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In this paper, a multiantenna wireless transmitter communicates with an information receiver while radiating RF energy to
surrounding energy harvesters. (e channel between the transceivers is known to the transmitter, but the channels between the
transmitter and the energy harvesters are unknown to the transmitter. By designing its transmit covariancematrix, the transmitter
fully charges the energy buffers of all energy harvesters in the shortest amount of time while maintaining the target information
rate toward the receiver. At the beginning of each time slot, the transmitter determines the particular beam pattern to transmit
with. (roughout the whole charging process, the transmitter does not estimate the energy harvesting channel vectors. Due to the
high complexity of the system, we propose a novel deep Q-network algorithm to determine the optimal transmission strategy for
complex systems. Simulation results show that deep Q-network is superior to the existing algorithms in terms of the time
consumption to fulfill the wireless charging process.

1. Introduction

For a wireless transceiver pair with multiple antennas, op-
timizing the transmit covariance matrix can achieve high
data-rate communication over the multiple-input multiple-
output (MIMO) channel. Meanwhile, the radiated radio
frequency (RF) energy can be acquired by the nearby RF
energy harvesters to charge the electronic devices [1].

(e problem of simultaneous wireless information and
power transfer (SWIPT) has been widely discussed in recent
years. SWIPTsystems are divided into two categories: (1) the
receiver splits the received signals for information decoding
and energy harvesting [2, 3]; (2) separated and dedicated
information decoders (ID) and RF energy harvesters (EH)
exist in the systems [4]. For the second type of the system,
different transmission strategies have ever been proposed to
achieve good performance points in the rate-energy region
[1, 2, 5]. For the multiple RF energy harvesters, which are in

the vicinity of the wireless transmitter, the covariance matrix
at the transmitter is designed to either maximize the net
energy harvesting rate or fairly distribute the radiated RF
energy at the harvesters [6, 7]. (e achievable information
rate of the wireless transmitter-receiver pair is beyond a
minimum requirement for reliable communication. Most of
the existing works assume the channel state information
(CSI) is completely known. Given the complete CSI, the
transmitter designs the transmit covariance matrix to
achieve the maximum information rate while satisfying the
RF energy harvesting requirement [4, 8].

However, in practice, it is difficult for the transmitter to
obtain the channel state information to the nearby RF energy
harvesters because the scattering distribution of the hard-
ware-limited energy harvesters makes the channel estima-
tion at the RF energy harvesters challenging [9, 10]. (e
analytic center cutting plane method (ACCPM) was pro-
posed for the transmitter to approximate the channel
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information with a few bits of feedback from the RF energy
receiver iteratively [10]. Since this method is implemented
by solving a convex optimization problem, the algorithm
leads to high computational complexity. To reduce com-
plexity, channel estimation based on Kalman filtering was
proposed [11]. Nevertheless, the disadvantage of this ap-
proach is the slow convergence rate. In order to effectively
deal with the CSI acquisition problem, in our paper, we will
use the deep learning algorithm to solve the optimization
problem in the SWIPT system only with partial channel
information. (e partial CSI is easy to acquire, which is
already enough to achieve superior system performance
using the deep Q-network. To the best of our knowledge, we
are the first one to use the deep Q-network to optimize the
SWIPT system performance and validate its superiority.

In our model, the transmitter intends to fully charge all
surrounded energy harvesters’ energy buffers in the shortest
time while maintaining a target information rate toward the
receiver. (e communication link is defined as a strong line-
of-sight (LOS) transmission, which is supposed to be in-
variant, but the energy harvesting channel conditions vary
over time. Due to current hardware limitations, we assume
that the estimation of the energy harvesting channel vectors
is not able to be implemented under the fast varying channel
conditions. As a result, the wireless charging problem can be
modeled as a high complexity discrete-time stochastic
control process with unknown system dynamics [12]. In
[13], a similar problem has been explored. A multiarmed
bandit algorithm is used to determine the optimal trans-
mission strategy. In our paper, we apply a deep Q-network to
solve the optimization problem and the simulation results
demonstrate that the deep Q-network algorithm outper-
forms the multiarmed bandit algorithm. Historically, deep
Q-network has a strongly proven record of attaining mastery
over complex games with a very large number of system
states, and unknown state transition probabilities [12]. More
recently, a deep Q-network has been applied to deal with
complex communication problems and has been shown to
achieve good performance [14–16]. For this reason, we
found deep Q-network fitting for our model. In our model,
we consider the accumulated energy of the energy harvesters
as the system states, while we define the action as the
transmit power allocation. At the beginning of each time
slot, each energy harvester sends feedback about the accu-
mulated energy level to the wireless transmitter, and the
transmitter collects all the information in order to generate
the system state and inputs it into a well-trained deep
Q-network. (e deep Q-network outputs the Q values
corresponding to all possible actions. (e action with the
maximum Q value is selected as the beam pattern to be used
for the transmission during the current time slot.

