Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T02:58:29.746Z Has data issue: false hasContentIssue false

14 - Emergence of light responses

Published online by Cambridge University Press:  22 August 2009

Evelyne Sernagor
Affiliation:
School of Neurology, Neurobiology and Psychiatry, Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
Leo M. Chalupa
Affiliation:
Distinguished Professor of Ophthalmology and Neurobiology, Chair, Section of Neurobiology, Physiology and Behavior Division of Biological Sciences, UC Davis, One Shields Avenue, Davis, CA 95616, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

Although the newborn retina is highly active, with spontaneous waves propagating across the amacrine and the ganglion cell layers every few minutes (see Chapter 13), at that time it is not yet possible to elicit light responses in retinal ganglion cells (RGCs). This lack of responsiveness to light is due to the immaturity of the vertical synaptic pathway between photoreceptors and RGCs provided by bipolar cells (BCs), despite the fact that lateral connections in the inner retina are already well established (see Chapter 13). Moreover, rod and cone opsins are not yet functional at birth. In mouse for example, ultraviolet cone opsin does not appear until postnatal day (P)1, rod opsin until P5 and green cone opsin until P7 (Tarttelin et al., 2003). Hence, RGCs become visually responsive only shortly before eye opening (around P10 in rabbit; Masland, 1977; Dacheux and Miller, 1981a, b; P7 to P10 in cat; Tootle, 1993; P12 in mouse; Sekaran et al., 2005). Humans and other primates, on the other hand, are born with their eyes open and although primate vision is poor at birth a newborn human infant is capable of tracking visual stimuli (Teller, 1997).

This chapter reviews the earliest light responses that can be detected in the developing retina. New studies show that the newborn retina is actually not insensitive to light and this will be considered in the first part of the chapter.

Type
Chapter
Information
Retinal Development , pp. 288 - 304
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bansal, A., Singer, J. H., Hwang, B. J.et al. (2000). Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming on and off circuits in the inner retina. J. Neurosci., 20, 7672–81CrossRefGoogle ScholarPubMed
Belenky, M. A., Smeraski, C. A., Provencio, I., Sollars, P. J. and Pickard, G. E. (2003). Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J. Comp. Neurol., 460, 380–93CrossRefGoogle ScholarPubMed
Berson, D. M. (2003). Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci., 26, 314–20CrossRefGoogle ScholarPubMed
Berson, D. M., Dunn, F. A. and Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295, 1065–70CrossRefGoogle ScholarPubMed
Bisti, S., Gargini, C. and Chalupa, L. M. (1998). Blockade of glutamate-mediated activity in the developing retina perturbs the functional segregation of ON and OFF pathways. J. Neurosci., 18, 5019–25CrossRefGoogle ScholarPubMed
Bloomfield, S. A., Miller, R. F. (1986). A functional organization of ON and OFF pathways in the rabbit retina. J. Neurosci., 6, 1–13CrossRefGoogle Scholar
Bodnarenko, S. R. and Chalupa, L. M. (1993). Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina. Nature, 364, 144–6CrossRefGoogle Scholar
Bodnarenko, S. R., Jeyarasasingam, G. and Chalupa, L. M. (1995). Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. J. Neurosci., 15, 7037–45CrossRefGoogle ScholarPubMed
Bowe-Anders, C., Miller, R. F. and Dacheux, R. F. (1975). Developmental characteristics of receptive organization in the isolated retina eye-cup of the rabbit. Brain Res., 87, 61–5CrossRefGoogle Scholar
Brown, K. T. and Wiesel, T. N. (1961). Localization of origins of electroretinogram components by intra-retinal recording in the intact cat eye. J. Physiol., 158, 257–80CrossRefGoogle Scholar
Burgi, P. Y. and Grzywacz, N. M. (1997). Possible roles of spontaneous waves and dendritic growth for retinal receptive field development. Neural Comput., 9, 533–53CrossRefGoogle ScholarPubMed
