Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T01:49:06.675Z Has data issue: false hasContentIssue false

13 - Synaptogenesis and early neural activity

Published online by Cambridge University Press:  22 August 2009

Evelyne Sernagor
Affiliation:
School of Neurology, Neurobiology and Psychiatry, Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

Once various cell types have migrated to their final location, they start synthesizing neuro–transmitters and extend neurites. At that stage, they are ready to begin forming synaptic connections with other retinal neurons. We have already seen in Chapter 6 that neurotransmitters are present before the formation of functional synapses, before electrical activity can be detected, suggesting that they play a trophic role during retinal development. However, retinal visual processing, the conversion of light into electrical signals and the relaying of these signals to the visual centres of the brain, cannot occur until neurons have established synaptic contacts with each other.

The first part of this chapter describes the formation of synaptic connections in the various retinal layers. In the last decade, important issues regarding the establishment of synaptic connections have been resolved thanks to the advent of genetic engineering and to the development of powerful specific cellular or subcellular markers, some of which are reviewed here. We put a particular emphasis on the formation of synapses between photoreceptors and second-order neurons because photoreceptors are involved in many various types of hereditary retinal degenerations. We review studies using transgenic mouse models because they provide invaluable knowledge about factors influencing photoreceptor synaptogenesis (Farber and Danciger, 1997). Understanding factors that affect synapse formation between photoreceptors and retinal neurons is crucial for reaching better insights into these devastating diseases that often lead to blindness. We will also discuss briefly the formation of gap junctions.

Type
Chapter
Information
Retinal Development , pp. 265 - 287
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahring, R., Standhardt, H., Martelli, E. A. and Grantyn, R. (1994). GABA-activated chloride currents of postnatal mouse retinal ganglion cells are blocked by acetylcholine and acetylcarnitine: how specific are ions channels in immature neurons?Eur. J. Neurosci., 6, 1089–99CrossRefGoogle Scholar
Bansal, A., Singer, J. H., Hwang, B. J.et al. (2000). Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming on and off circuits in the inner retina. J. Neurosci., 20, 7672–81CrossRefGoogle ScholarPubMed
Becker, D., Bonness, V. and Mobbs, P. (1998). Cell coupling in the retina: patterns and purpose. Cell Biol. Int., 22, 781–92CrossRefGoogle ScholarPubMed
Becker, D. L., Bonness, V., Catsicas, M. and Mobbs, P. (2002). Changing patterns of ganglion cell coupling and connexin expression during chick retinal development. J. Neurobiol., 52, 280–93CrossRefGoogle ScholarPubMed
Ben-Ari, Y. (2002). Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci., 3, 728–39CrossRefGoogle ScholarPubMed
Brandstätter, J. H., Fletcher, E. L., Garner, C. C., Gundelfinger, E. D. and Wässle, H. (1999). Differential expression of the pre-synaptic cytomatrix protein Bassoon among ribbon synapses in the mammalian retina. Eur. J. Neurosci., 11, 3683–93CrossRefGoogle Scholar
Buckley, K. and Kelly, R. B. (1985). Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell Biol., 100, 1284–94CrossRefGoogle ScholarPubMed
Catsicas, M., Bonness, V., Becker, D. L. and Mobbs, P. (1998). Spontaneous Ca2+ waves and their transmission in the developing chick retina. Curr. Biol., 8, 283–6CrossRefGoogle ScholarPubMed
Crair, M. C. (1999). Neuronal activity during development: permissive or instructive?Curr. Opin. Neurobiol., 9, 88–93CrossRefGoogle ScholarPubMed
