We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
Ceratopsian dinosaurs underwent great changes, including a shift of locomotion mode, enlarged horns and frills, and increased body size. These changes occur alongside the evolution of endocranial morphology and physiology such as the size and shape of the flocculus, hearing range, olfactory ratio, and the reptile encephalization quotient (REQ). However, the evolution of endocranial structures in early ceratopsians is still unclear because of a lack of information on the earliest ceratopsians. Here, we reconstructed the endocasts of three early-diverging ceratopsians including the Late Jurassic Yinlong, and the Early Cretaceous Liaoceratops and Psittacosaurus. These ceratopsians display obvious flocculi, large and separate olfactory bulbs, long and high anterior semicircular canals, and relatively long cochlear ducts. In the evolution of the earliest ceratopsians to early neoceratopsians, changes include the increasing size of the flocculus (which is reduced or absent in late-diverging ceratopsids), the attenuation of the semicircular canals, and the heightening of the anterior semicircular canal (which is shortened in late-diverging ceratopsids). The endocranial structures suggest early-diverging ceratopsians had a higher olfactory acuity and were adapted to hearing higher frequencies than late-diverging ceratopsians. Furthermore, the REQ suggests that Yinlong and Psittacosaurus were more highly encephalized than late-diverging ceratopsians and most extant reptiles. The angle of the lateral semicircular canal suggests that heads in ceratopsians display a transition from a forward posture to a more downward posture. Our new findings are significant for understanding the physiological changes during ceratopsian evolution and also have implications for the evolution of physiology in extant tetrapods.
Characterised by the extensive use of obsidian, a blade-based tool inventory and microblade technology, the late Upper Palaeolithic lithic assemblages of the Changbaishan Mountains are associated with the increasingly cold climatic conditions of Marine Isotope Stage 2, yet most remain poorly dated. Here, the authors present new radiocarbon dates associated with evolving blade and microblade toolkits at Helong Dadong, north-east China. At 27 300–24 100 BP, the lower cultural layers contain some of the earliest microblade technology in north-east Asia and highlight the importance of the Changbaishan Mountains in understanding changing hunter-gatherer lifeways in this region during MIS 2.
To evaluate the variations in COVID-19 case fatality rates (CFRs) across different regions and waves, and the impact of public health interventions, social and economic characteristics, and demographic factors on COVID-19 CFRs, we collected data from 30 countries with the highest incidence rate in three waves. We summarized the CFRs of different countries and continents in each wave through meta-analysis. Spearman’s correlation and multiple linear regression were employed to estimate the correlation between influencing factors and reduction rates of CFRs. Significant differences in CFRs were observed among different regions during the three waves (P < 0.001). An association was found between the changes in fully vaccinated rates (rs = 0.41), population density (rs = 0.43), the proportion of individuals over 65 years old (rs = 0.43), and the reduction rates of case fatality rate. Compared to Wave 1, the reduction rates in Wave 2 were associated with population density (β = 0.19, 95%CI: 0.05–0.33) and smoking rates (β = −4.66, 95%CI: −8.98 – −0.33), while in Wave 3 it was associated with booster vaccine rates (β = 0.60, 95%CI: 0.11–1.09) and hospital beds per thousand people (β = 4.15, 95%CI: 1.41–6.89). These findings suggest that the COVID-19 CFRs varied across different countries and waves, and promoting booster vaccinations, increasing hospital bed capacity, and implementing tobacco control measures can help reduce CFRs.
We report on an improved ytterbium-doped yttrium aluminum garnet thin-disk multi-pass amplifier for kilowatt-level ultrafast lasers, showcasing excellent beam quality. At a repetition rate of 800 kHz, the 6.8 ps, 276 W seed laser is amplified up to an average power of 1075 W, corresponding to a pulse energy of 1.34 mJ. The 36-pass amplifier is designed as a compact mirror array in which the beam alternately propagates between the mirrors and the disk by a quasi-collimated state. We adopted a quasi-collimated propagation to confine stray and diffracted light by the slight curvature of the disk, which enables us to achieve an outstanding extraction efficiency of up to 57% with excellent beam quality in stable laser operation at high power. The beam quality at 1075 W was measured to be M2 < 1.51. Furthermore, stability testing was demonstrated with a root-mean-square power fluctuation of less than 1.67% for 10 min.