Burgi, P. Y. and Grzywacz, N. M. (1998). A biophysical model for the developmental time course of retinal orientation selectivity. Vis. Res., 38, 2787–800CrossRefGoogle ScholarPubMed
Chalupa, L. M. and Gunhan, E. (2004). Development of On and Off retinal pathways and retinogeniculate projections. Prog. Retin. Eye Res., 23, 31–51CrossRefGoogle Scholar
Dacey, D. M., Liao, H.-S., Peterson, B.et al. (2005). Melanopsin-expressing ganglion cells in primate retina signal color and irradiance and project to the LGN. Nature, 433, 749–54CrossRefGoogle ScholarPubMed
Dacheux, R. F. and Miller, R. F. (1981a). An intracellular electrophysiological study of the ontogeny of functional synapses in the rabbit retina. I. Receptors, horizontal, and bipolar cells. J. Comp. Neurol., 198, 307–26CrossRefGoogle Scholar
Dacheux, R. F. and Miller, R. F. (1981b). An intracellular electrophysiological study of the ontogeny of functional synapses in the rabbit retina. II. Amacrine cells. J. Comp. Neurol., 198, 327–34CrossRefGoogle Scholar
Dann, J. F., Buhl, E. H. and Peichl, L. (1988). Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. J. Neurosci., 8, 1485–99CrossRefGoogle ScholarPubMed
Daw, N. W. (1995). Visual Development. New York: Plenum PressCrossRefGoogle Scholar
Daw, N. W. and Wyatt, H. J. (1974). Raising rabbits in a moving visual environment: an attempt to modify directional sensitivity in the retina. J. Physiol., 240, 309–30CrossRefGoogle Scholar
Dick, O., Dieck, S. T., Altrock, W. D.et al. (2003). The pre-synaptic active zone protein Bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron, 37, 775–86CrossRefGoogle Scholar
Dowling, J. E. (1987). The Retina; an Approachable Part of the Brain. Cambridge, MA: Harvard University PressGoogle Scholar
Dubin, M. W., Stark, L. A. and Archer, S. M. (1986). A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. J. Neurosci., 6, 1021–36CrossRefGoogle ScholarPubMed
Euler, T. and Wässle, H. (1995). Immunocytochemical identification of cone bipolar cells in the rat retina. J. Comp. Neurol., 361, 461–78CrossRefGoogle ScholarPubMed
Fahrenkrug, J., Nielsen, H. S. and Hannibal, J. (2004). Expression of melanopsin during development of the rat retina. NeuroReport, 15, 781–4CrossRefGoogle ScholarPubMed
Famiglietti, E. V. Jr. (1983a). ‘Starburst’ amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res., 261, 138–44CrossRefGoogle Scholar
Famiglietti, E. V. Jr. (1983b). On and off pathways through amacrine cells in mammalian retina: the synaptic connections of ‘starburst’ amacrine cells. Vis. Res., 23, 1265–79CrossRefGoogle Scholar
Famiglietti, E. V. Jr. and Kolb, H. (1976). Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science, 194, 193–5CrossRefGoogle ScholarPubMed
Famiglietti, E. V. Jr, Kaneko, A. and Tachibana, M. (1977). Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science, 198, 1267–9CrossRefGoogle Scholar
Gunhan, E., Choudary, P. V., Landerholm, T. E. and Chalupa, L. M. (2002). Depletion of cholinergic amacrine cells by a novel immunotoxin does not perturb the formation of segregated on and off cone bipolar cell projections. J. Neurosci., 22, 2265–73CrossRefGoogle Scholar
Gunhan-Agar, E., Kahn, D. and Chalupa, L. M. (2000). Segregation of on and off bipolar cell axonal arbors in the absence of retinal ganglion cells. J. Neurosci., 20, 306–14CrossRefGoogle Scholar
Hahm, J. O., Langdon, R. B. and Sur, M. (1991). Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature, 351, 568–70CrossRefGoogle ScholarPubMed
Hannibal, J. and Fahrenkrug, J. (2004). Melanopsin containing retinal ganglion cells are light responsive from birth. NeuroReport, 15, 2317–20CrossRefGoogle ScholarPubMed
Hattar, S., Liao, H. W., Takao, M., Berson, D. M. and Yau, K. W. (2002). Melanopsin- containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295, 1065–70CrossRefGoogle ScholarPubMed
Kay, J. N., Roeser, T., Mumm, J. S.et al. (2004). Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development, 131, 1331–42CrossRefGoogle ScholarPubMed