Crooks, J., Okada, M. and Hendrickson, A. E. (1995). Quantitative analysis of synaptogenesis in the inner plexiform layer of macaque monkey fovea. J. Comp. Neurol., 360, 349–62CrossRefGoogle ScholarPubMed
Demas, J., Eglen, S. J. and Wong, R. O. L. (2003). Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J. Neurosci., 23, 2851–60CrossRefGoogle ScholarPubMed
Dhingra, N. K., Ramamohan, Y. and Raju, T. R. (1997). Developmental expression of synaptophysin, synapsin I and syntaxin in the rat retina. Brain Res. Dev. Brain Res., 102, 267–73CrossRefGoogle ScholarPubMed
Dick, O., Dieck, S. T., Altrock, W. D.et al. (2003). The pre-synaptic active zone protein Bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron, 37, 775–86CrossRefGoogle Scholar
Eglen, S. J. (1999). The role of retinal waves and synaptic normalization in retinogeniculate development. Philos. Trans. R. Soc. London Ser. B, 354, 497–506CrossRefGoogle ScholarPubMed
Farber, D. B. and Danciger, M. (1997). Identification of genes causing photoreceptor degenerations leading to blindness. Curr. Opin. Neurobiol., 7, 666–73CrossRefGoogle ScholarPubMed
Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S., Shatz, C. J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science, 272, 1182–7CrossRefGoogle ScholarPubMed
Feller, M. B., Butts, D. A., Aaron, H. L., Rokhsar, D. S. and Shatz, C. J. (1997). Dynamic processes shape spatiotemporal properties of retinal waves. Neuron, 19, 293–306CrossRefGoogle ScholarPubMed
Fischer, K. F., Lukasiewicz, P. D. and Wong, R. O. L. (1998). Age-dependent and cell class-specific modulation of retinal ganglion cell bursting activity by GABA. J. Neurosci., 18, 3767–78CrossRefGoogle ScholarPubMed
Fisher, L. J. (1979). Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina. J. Comp. Neurol., 187, 359–72CrossRefGoogle ScholarPubMed
Galli, L. and Maffei, L. (1988). Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science, 24, 90–1CrossRefGoogle Scholar
Ganguly, K., Schinder, A. F., Wong, S. T. and Poo, M. (2001). GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell, 18, 521–32CrossRefGoogle Scholar
Grubb, M. S. and Thompson, I. D. (2004). The influence of early experience on the development of sensory systems. Curr. Opin. Neurobiol., 14, 503–12CrossRefGoogle ScholarPubMed
Grubb, M. S., Rossi, F. M., Changeux, J.-P. and Thompson, I. D. (2003). Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Neuron, 40, 1161–72CrossRefGoogle ScholarPubMed
Grzywacz, N. M. and Sernagor, E. (2000). Spontaneous activity in developing turtle retinal ganglion cells: statistical analysis. Vis. Neurosci., 17, 229–41CrossRefGoogle ScholarPubMed
Horsburgh, G. M. and Sefton, A. J. (1987). Cellular degeneration and synaptogenesis in the developing retina of the rat. J. Comp. Neurol., 263, 553–66CrossRefGoogle ScholarPubMed
Huang, B. O. and Redburn, D. A. (1996). GABA-induced increases in [Ca2+]i in retinal neurons of postnatal rabbits. Vis. Neurosci., 13, 441–7CrossRefGoogle Scholar
Huberman, A. D., Wang, G. Y., Liets, L. C.et al. (2003). Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science, 300, 994–8CrossRefGoogle ScholarPubMed
Ilia, M. and Jeffery, G. (1996). Delayed neurogenesis in the albino retina; evidence of a role for melanin in regulating the pace of cell generation. Dev. Brain Res., 95, 176–183CrossRefGoogle ScholarPubMed
Johnson, D. A., Mills, S. L., Haberecht, M. F. and Massey, S. C. (2000). Dye coupling in horizontal cells of developing rabbit retina. Vis. Neurosci., 17, 255–62CrossRefGoogle ScholarPubMed
Johnson, J., Tian, N., Caywood, M. S.et al. (2003). Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J. Neurosci., 23, 518–29CrossRefGoogle ScholarPubMed
Johnson, P. T., Williams, R. R., Cusato, K. and Reese, B. E. (1999). Rods and cones project to the inner plexiform layer during development. J. Comp. Neurol., 414, 1–123.0.CO;2-G>CrossRefGoogle ScholarPubMed
