. G. (1962). Marine fungi. Transactions of the British Mycological Society, 45, 93–114.CrossRefGoogle Scholar
Jones, E. B. G. (1982). Decomposition by basidiomycetes in aquatic environments. In Decomposer Basidiomycetes: Their Biology and Ecology, ed. Frankland, J. C., Hedger, J. N. & Swift, M. J.. Cambridge: Cambridge University Press, pp. 192–212.Google Scholar
Jones, E. B. G. (1995). Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Canadian Journal of Botany, 73 (Suppl. 1), S790–S801.CrossRefGoogle Scholar
Jones, E. B. G. & Mitchell, J. I. (1996). Biodiversity of marine fungi. In Biodiversity, International Biodiversity Seminar, ed. Climerman, A. & Gunde-Climerman, N.. Ljublijana: National Institute of Chemistry and Slovenia National Commission for UNESCO, pp. 31–42.Google Scholar
Kathiresan, K. & Bingham, B. J. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.CrossRefGoogle Scholar
Kimura, H., Harada, K., Hara, K. & Tamaki, A. (2002). Enzymatic approach to fungal association with arthropod guts: a case for the crustacean host, Nihonotrypaea harmandi, and its foregut fungus, Enteromyces callianassae. Marine Ecology – Pubblicazioni della Stazione Zoologica di Napoli, I 23, 157–83.CrossRefGoogle Scholar
Kirchner, M. (1995). Microbial colonization of copepod body surfaces and chitin degradation in the sea. Helgolander Meeresuntersuchingen, 49, 201–212.CrossRefGoogle Scholar
Kobayashi, H., Maguro, S., Yoshimoto, , , T. & Namikoshi, M. (2003). Absolute structure, biosynthesis and anti-microtubule activity of phomopsidin, isolated from a marine derived fungus Phomopsis sp. Tetrahedron, 59, 455–9.CrossRefGoogle Scholar
Kohlmeyer, J. (1967). Intertidal and phycophilous fungi from Tenerife (Canary Islands). Transactions of the British Mycological Society, 50, 137–47.CrossRefGoogle Scholar
Kohlmeyer, J. & Kohlmeyer, E. (1979). Marine Mycology: The Higher Fungi. New York: Academic Press.Google Scholar
Kohlmeyer, J. & Volkmann-Kohlmeyer, B. (2003). Fungi from coral reefs: a commentary. Mycological Research, 107, 386–7.CrossRefGoogle ScholarPubMed
Lorenz, R. & Molitoris, H.-P. (1997). Combined influence of salinity and temperature (Phoma-pattern) on growth of marine fungi. Canadian Journal of Botany, 70, 2111–15.CrossRefGoogle Scholar
Lucas, M. T. & Webster, J. (1967). Conidial states of British species of Leptosphaeria. Transactions of the British Mycological Society, 50, 85–121.CrossRefGoogle Scholar
Lutley, M. & Wilson, I. M. (1972). Development and fine structure of ascospores in the marine fungus Ceriosporopsis halima. Transactions of the British Mycological Society, 58, 393–402.CrossRefGoogle Scholar
Lyons, J. I., Newell, S. Y., Buchan, A. & Moran, M. A. (2003). Diversity of ascomycete laccase gene sequences in a southeastern US saltmarsh. Microbial Ecology, 45, 270–81.CrossRefGoogle Scholar
Martin, D. F. (1970). Marine Chemistry. New York: Marcel Dekker.Google Scholar
Mendelssohn, I. A. & Morris, J. T. (2000). Eco-physiological controls on the primary productivity of Spartina alterniflora. In Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. & Kreeger, D. A.. Dortrecht: Kluwer Academic Publishers, pp. 59–80.CrossRefGoogle Scholar
Meyers, S. P., Ahearn, D. G., Gunkel, W. & Roth, P. J. Jr. (1967). Yeasts from the North Sea. Marine Biology, 1, 118–23.CrossRefGoogle Scholar
Molitoris, H.-P. & Schaumann, K. (1986). Physiology of marine fungi: a screening programme for growth and enzyme production. In The Biology Of Marine Fungi. ed. Moss, S. T.. Cambridge: Cambridge University Press, pp. 35–48.Google Scholar