Koulen, P. (1997). Vesicular acetylcholine transporter (VAChT): a cellular marker in rat retinal development. NeuroReport, 8, 2845–8CrossRefGoogle ScholarPubMed
Layer, P. G., Berger, J. and Kinkl, N. (1997). Cholinesterases precede “ON-OFF” channel dichotomy in the embryonic chick retina before onset of synaptogenesis. Cell Tissue Res., 288, 407–16CrossRefGoogle ScholarPubMed
Leard, L. E., Macdonald, E. S., Heller, H. C. and Kilduff, T. S. (1994). Ontogeny of photic-induced c-fos mRNA expression in rat suprachiasmatic nuclei. NeuroReport, 5, 2683–7CrossRefGoogle ScholarPubMed
Libby, R. T., Lavallee, C. R., Balkema, G. W., Brunken, W. J. and Hunter, D. D. (1999). Disruption of laminin β2 chain production causes alterations in morphology and function in the CNS. J. Neurosci., 19, 9399–411CrossRefGoogle ScholarPubMed
Masland, R. H. (1977). Maturation of function in the developing rabbit retina. J. Comp. Neurol., 175, 275–86CrossRefGoogle ScholarPubMed
Masland, R. H. and Tauchi, M. (1986). The cholinergic amacrine cells. Trends Neurosci., 9, 218–23CrossRefGoogle Scholar
Masland, R. H., Mills, J. W. and Hayden, S. A. (1984). Acetylcholine-synthesising amacrine cells: identification and selective staining by using radioautography and fluorescent markers. Proc. R. Soc. London B. Biol. Sci., 223, 79–100CrossRefGoogle Scholar
Maslim, J. and Stone, J. (1988). Time course of stratification of the dendritic fields of ganglion cells in the retina of the cat. Brain Res. Dev. Brain Res., 44, 87–93CrossRefGoogle ScholarPubMed
Mehta, V. and Sernagor, E. (2006a). Receptive–field structure function correlates in developing turtle retinal ganglion cells. Eur. J. Neurosci., In pressCrossRefGoogle Scholar
Mehta, V. and Sernagor, E. (2006b). Early neural activity and dendritic growth in turtle retinal ganglion cells. Eur. J. Neurosci., In pressCrossRefGoogle Scholar
Milam, A. H., Dacey, D. M. and Dizhoor, A. M. (1993). Recoverin immunoreactivity in mammalian cone bipolar cells. Vis. Neurosci., 10, 1–12CrossRefGoogle ScholarPubMed
Miller, E. D., Tran, M. I., Wong, G. K., Oakley, D. M. and Wong, R. O. (1999). Morphological differentiation of bipolar cells in the ferret retina. Vis. Neurosci., 16, 1133–44CrossRefGoogle ScholarPubMed
Llamosas, Munoz M., Huerta, J. J., Cernuda-Cernuda, R. and Garcia-Fernandez, J. M. (2000). Ontogeny of a photic response in the retina and suprachiasmatic nucleus in the mouse. Brain Res. Dev. Brain Res., 120, 1–6CrossRefGoogle Scholar
Nelson, R. and Kolb, B. (2004). ON and OFF pathways in the vertebrate retina and visual system. In The Visual Neurosciences, ed. Chalupa, L. M. and Werner, J. S.. Cambridge, MA: MIT Press, pp. 260–78Google Scholar
Nelson, R., Famiglietti, E. V. Jr and Kolb, H. (1978). Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J. Neurophysiol., 41, 472–83CrossRefGoogle ScholarPubMed
Pearlman, A. L. and Sheppard, A. M. (1996). Extracellular matrix in early cortical development. Prog. Brain Res., 108, 117–34Google ScholarPubMed
Provencio, I., Jiang, G., Grip, W. J., Hayes, W. P. and Rollag, M. D. (1998). Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. U. S. A., 95, 340–5CrossRefGoogle Scholar
Ramoa, A. S., Campbell, G. and Shatz, C. J. (1988). Dendritic growth and re-modeling of cat retinal ganglion cells during fetal and postnatal development. J. Neurosci., 8, 4239–61CrossRefGoogle Scholar
Reppert, S. M. and Schwartz, W. J. (1983). Maternal coordination of the fetal biological clock in utero. Science, 220, 969–71CrossRefGoogle ScholarPubMed
Reuter, J. H. (1976). The development of the electroretinogram in normal and light-deprived rabbits. Pflügers Arch., 363, 7–13CrossRefGoogle ScholarPubMed
Sekaran, S., Lupi, D., Jones, S. L.et al. (2005). Melanopsin dependent photoreception provides earliest light detection in the mammalian retina. Curr. Biol, 15, 1099–107CrossRefGoogle ScholarPubMed