We present evidence revealing that an object with specific properties can exhibit multiple stable falling postures at low Reynolds numbers. By scrutinizing the force equilibrium relationship of a fixed object at various attack angles and Reynolds numbers, we introduce a methodology that can obtain the stable falling postures of the object. This method saves computational resources and more intuitively presents the results in the full parameter domain. Our findings are substantiated by free-fall tests conducted through both physical experiments and numerical simulations, which validate the existence of multiple stable solutions in accordance with the interpolation results obtained with fixed objects. Additionally, we quantify the abundance and distribution patterns of stable falling postures for a diverse range of representative shapes. This discovery highlights the existence of multiple stable solutions that are universally present across objects of different shapes. The implications of this research extend to the design, stability control and trajectory prediction of all free and controlled flights in both air and water.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
We present an effective approach to realize a highly efficient, high-power and chirped pulse amplification-free ultrafast ytterbium-doped yttrium aluminum garnet thin-disk regenerative amplifier pumped by a zero-phonon line 969 nm laser diode. The amplifier delivers an output power exceeding 154 W at a pulse repetition rate of 1 MHz with custom-designed 48 pump passes. The exceptional thermal management on the thin disk through high-quality bonding, efficient heat dissipation and a fully locked spectrum collectively contributes to achieving a remarkable optical-to-optical efficiency of 61% and a near-diffraction-limit beam quality with an M2 factor of 1.06. To the best of our knowledge, this represents the highest conversion efficiency reported in ultrafast thin-disk regenerative amplifiers. Furthermore, the amplifier operates at room temperature and exhibits exceptional stability, with root mean square stability of less than 0.33%. This study significantly represents advances in the field of laser amplification systems, particularly in terms of efficiency and average power. This advantageous combination of high efficiency and diffraction limitation positions the thin-disk regenerative amplifier as a promising solution for a wide range of scientific and industrial applications.
In the Yili terrane at Awulale mountain, most shoshonitic lavas are related to post-collision extension and were extruded during the Late Carboniferous to Early Permian (310–280 Ma). Herein, we evaluate a small-volume occurrence of shoshonitic magmas in the southern Yili terrane formed c. 346 Ma ago. The high MgO (Mg#) and positive Hf isotope values of the shoshonitic magmas indicate the input of juvenile mantle-derived material. Still, their high Ba–Sr signatures were likely inherited from the partial melting of previously metasomatized lithospheric mantle. We argue the shoshonitic magmatic activity recorded a syn-subduction extensional history in the Yili terrane. This interpretation is consistent with the magmatic records from Early Carboniferous A-type granite and magnesian andesite found in the Zhaosu–Adentao–Dahalajunshan area of the southern Yili terrane. Combined with the geological development in this area, we propose that the emergence of the shoshonitic rocks records either the retreat of the trench or the rollback of the Junggar oceanic slab that occurred at or before the 346.1 ± 3.1 Ma age of the rocks.
The question of whether narcissists are more creative than peers has attracted much scholarly attention in both psychology and organizational management sciences. Drawing from social cognitive theory, we theorized that the relationship between narcissism and creativity could be explained by individual creative self-efficacy, which depends on one's direct and vicarious experiences of creativity. Drawing from trait activation theory, we further proposed organizational valuing of creativity as a key contextual moderator that determines whether narcissism facilitates or inhibits creative self-efficacy and, in turn, creativity. We suggest that high organizational valuing of creativity will energize narcissists to put their attention and effort into both direct and vicarious experiences of creativity, enhancing their creative self-efficacy and creativity. We tested our conceptual model through a field study with data collected from 269 full-time employees working in 86 work teams. The empirical results provided support for the social cognitive explanation for the positive relationship between narcissism and creativity in the context of high organizational valuing of creativity. Our study not only resolved prior debates on the relationship between narcissism and creativity but also provided direct empirical support for social cognitive theory and the person-in-context interactionist perspective of creativity research.
Routine coronavirus disease 2019 (COVID-19) screening found 1 asymptomatic COVID-19 patient. An emergency sampling team was organized consisting of 1200 health-care workers, and a total of 3.2228 million COVID-19 samples had been collected and detected. This study summarizes the on-site management experience in large-scale COVID-19 nucleic acid testing from various aspects: staff preparation, materials preparation, site layout, logistics support, and information system support. Suggestions are put forward for the deficiencies and parts needing improvement. Such deficiencies included some sampling sites were not properly chosen, different areas were unclearly marked off from each other, and some site moving lines were confounding; how to communicate with the street service workers who had little professional knowledge on the epidemic spread or the working principles of the workflow and site layout; and the way to resolve conflicts on site.