Kriegstein, K. and Schmitz, F. (2003). The expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Cell Tissue Res., 311, 159–73Google Scholar
Leitch, E., Coaker, J., Young, C., Mehta, V. and Sernagor, E. (2005). GABA type-A activity controls its own developmental polarity switch in the maturing retina. J. Neurosci., 25, 4801–5CrossRefGoogle ScholarPubMed
Leszkiewicz, D. N. and Aizenman, E. (2003). Reversible modulation of GABA(A) receptor-mediated currents by light is dependent on the redox state of the receptor. Eur. J. Neurosci., 17, 2077–83CrossRefGoogle Scholar
Libby, R. T., Lavallee, C. R., Balkema, G. W., Brunken, W. J. and Hunter, D. D. (1999). Disruption of laminin β2 chain production causes alterations in morphology and function in the CNS. J. Neurosci., 19, 9399–411CrossRefGoogle ScholarPubMed
Libby, R. T., Champliaud, M. F., Claudepierre, T.et al. (2000). Laminin expression in adult and developing retinae: evidence of two novel CNS laminins. J. Neurosci., 20, 6517–28CrossRefGoogle ScholarPubMed
Liets, L. C., Olshausen, B. A., Wang, G. Y. and Chalupa, L. M. (2003). Spontaneous activity of morphologically identified ganglion cells in the developing ferret retina. J. Neurosci., 23, 7343–50CrossRefGoogle ScholarPubMed
Ludwig, A., Li, H.Saarma, M., Kaila, K. and Rivera, C. (2003). Developmental up–regulation of KCC2 in the absence of GABAergic and glutamatergic transmission. Eur. J. Neurosci., 18, 3199–206CrossRefGoogle ScholarPubMed
Maffei, L. and Galli-Resta, L. (1990). Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc. Natl. Acad. Sci. U. S. A., 87, 2861–4CrossRefGoogle ScholarPubMed
Masland, R. H. (1977). Maturation of function in the developing rabbit retina. J. Comp. Neurol., 175, 275–86CrossRefGoogle ScholarPubMed
Masland, R. H. and Tauchi, M. (1986). The cholinergic amacrine cells. Trends Neurosci., 9, 218–23CrossRefGoogle Scholar
Maslim, J. and Stone, J. (1986). Synaptogenesis in the retina of the cat. Brain Res., 373, 35–48CrossRefGoogle ScholarPubMed
McArdle, C. B., Dowling, J. E., Masland, R. H. (1977). Development of outer segments and synapses in the rabbit retina. J. Comp. Neurol., 175, 253–74CrossRefGoogle ScholarPubMed
McLaughlin, T., Torborg, C. L., Feller, M. B. and O'Leary, D. M. (2003). Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron, 40, 1147–60CrossRefGoogle ScholarPubMed
Meister, M., Wong, R. O. L., Baylor, D. A. and Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–43CrossRefGoogle ScholarPubMed
Mooney, R., Penn, A. A., Gallego, R. and Shatz, C. J. (1996). Thalamic relay of spontaneous retinal activity prior to vision. Neuron, 17, 863–74CrossRefGoogle Scholar
Myhr, K. L., Lukasiewicz, P. D. and Wong, R. O. L. (2001). Mechanisms underlying developmental changes in the firing pattern of ON and OFF retinal ganglion cells during refinement of their central projections. J. Neurosci., 21, 8664–71CrossRefGoogle Scholar
Muir-Robinson, G., Hwang, B. J. and Feller, M. B. (2002). Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci., 22, 5259–64CrossRefGoogle ScholarPubMed
Nag, T. C. and Wadhwa, S. (2001). Differential expression of syntaxin-1 and synaptophysin in the developing and adult human retina. J. Biosci., 26, 179–91CrossRefGoogle ScholarPubMed
Nishimura, Y. and Rakic, P. (1985). Development of the rhesus monkey retina. I. Emergence of the inner plexiform layer and its synapses. J. Comp. Neurol., 241, 420–34CrossRefGoogle ScholarPubMed
Nishimura, Y. and Rakic, P. (1987). Development of the rhesus monkey retina. II. A three-dimensional analysis of the sequence of synapse combinations in the inner plexiform layer. J. Comp. Neurol., 262, 290–313CrossRefGoogle Scholar
O'Donovan, M. J. (1999). The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol., 9, 94–104CrossRefGoogle ScholarPubMed