Sernagor, E. (2005). Retinal development: second sight comes first. Curr. Biol., 15, R556–9CrossRefGoogle ScholarPubMed
Sernagor, E. and Grzywacz, N. M. (1995). Emergence of complex receptive field properties of ganglion cells in the developing turtle retina. J. Neurophysiol., 73, 1355–64CrossRefGoogle ScholarPubMed
Sernagor, E. and Grzywacz, N. M. (1996). Influence of spontaneous activity and visual experience on developing retinal receptive-fields. Curr. Biol., 6, 1503–8CrossRefGoogle ScholarPubMed
Sernagor, E. and Mehta, V. (2001). The role of early neural activity in the maturation of turtle retinal function. J. Anat., 199, 375–83CrossRefGoogle ScholarPubMed
Sernagor, E., Eglen, S. J. and Wong, R. O. L. (2001). Development of retinal ganglion cell structure and function. Prog. Retin. Eye Res., 20, 139–74CrossRefGoogle ScholarPubMed
Sernagor, E., Young, C. and Eglen, S. J. (2003). Developmental modulation of retinal wave dynamics: shedding light on the GABA saga. J. Neurosci., 23, 7621–9CrossRefGoogle ScholarPubMed
Tarttelin, E. E., Bellingham, J., Bibb, L. C.et al. (2003). Expression of opsin genes early in ocular development of humans and mice. Exp. Eye Res., 76, 393–6CrossRefGoogle ScholarPubMed
Tauchi, M. and Masland, R. H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. London B. Biol. Sci., 223, 101–19CrossRefGoogle ScholarPubMed
Teller, D. Y. (1997). First glances: the vision of infants. The Friedenwald lecture. Invest. Ophthalmol. Vis. Sci., 38, 2183–203Google ScholarPubMed
Thorn, F., Gollender, M. and Erikson, P. (1976). The development of the kitten's visual optics. Vis. Res., 16, 1145–9Google Scholar
Tian, N. and Copenhagen, D. R. (2001). Visual deprivation alters development of synaptic function in inner retina after eye-opening. Neuron, 32, 439–49CrossRefGoogle ScholarPubMed
Tian, N. and Copenhagen, D. R. (2003). Visual stimulation is required for refinement of On and Off pathways in postnatal retina. Neuron, 39, 85–96CrossRefGoogle Scholar
Tootle, J. S. (1993). Early postnatal development of visual function in ganglion cells of the cat retina. J. Neurophysiol., 69, 1645–60CrossRefGoogle ScholarPubMed
Wang, G. Y., Liets, L. C. and Chalupa, L. M. (2001). Unique functional properties of on and off pathways in the developing mammalian retina. J. Neurosci., 21, 4310–7CrossRefGoogle Scholar
Weaver, D. R. and Reppert, S. M. (1995). Definition of the developmental transition from dopaminergic to photic regulation of c-fos gene expression in the rat suprachiasmatic nucleus. Brain Res. Mol. Brain Res., 33, 136–48CrossRefGoogle ScholarPubMed
Young, R. W. (1984). Cell death during differentiation of the retina in the mouse. J. Comp. Neurol., 229, 362–73CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Emergence of light responses
    • By Evelyne Sernagor, School of Neurology, Neurobiology and Psychiatry, Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK, Leo M. Chalupa, Distinguished Professor of Ophthalmology and Neurobiology, Chair, Section of Neurobiology, Physiology and Behavior Division of Biological Sciences, UC Davis, One Shields Avenue, Davis, CA 95616, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Emergence of light responses
    • By Evelyne Sernagor, School of Neurology, Neurobiology and Psychiatry, Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK, Leo M. Chalupa, Distinguished Professor of Ophthalmology and Neurobiology, Chair, Section of Neurobiology, Physiology and Behavior Division of Biological Sciences, UC Davis, One Shields Avenue, Davis, CA 95616, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Emergence of light responses
    • By Evelyne Sernagor, School of Neurology, Neurobiology and Psychiatry, Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK, Leo M. Chalupa, Distinguished Professor of Ophthalmology and Neurobiology, Chair, Section of Neurobiology, Physiology and Behavior Division of Biological Sciences, UC Davis, One Shields Avenue, Davis, CA 95616, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.016
Available formats
×