We investigated the drug resistance of Mycobacterium tuberculosis isolates from patients with tuberculosis (TB) and HIV, and those diagnosed with only TB in Sichuan, China. TB isolates were obtained from January 2018 to December 2020 and subjected to drug susceptibility testing (DST) to 11 anti-TB drugs and to GeneXpert MTB/RIF testing. The overall proportion of drug-resistant TB (DR-TB) isolates was 32.1% (n = 10 946). HIV testing was not universally available for outpatient TB cases, only 29.5% (3227/10 946) cases had HIV testing results. The observed proportion of multidrug-resistant TB (MDR-TB) isolates was almost double than that of the national level, with approximately 1.5% and 0.1% of the isolates being extensively drug resistant and universally drug resistant, respectively. The proportions of resistant isolates were generally higher in 2018 and 2019 than in 2020. Furthermore, the sensitivities of GeneXpert during 2018–2020 demonstrated a downward trend (80.9, 95% confidence intervals (CI) 76.8–85.0; 80.2, 95% CI 76.4–84.1 and 75.4, 95% CI 70.7–80.2, respectively). Approximately 69.0% (7557/10 946) of the TB cases with DST results were subjected to GeneXpert detection. Overall, the DR-TB status and the use of GeneXpert in Sichuan have improved, but DR-TB challenges remain. HIV testing for all TB cases is recommended.
We aimed to investigate the associations of Dietary Approaches to Stop Hypertension (DASH)-style diet and Mediterranean-style diet with blood pressure (BP) in less-developed ethnic minority regions (LEMR).
Design:
Cross-sectional study.
Setting:
Dietary intakes were assessed by a validated FFQ. Dietary quality was assessed by the DASH-style diet score and the alternative Mediterranean-style diet (aMED) score. The association between dietary quality and BP was evaluated using multivariate linear regression model. We further examined those associations in subgroups of BP level.
Participants:
A total of 81 433 adults from the China Multi-Ethnic Cohort (CMEC) study were included in this study.
Results:
In the overall population, compared with the lowest quintile, the highest quintile of DASH-style diet score was negatively associated with systolic BP (SBP) (coefficient –2·78, 95 % CI –3·15, –2·41; Pfor trend < 0·001), while the highest quintile of aMED score had a weaker negative association with SBP (coefficient –1·43, 95 % CI –1·81, –1·05; Pfor trend < 0·001). Both dietary indices also showed a weaker effect on diastolic BP (coefficient for DASH-style diet –1·06, 95 % CI –1·30, –0·82; coefficient for aMED –0·43, 95 % CI –0·68, –0·19). In the subgroup analysis, both dietary indices showed a stronger beneficial effect on SBP in the hypertension group than in either of the other subgroups.
Conclusion:
Our results indicated that the healthy diet originating from Western developed countries can also have beneficial effects on BP in LEMR. DASH-style diet may be a more appropriate recommendation than aMED as part of a dietary strategy to control BP, especially in hypertensive patients.
Metabolically healthy obesity (MHO) might be an alternative valuable target in obesity treatment. We aimed to assess whether alternative Mediterranean (aMED) diet and Dietary Approaches to Stop Hypertension (DASH) diet were favourably associated with obesity and MHO phenotype in a Chinese multi-ethnic population. We conducted this cross-sectional analysis using the baseline data of the China Multi-Ethnic Cohort study that enrolled 99 556 participants from seven diverse ethnic groups. Participants with self-reported cardiometabolic diseases were excluded to eliminate possible reverse causality. Marginal structural logistic models were used to estimate the associations, with confounders determined by directed acyclic graph (DAG). Among 65 699 included participants, 11·2 % were with obesity. MHO phenotype was present in 5·7 % of total population and 52·7 % of population with obesity. Compared with the lowest quintile, the highest quintile of DASH diet score had 23 % decreased odds of obesity (OR = 0·77, 95 % CI 0·71, 0·83, Ptrend < 0·001) and 27 % increased odds of MHO (OR = 1·27, 95 % CI 1·10, 1·48, Ptrend = 0·001) in population with obesity. However, aMED diet showed no obvious favourable associations. Further adjusting for BMI did not change the associations between diet scores and MHO. Results were robust to various sensitivity analyses. In conclusion, DASH diet rather than aMED diet is associated with reduced risk of obesity and presents BMI-independent metabolic benefits in this large population-based study. Recommendation for adhering to DASH diet may benefit the prevention of obesity and related metabolic disorders in Chinese population.