Money, N. P. (1997). Wishful thinking of turgor revisited: The mechanics of fungal growth. Fungal Genetics and Biology, 22, 173–87.CrossRefGoogle Scholar
Nagahama, T., Hamamoto, M., Nakase, T.Takami, H. & Horikoshi, K. (2001). Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie van Leeuwenhoek, 80, 101–10.CrossRefGoogle ScholarPubMed
Newell, S. Y. (1991). Phaeosphaeria spartinicola, a new species on Spartina. Mycotaxon, 41, 1–7.Google Scholar
Newell, S. Y. (1993a). Decomposition of shoots of a saltmarsh grass – methods and dynamics of microbial assemblages. Advances in Microbial Ecology, 13, 301–26.CrossRefGoogle Scholar
Newell, S. Y. (1993b). Membrane containing fungal mass and fungal specific growth rate in natural samples. In Handbook of Methods in Aquatic Microbial Ecology, ed. Kemp, P. F., Sherr, B. F., Sherr, E. B., & Cole, J. J.. Boca Raton: Lewis publishers, pp. 579–86.Google Scholar
Newell, S. Y. (1996). Established and potential impacts of eukaryotic mycelial decomposers in marine-terrestrial ecotones. Journal of Experimental Marine Biology and Ecology, 200, 187–206.CrossRefGoogle Scholar
Newell, S. Y. (2001a). Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cordgrass shoots. Limnology and Oceanography, 46, 573–83.CrossRefGoogle Scholar
Newell, S. Y. (2001b). Spore-expulsion rates and extents of blade occupation by ascomycetes of the smooth cordgrass standing decay system. Botanica Marina, 44, 277–85.CrossRefGoogle Scholar
Newell, S. Y. & Fell, J. W. (1982). Surface sterilization and the active mycoflora of leaves of a seagrass. Botanica Marina, 25, 339–46.CrossRefGoogle Scholar
Newell, S. Y., Arsuffi, T. L. & Palm, L. A. (1996a). Misting and nitrogen fertilization of shoots of a saltmarsh grass: effects upon fungal decay of leaf blades. Oecologia, 108, 495–502.CrossRefGoogle Scholar
Newell, S. Y., Porter, D. & Lingle, W. L. (1996b). Lignocellulosis by ascomycetes (fungi) on a saltmarsh grass (smooth cordgrass). Microscopy Research and Technique, 33, 32–46.3.0.CO;2-2>CrossRefGoogle Scholar
Newell, S. Y., Blum, L. K., Crawford, R. E., Dai, T. & Dionne, M. (2000). Autumnal biomass and potential productivity of saltmarsh fungi from 29° to 43° North latitude along the United States Atlantic coast. Applied and Environmental Microbiology, 66, 180–185.CrossRefGoogle Scholar
Nilsson, A. & Adler, L. (1990). Purification and characterisation of glycerol-3-phosphate dehydrogenase (NAD+) in the salt tolerant yeast Debaryomyces hansenii. Biochimica et Biophysica Acta, 1034, 180–185.CrossRefGoogle Scholar
Nybakken, J. W. (1997). Marine Biology – An Ecological Approach. Menlo Park: Addison– Wesley–Longman.Google Scholar
Packham, J. R. & Willis, A. J. (1997). Ecology of Dunes, Saltmarsh, and Shingle. Cambridge: Cambridge University Press.Google Scholar
Paton, F. M. & Jennings, D. H. (1988). Effect of sodium and potassium chloride and polyols on malate and glucose 6-phosphate dehydrogenase from the marine fungus Dendryphiella salina. Transactions of the British Mycological Society, 91, 205–15.CrossRefGoogle Scholar
Peterson, K. R. L. & Koch, J. (1996). Ansiostigma rotundatum gen et sp. nov.: a lignicolous marine ascomycete from Svanemollen harbour, Denmark. Mycological Research, 100, 209–12.CrossRefGoogle Scholar
Phae, C. G. & Shoda, M. (1991). A new fungus which degrades hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide. Biotechnology Letters, 13, 375–80.CrossRefGoogle Scholar