Pearson, R. A., Dale, N., Llaudet, E. and Mobbs, P. (2005). ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron, 46, 731–44CrossRefGoogle ScholarPubMed
Penn, A. A. and Shatz, C. J. (1999). Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr. Res., 45, 447–58CrossRefGoogle ScholarPubMed
Penn, A. A., Wong, R. O. L. and Shatz, C. J. (1994). Neuronal coupling in the developing mammalian retina. J. Neurosci., 14, 3805–15CrossRefGoogle ScholarPubMed
Penn, A. A., Riquelme, P. A., Feller, M. B. and Shatz, C. J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science, 279, 2108–12CrossRefGoogle ScholarPubMed
Rich, K. A., Zhan, Y. and Blanks, J. C. (1997). Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J. Comp. Neurol., 388, 47–633.0.CO;2-O>CrossRefGoogle ScholarPubMed
Robinson, S. R. (1991). Development of the mammalian retina. In Neuroanatomy of the Visual Pathways and their Development, ed. Dreher, B. and Robinson, S. R.. London: Macmillan Press, pp. 69–128Google Scholar
Rorig, B. and Grantyn, R. (1993). Glutamatergic and GABAergic synaptic currents in ganglion cells from isolated retinae of pigmented rats during postnatal development. Brain Res. Dev. Brain Res., 74, 98–110CrossRefGoogle ScholarPubMed
Rossi, F. M., Pizzorusso, T., Porciatti, V.et al. (2001). Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc. Natl. Acad. Sci. U. S. A., 98, 6453–8CrossRefGoogle ScholarPubMed
Rothman, J. E. and Warren, G. (1994). Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol., 4, 220–33CrossRefGoogle ScholarPubMed
Sernagor, E. and Grzywacz, N. M. (1995). Emergence of complex receptive field properties of ganglion cells in the developing turtle retina. J. Neurophysiol., 73, 1355–64CrossRefGoogle ScholarPubMed
Sernagor, E. and Grzywacz, N. M. (1996). Influence of spontaneous activity and visual experience on developing retinal receptive-fields. Curr. Biol., 6, 1503–8CrossRefGoogle ScholarPubMed
Sernagor, E. and Grzywacz, N. M. (1999). Spontaneous activity in developing turtle retinal ganglion cells: pharmacological studies. J. Neurosci., 19, 3874–87CrossRefGoogle ScholarPubMed
Sernagor, E. and Mehta, V. (2001). The role of early neural activity in the maturation of turtle retinal function. J. Anat., 199, 375–83CrossRefGoogle ScholarPubMed
Sernagor, E., Eglen, S. J. and O'Donovan, M. J. (2000). Differential effects of acetylcholine and glutamate blockade on the spatiotemporal dynamics of retinal waves. J. Neurosci., 20(RC56), 1–6CrossRefGoogle ScholarPubMed
Sernagor, E., Eglen, S. J. and Wong, R. O. L. (2001). Development of retinal ganglion cell structure and function. Prog. Retin. Eye Res., 20, 139–74CrossRefGoogle ScholarPubMed
Sernagor, E., Young, C. and Eglen, S. J. (2003). Developmental modulation of retinal wave dynamics: shedding light on the GABA saga. J. Neurosci., 23, 7621–9CrossRefGoogle ScholarPubMed
Sharma, R. K., O'Leary, T. E., Fields, C. M. and Johnson, D. A. (2003). Development of the outer retina in the mouse. Dev. Brain Res., 145, 93–105CrossRefGoogle ScholarPubMed
Shatz, C. J. and Stryker, M. P. (1988). Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science, 24, 87–9CrossRefGoogle Scholar
Sherry, D. M., Wang, M. M., Bates, J. and Frishman, L. J. (2003). Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. J. Comp. Neurol., 465, 480–98CrossRefGoogle ScholarPubMed
Sollner, T., Whiteheart, S. W., Brunner, M.et al. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature, 362, 318–24CrossRefGoogle ScholarPubMed
Stellwagen, D. and Shatz, C. J. (2002). An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron, 33, 357–67CrossRefGoogle ScholarPubMed
Stellwagen, D., Shatz, C. J. and Feller, M. B. (1999). Dynamics of retinal waves are controlled by cyclic AMP. Neuron, 24, 673–85CrossRefGoogle ScholarPubMed