Based on the traditional deep Q-network, the double
deep Q-network and dueling deep Q-network algorithms are
applied in order to reduce the observed overestimations [17]
and improve the learning efficiency [18]. Henceforth, we
apply dueling double deep Q-network to solve the varying
channel multiple energy harvester wireless charging
problem.

(e novelties of this paper are summarized as follows:

(i) (e simultaneous wireless information and power
transfer problem is formulated as aMarkov decision
process (MDP) in an unknown varying channel
condition for the first time.

(ii) (e deep Q-network algorithm is applied to solve
the proposed optimization problem for the first
time. We demonstrate that, compared to the other
existing algorithms, deep Q-network shows the
superiority in efficient and stable wireless power
transfer.

(iii) Multiple experimental scenarios are explored. By
varying the number of transmission antennas and
the number of energy harvesters in the system, the
performance of both the deep Q-network and the
other algorithms is compared and analyzed.

(iv) (e evaluation for the algorithms is based on the
real experimental data, which validate the effec-
tiveness of the proposed deep Q-network in real-
time simultaneous wireless information and power
transfer systems.

(e rest of the paper is organized as follows. In Section 2,
we describe the simultaneous wireless information and
power transfer system model. In Section 3, we model the
optimization problem as a Markov decision process and
present a deep Q-network algorithm to determine the op-
timal transmission strategy. In Section 4, we present our
simulation results for different experimental environments.
Section 5 concludes the paper.

2. System Model

As shown in Figure 1, an information transmitter com-
municates with its receiver while perceived by K nearby RF
energy harvesters [8]. Both the transmitter and the receiver
are equipped with M antennas, while each RF energy
harvester is equipped with one receive antenna. (e base-
band received signal at the receiver can be represented as

y � Hx + z, (1)

where H ∈ CM×M denotes the normalized baseband
equivalent channel from the information transmitter to its
receiver, x ∈ CM×1 represents the transmitted signal, and
z ∈ CM×1 is the zero-mean circularly symmetric complex
Gaussian noise with z∼CN(0, ρ2I).

(e transmit covariance matrix is denoted by Q, i.e.,
Q � E[xxH]. (e covariance matrix is Hermitian positive
semidefinite, i.e., Q ≽ 0. (e transmit power is restricted by
the transmitter’s power constraint P, i.e., Tr(Q)≤P. For the
information transmission, we assume that a Gaussian
codebook with infinitely many code words is used for the
symbols and the expectation of the transmit covariance
matrix is taken over the entire codebook. (erefore, x is the
zero-mean circularly symmetric complex Gaussian with
x∼CN(0,Q). With transmitter precoding and receiver
filtering, the capacity of the MIMO channel is the sum of the
capacities of the parallel noninterfering single-input single-
output (SISO) channels (eigenmodes of channelH) [19]. We
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convert the MIMO channel to M eigenchannels for infor-
mation and energy transfer [20, 21]. A singular value de-
composition (SVD) on H gives H � UΣVH, where
Σ � diag(σ1, σ2, . . . , σM) contains the M singular values of
H. Since the MIMO channel is decomposed into M parallel
SISO channels, the information rate can be given by

r � 
M

m�1
log 1 + ρ−2 σm



2
qm , (2)

where qm  are the diagonal elements of Q with Q � VHQV.
(e RF energy harvester received power specifies the

harvested energy normalized by the baseband symbol period
and scaled by the energy conversion efficiency. (e received
power at the ith energy harvester is

pi � gH
i Qgi, (3)

where gi ∈ CM×1 is the channel vector from the transmitter
to the ith energy harvester. With MIMO channel decom-
position, the received power at energy harvester i is denoted
as

pi � 

M

m�1
gim



2
qm, (4)

where gim  are the elements of vector gi with gi � VHgi.
We define the simplified channel vector from the

transmitter to the ith RF energy harvester as

ci � gi1



2
, gi2



2
, . . . , giM



2

 
T
, (5)

for each i ∈K � 1, 2, . . . , K{ }. (e simplified channel vector
contains no phase information. (e K simplified channel
vectors compose matrix C ∈ RM×K as

C � c1, c2, . . . , cK . (6)