Porter, D. (1986). Mycoses of marine organisms: an overview of pathogenic fungi. In The Biology of Marine Fungi, ed. Moss, S. T.. Cambridge: Cambridge University Press, pp. 141–54.Google Scholar
Pugh, G. J. F. (1962). Studies on fungi in coastal soils II. Fungal ecology in a developing salt marsh. Transactions of the British Mycological Society, 45, 560–6.CrossRefGoogle Scholar
Pugh, G. J. F. & Jones, E. B. G. (1986). Antarctic marine fungi: a preliminary account. In The Biology of Marine Fungi, ed. Moss, S. T.. Cambridge: Cambridge University Press, pp. 323–30.Google Scholar
Raghukumar, C. & Raghukumar, S. (1998). Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquatic Microbial Ecology, 15, 153–63.CrossRefGoogle Scholar
Raghukumar, S., Sarma, S., Raghukumar, C., Sathe-Pathak, V. & Chandramohan, D. (1994). Thraustochytrid and fungal component of marine detritus IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. Journal of Experimental Marine Biology and Ecology, 183, 113–31.CrossRefGoogle Scholar
Raybould, A. F., Gray, A. J. & Clarke, R. T. (1998). The long-term epidemic of Claviceps purpurea on Spartina anglica in Poole Harbour: pattern of infection, effects on seed production, and the role of fusarium heterosporum. New Phytologist, 138, 497–505.CrossRefGoogle Scholar
Rees, G., Johnson, R. G. & Jones, E. B. G. (1979). Lignincolous marine fungi from Danish sand dunes. Transactions of the British Mycological Society, 72, 99–106.CrossRefGoogle Scholar
Rohrmann, S., Lorenz, R. & Molitoris, H. P. (1992). Use of natural and artificial seawater for the investigation of growth, fruit body production, and enzyme activities in marine fungi. Canadian Journal of Botany, 70, 2106–10.CrossRefGoogle Scholar
Rozema, J., Arp, W., Diggelen, J.et al. (1986). Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Botanica Neerlandica, 35, 457–67.CrossRefGoogle Scholar
Salomons, W. & Förstner, U. (1984). Metals in the Hydrocycle. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schaumann, K., Mulach, W. & Molitoris, H.-P. (1986). Comparative studies on growth and exoenzyme production of different Lulworthia isolates. In The Biology of Marine Fungi, ed. Moss, S. T.. Cambridge: Cambridge University Press, pp. 49–60.Google Scholar
Schumann, G., Manz, W., Reitner, J. & Lustrino, M. (2004). Ancient fungal life in North Pacific eocene oceanic crust. Geomicrobiology Journal, 21, 241–6.CrossRefGoogle Scholar
Sengupta, A. & Chaudhuri, S. (2002). Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 12, 169–74.CrossRefGoogle ScholarPubMed
Sguros, P. L. & Simms, J. (1963). Role of marine fungi in biochemistry of oceans 2. Effect of glucose, inorganic nitrogen, and tris (hydroxymethyl) amino methane on growth and pH changes in synthetic media. Mycologia, 55, 728–41.CrossRefGoogle Scholar
Shinano, H. (1962). Studies on yeasts isolated from various areas in the north Pacific. Bulletin of the Japanese Society of Scientific Fisheries, 28, 1113–22.CrossRefGoogle Scholar
Sieburth, J. M. (1979). Sea Microbes. Oxford: Oxford University Press.Google Scholar
Sivanesan, A. & Manners, J. G. (1970). Fungi associated with Spartina townsendii in healthy and die back sites. Transactions of the British Mycological Society, 55, 191–204.CrossRefGoogle Scholar
Slaughter, J. C. (1989). Sulphur compounds in fungi. In Nitrogen, Phosphorus and Sulphur Utilization by Fungi, ed. Boddy, L., Marchant, R. & Read, D. J.. Cambridge: Cambridge University Press, pp. 91–106.Google Scholar