This paper aims to solve the optimization problems in far-field wireless power transfer systems using deep reinforcement learning techniques. The Radio-Frequency (RF) wireless transmitter is mounted on a mobile robot, which patrols near the harvested energy-enabled Internet of Things (IoT) devices. The wireless transmitter intends to continuously cruise on the designated path in order to fairly charge all the stationary IoT devices in the shortest time. The Deep Q-Network (DQN) algorithm is applied to determine the optimal path for the robot to cruise on. When the number of IoT devices increases, the traditional DQN cannot converge to a closed-loop path or achieve the maximum reward. In order to solve these problems, an area division Deep Q-Network (AD-DQN) is invented. The algorithm can intelligently divide the complete charging field into several areas. In each area, the DQN algorithm is utilized to calculate the optimal path. After that, the segmented paths are combined to create a closed-loop path for the robot to cruise on, which can enable the robot to continuously charge all the IoT devices in the shortest time. The numerical results prove the superiority of the AD-DQN in optimizing the proposed wireless power transfer system.
Primitive lamprophyres in orogenic belts can provide crucial insights into the nature of the subcontinental lithosphere and the relevant deep crust–mantle interactions. This paper reports a suite of relatively primitive lamprophyre dykes from the North Qiangtang, central Tibetan Plateau. Zircon U–Pb ages of the lamprophyre dykes range from 214 Ma to 218 Ma, with a weighted mean age of 216 ± 1 Ma. Most of the lamprophyre samples are similar in geochemical compositions to typical primitive magmas (e.g. high MgO contents, Mg no. values and Cr, with low FeOt/MgO ratios), although they might have experienced a slightly low degree of olivine crystallization, and they show arc-like trace-element patterns and enriched Sr–Nd isotopic composition ((87Sr/86Sr)i = 0.70538–0.70540, ϵNd(t) = −2.96 to −1.65). Those geochemical and isotopic variations indicate that the lamprophyre dykes originated from partial melting of a phlogopite- and spinel-bearing peridotite mantle modified by subduction-related aqueous fluids. Combining with the other regional studies, we propose that slab subduction might have occurred during Late Triassic time, and the rollback of the oceanic lithosphere induced the lamprophyre magmatism in the central Tibetan Plateau.
Different from developed countries, there is a paucity of research examining how the Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diets relate to lipids in less-developed ethnic minority regions (LEMR). A total of 83 081 participants from seven ethnic groups were retrieved from the baseline data of the China Multi-Ethnic Cohort study, which was conducted in less-developed Southwest China between May 2018 and September 2019. Multivariable linear regression models were then used to examine the associations of the DASH and alternative Mediterranean diet (AMED) scores, assessed by modified DASH score and AMED, as well as their components with total cholesterol (TC), LDL-cholesterol, HDL-cholesterol, TAG and TC/HDL-cholesterol. The DASH scores were negatively associated with TC, HDL-cholesterol and TAG. Comparing the highest quintiles with the lowest DASH scores, TC decreased 0·0708 (95 % CI −0·0923, −0·0493) mmol/l, HDL-cholesterol decreased 0·0380 (95 % CI −0·0462, −0·0299) mmol/l and TAG decreased 0·0668 (95 % CI −0·0994, −0·0341) mmol/l. The AMED scores were negatively associated with TC, LDL-cholesterol and HDL-cholesterol. Comparing the highest quintiles with the lowest AMED scores, TC decreased 0·0816 (95 % CI −0·1035, −0·0597) mmol/l, LDL-cholesterol decreased 0·0297 (95 % CI −0·0477, −0·0118) mmol/l and HDL-cholesterol decreased 0·0275 (95 % CI −0·0358, −0·0192) mmol/l. Although both the DASH diet and the Mediterranean diet were negatively associated with blood lipids, those associations showed different patterns in LEMR, particularly for TAG and HDL-cholesterol.