In what follows, we assume that time is slotted, each time
slot as a duration T, and that each energy harvester is
equipped with an energy buffer of size Bi ∈ [0, Bmax], i ∈K.
Without loss of generality, we assume that, at t � 0, all
harvesters’ buffers are empty, which corresponds to system
state s0 � [0, 0, . . . , 0]. At a generic time slot t, the

transmitter transmits with one of the designed beam pat-
terns. Each harvester i can harvest the specific amount of
power pi, and its energy buffer values increase to
Bt+1

i � Bt
i + piT. (erefore, each state of the system includes

the accumulated harvested energy information of all K

harvesters, i.e.,

st � B
t
1, B

t
2, . . . , B

t
K , (7)

where Bt
i denotes the ith energy harvester’s accumulated

energy up to time slot t.
Once all harvesters are fully charged, we assume that the

system arrives at a final goal state denoted as
sG � [Bmax, Bmax, . . . , Bmax]. We note that the energy buffer
level Bmax also accounts for situations in which Bi >Bmax.

3. Problem Formulation for Time-Varying
Channel Conditions

In this section, we suppose that the communication link is
characterized by strong LOS transmission, which results in an
invariant channel matrix H, while the energy harvesting
channel vector g varies over time slots. We model the wireless
charging problem as a Markov decision process (MDP) and
show how to solve the optimization problem using rein-
forcement learning (RL).When the number of system states is
very large, we apply a deep Q-network algorithm to acquire
the optimal strategy at each particular system state.

3.1.ProblemFormulation. In order tomodel our optimization
problem as a RL problem,we define the beampattern chosen in
a particular time slot t as the action at. (e set of possible
actionsA is determined by equally generating L different beam
patterns with power allocation vector q � [q1, . . . , qm] that
satisfies the power and information rate constraints, i.e.,


M
i�1 qm � P, 

M
i�1 log(1 + ρ− 2|σm|2qm)≥R. Each beam pat-

tern corresponds to a particular power level pi, which depends
not only on the action at but also on the channel condition
experienced by the harvester during time slot t.

Given the above, the simultaneous wireless information
and energy transfer problem for a time-varying channel can
be formulated as minimizing the time-consumption n to
fully charge all the energy harvesters while maintaining the
information rate between the information transceivers:

P1:

minimize
at{ }

n

subject to a
t
m ≥ 0



M

m�1
a

t
m ≤P



M

m�1
log 1 + ρ−2 σm



2
a

t
m ≥R



n

t�1


M

m�1
g

t
im



2
a

t
mT≥Bmax, ∀i ∈K

. (8)

In general, the action selected at each time slot will be
different to adapt to the current channel conditions and

EH3

EH2

EH1EHK

RX

gK
g1

g2g3

H
TX

Figure 1: Wireless information transmitter and receiver sur-
rounded by multiple RF energy harvesters.
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current energy buffer state of the harvesters. (erefore, the
evolution of our system can be described by a Markov chain,
where the generic state s is identified by the current buffer
levels of the harvester, i.e., s � B1, B2, . . . , BK . (e set of all
states is denoted by S. Among all states, we are interested in
the state in which all harvesters’ buffer is empty, namely,
s0 � 0, . . . , 0{ }, and the state sG in which all the harvesters are
fully charged, i.e., sG � Bmax, . . . , Bmax . If we suppose that
we know all the channel coefficients at each time slot,
problem P1 can be seen as a stochastic shortest path (SSP)
problem from state s0 to state sG. At each time slot, the
system is in a generic state s, the transmitter selects a beam
pattern or action a ∈ A, and the systemmoves to a new state
s′. (e dynamics of the system is captured by transition
probabilities ps,s′(a), s, s′ ∈ S, and a ∈ A, describing the
probability that the harvesters’ energy buffers reach the
levels in s′ after a transmission with beam pattern a. We note
that the goal state sG is absorbing, i.e., PsG,sG

(a) � 1, ∀a ∈ A.
Each transition also has an associated reward, w(s, a, s′),

that denotes the reward when the current state is s ∈ S,
action a ∈ A is selected, and the system moves to state
s′ ∈ S. Since we aim at reaching sG in the fewest trans-
mission time slots, we consider that the action entails a
positive reward related to the difference between the current
energy buffer level and the full energy buffer level of all
harvesters. When the system reaches state sG, we set the
reward as 0. In this way, the system not only tries to fully
charge all harvesters in the shortest time but will also
uniformly charge all the harvesters. In detail, we define the
reward function as

w s, a, s′(  � −λ KBmax − 
K

i�1
min si
′, Bmax( ⎛⎝ ⎞⎠, (9)

where

λsi
′ � λsi + λ 

M

m�1
gim



2
amT, (10)

and λ denotes the unit price of the harvested energy.
It is noted that different reward functions can also be

selected. As an example, it is also possible to set a constant
negative reward (e.g., a unitary cost) for each transmission
that the system does not reach the goal state and a big
positive reward only for the states and actions that bring the
system to the goal state sG. (is can be expressed as follows:

w s, a, s′(  �
+∞, s′ � sG,

−1, otherwise.