Smith, G. W., Ives, L. D., Nagelkerken, I. A. & Ritchie, K. B. (1996). Caribbean sea-fan mortalities. Nature, 383, 487.CrossRefGoogle Scholar
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. 2nd Edn. San Diego: Academic Press.Google Scholar
Suresh, P. V. & Chandra-Sekaran, M. (1998). Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World Journal of Microbiology and Biotechnology, 14, 655–60.CrossRefGoogle Scholar
Tani, Y., Miyata, N., Iwahori, K.et al. (2003). Biogeochemistry of manganese oxide coatings on pebble surfaces in the Kikukawa river system, Shizuoka, Japan. Applied Geochemistry, 18, 1541–54.CrossRefGoogle Scholar
Torzilli, A. P. (1982). Polysaccharidase production and cell wall degradation by several salt marsh fungi. Mycologia, 74, 297–302.CrossRefGoogle Scholar
Torzilli, A. P. & Andrykovitch, G. (1986). Degradation of Spartina lignocellulose by individual and mixed cultures of salt-marsh fungi. Canadian Journal of Botany, 64, 2211–15.CrossRefGoogle Scholar
Turner, S. M., Harvey, M. J., Law, C. S., Nightingale, P. D. & Liss, P. S. (2004). Iron-induced changes in oceanic sulfur biogeochemistry. Geophysical Research Letters, 31, Art. No. L14307.CrossRefGoogle Scholar
Vala, A. K., Vaidya, S. Y. & Dube, H. C. (2000). Siderophore production by facultative marine fungi. Indian Journal of Marine Sciences, 29, 339–40.Google Scholar
van Uden, N. & Fell, J. W. (1968). Marine yeasts. In Advances in the Microbiology of the Sea, Vol. 1., ed. Droop, M. R. & Wood, E. J. F.. London: Academic Press, pp. 167–202.Google Scholar
Wambeke, F., Christaki, U., Giannakourou, A., Moutin, T. & Souvemerzoglou, K. (2002). Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microbial Ecology, 43, 119–33.CrossRefGoogle ScholarPubMed
Venkateswara-Sarma, V., Hyde, K. D. & Vittal, B. P. R. (2001). Frequency of occurrence of mangrove fungi from the east coast of India. Hydrobiologia, 455, 41–53.CrossRefGoogle Scholar
Volkmann-Kohlmeyer, J. & Kohlmeyer, J. (1993). Biogeographic observations on pacific marine fungi. Mycologia, 85, 337–46.CrossRefGoogle Scholar
Wainwright, M. (1989). Inorganic sulphur oxidation by fungi. In Nitrogen, Phosphorus and Sulphur Utilization by Fungi, ed. Boddy, L., Marchant, R., & Read, D. J.. Cambridge: Cambridge University Press, pp. 73–90.Google Scholar
Wangersky, P. J. (1980). Chemical oceanography. In The Handbook of Environmental Chemistry, Vol. 1, Part A. The Natural Environment and the Biogeochemical Cycles, ed. Hutzinger, O.. Berlin: Springer-Verlag, pp. 51–68.Google Scholar
Wilson, I. M. (1954). Ceriosporopsis halima Linder and C. cambrensis sp. Nov.: two marine pyrenomycetes on wood. Transactions of the British Mycological Society, 37, 272–85.CrossRefGoogle Scholar
Wilson, I. M. (1965). Development of the perithecium and ascospores of Ceriosporosis halima. Transactions of the British Mycological Society, 48, 19–33.CrossRefGoogle Scholar
Yale, J. & Bohnert, H. J. (2001). Transcript expression in Saccharomyces cerevisiae at high salinity. Journal of Biological Chemistry, 276, 15 996–6007.CrossRefGoogle ScholarPubMed
Zande, J. M. (1999). An ascomycete commensal on the gills of Bathynerita naticoidea, the dominant gastropod at Gulf of Mexico hydrocarbon seeps. Invertebrate Biology, 118, 57–62.CrossRefGoogle Scholar
Zehnder, A. J. B. & Zinder, S. H. (1980). The sulphur cycle. In The Handbook of Environmental Chemistry, Vol. 1, Part A. The Natural Environment and the Biogeochemical Cycles, ed. Hutzinger, O.. Berlin: Springer-Verlag, pp. 105–46.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×