Syed, M. M., Lee, S., He, S. and Zhou, Z. J. (2004a). Spontaneous waves in the ventricular zone of developing mammalian retina. J. Neurophysiol., 91, 1999–2009CrossRefGoogle Scholar
Syed, M. M., Lee, S., Zheng, J. and Zhou, Z. J. (2004b). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J. Physiol., 560, 533–49CrossRefGoogle Scholar
Tian, N. and Copenhagen, D. R. (2001). Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron, 32, 439–49CrossRefGoogle ScholarPubMed
Timpl, R. (1996). Macromolecular organization of basement membranes. Curr. Opin. Cell Biol., 8, 618–24CrossRefGoogle ScholarPubMed
Tootle, J. S. (1993). Early postnatal development of visual function in ganglion cells of the cat retina. J. Neurophysiol., 69, 1645–60CrossRefGoogle ScholarPubMed
Torborg, C., Wang, C. T., Muir-Robinson, G. and Feller, M. B. (2004). L-type calcium channel agonist induces correlated depolarisations in mice lacking the beta2 subunit nAChRs. Vis. Res., 44, 3347–55CrossRefGoogle Scholar
Vaney, D. I. (1990). The mosaic of amacrine cells in the mammalian retina. Prog. Retin. Eye Res., 9, 49–100CrossRefGoogle Scholar
Vu, T. Q., Payne, J. A. and Copenhagen, D. R. (2000). Localization and developmental expression patterns of the neuronal K-Cl cotransporter (KCC2) in the rat retina. J. Neurosci., 20, 1414–23CrossRefGoogle ScholarPubMed
Wang, M. M., Janz, R., Belizaire, R., Frishman, L. J. and Sherry, D. M. (2003). Differential distribution and developmental expression of Synaptic Vesicle Protein 2 isoforms in the mouse retina. J. Comp. Neurol., 460, 106–22CrossRefGoogle ScholarPubMed
Greenlee, West M. H., Finley, S. K., Wilson, M. C., Jacobson, C. D. and Sakaguchi, D. S. (1998). Transient, high levels of SNAP-25 expression in cholinergic amacrine cells during postnatal development of the mammalian retina. J. Comp. Neurol., 394, 374–853.0.CO;2-Z>CrossRefGoogle Scholar
Greenlee, West M. H., Roosevelt, C. B. and Sakaguchi, D. S. (2001). Differential localization of SNARE complex proteins SNAP-25, Syntaxin, and Vamp during development of the mammalian retina. J. Comp. Neurol., 430, 306–203.0.CO;2-B>CrossRefGoogle ScholarPubMed
Wong, R. O. L. (1999). Retinal waves and visual system development. Annu. Rev. Neurosci., 22, 29–47CrossRefGoogle ScholarPubMed
Wong, R. O. L. and Oakley, D. M. (1996). Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells. Neuron, 16, 1087–95CrossRefGoogle Scholar
Wong, R. O. L., Meister, M. and Shatz, C. J. (1993). Transient period of correlated bursting activity during development of the mammalian retina. Neuron, 11, 923–38CrossRefGoogle ScholarPubMed
Wong, R. O. L., Chernjavsky, A., Smith, S. J. and Shatz, C. J. (1995). Early functional neural networks in the developing retina. Nature, 374, 716–18CrossRefGoogle ScholarPubMed
Wong, W. T. and Wong, R. O. L. (2000). Rapid dendritic movements during synapse formation and rearrangement. Curr. Opin. Neurobiol., 10, 118–24CrossRefGoogle ScholarPubMed
Wong, W. T., Sanes, J. R. and Wong, R. O. L. (1998). Developmentally regulated spontaneous activity in the embryonic chick retina. J. Neurosci., 18, 8839–52CrossRefGoogle ScholarPubMed
Wong, W. T., Myhr, K. L., Miller, E. D. and Wong, R. O. L. (2000). Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J. Neurosci., 20, 351–60CrossRefGoogle ScholarPubMed
Zheng, J. J., Lee, S. and Zhou, Z. J. (2004). A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron, 44, 851–64CrossRefGoogle ScholarPubMed
Zhou, Z. J. (1998). Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. J. Neurosci., 18, 4155–65CrossRefGoogle ScholarPubMed
Zhou, Z. J. (2001). A critical role of the strychnine-sensitive glycinergic system in spontaneous retinal waves of the developing rabbit. J. Neurosci., 21, 5158–68CrossRefGoogle ScholarPubMed
Zhou, Z. J. and Zhao, D. (2000). Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J. Neurosci., 20, 6570–7CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×