⎧⎨

⎩ (11)

We note that the reward formulation of equation (11) is
actually equivalent to minimizing the number of time slots
required to reach state sG starting from state s0.

Using the above formulation, the optimization problem
P � (S,A, p, w, s0, sG) can then be seen as a stochastic
shortest path search from state s0 to state sG on the Markov
chain with states S and probabilities ps,s′(a) , actions
a ∈ A, and rewards w(s, a, s′). Our objective is to find, for
each possible state s ∈ S, an optimal action a∗(s) so that the

system will reach the goal state following the path with
maximum average reward. A generic policy can be written as
π � a(s): s ∈ S{ }.

Different techniques can be applied to solve problemP1,
as it represents a particular class of MDPs. In this paper,
however, we assume that the channel conditions at each time
slot are unknown, which corresponds to not knowing the
transition probabilities ps,s′(a) . (erefore, in the next
section, we describe how to solve the above problem using
reinforcement learning.

3.2. Optimal Power Allocation with Reinforcement Learning.
Reinforcement learning is suitable for solving optimization
problems in which the system dynamics follow a particular
transition probability function, however, the probabilities

ps,s′(a)  are unknown. In what follows, we first show how

to apply the Q-learning algorithm [22] to solve the opti-
mization problem and then show how we can combine the
reinforcement learning approach with a neural network to
approximate the system model in case of large states and
action sets, using deep Q-network [12].

3.2.1. Q-Learning Method. If the number of system states is
small, we can depend on the traditional Q-learning method
to find the optimal strategy at each system state, as defined in
the previous section.

To this end, we define the cost function of action a on
system state s as ps,s′(a) , with s ∈ S, a ∈ A. (e algorithm
initializes with Q(s, a) � 0 and then updates the Q values
using the following equation:

Q(s, a) � (1 − α(s, a))Q(s, a) + α(s, a) w s, a, s′(  + cf s′, a(  ,

(12)

where

f s′, a(  � min
a∈A

Q s′, a( , (13)

and α(s′, a) denotes the learning rate. In each time slot, only
one Q value is updated, and hence, all the other Q values
remain the same.

At the beginning of the learning iterations, since the Q-
table does not have enough information to choose the best
action at each system state, the algorithm randomly explores
new actions. Hence, we first define threshold εc ∈ [0.5, 1],
and we then randomly generate a probability p ∈ [0, 1]. In
the case that p≥ εc, we choose the action a as

a � max
a∈A

Q(s, a). (14)

On the contrary, if p< εc, we randomly select one action
from the action set A.

When Q∗ converges, the optimal strategy at each state is
determined as
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π∗(s) � argmax
a∈A

Q
∗
(s, a), (15)

which corresponds to finding the optimal beam pattern for
each system state during the charging process.

3.2.2. Deep Q-Network. When considering a complex sys-
tem with multiple harvesters, large energy buffers, and time-
varying channel conditions, the number of system states
dramatically increases. In order to learn the optimal transmit
strategy at each system state, the Q-learning algorithm
described before requires a Q-table with a large number of
elements, making it very difficult for all the values in the
Q-table to converge. (erefore, in what follows, we describe
how to apply the deep Q-network (DQN) approach to find
the optimal transmission policy.

(e main idea of DQN is to train a neural network to
find the Q function of a particular system state and action
combination. When the system is in state s, and action a is
selected, theQ function is denoted asQ(s, a, θ). θ denotes the
parameters of the Q-network. (e purpose of training the
neural network is to make

Q(s, a, θ) ≈ Q
∗
(s, a). (16)

According to the DQN algorithm [17], two neural
networks are used to solve the problem: the evaluation
network and the target network, which are denoted as
eval net and target net, respectively. Both the eval net and
the target net are set up with several hidden layers. (e
input of the eval net and the target net are denoted as s

and s′, which describe the current system state s and the
next system state s′, respectively. (e output of eval net
and target net are denoted as Qe(s, a, θ) and Qt(s, a, θ),
respectively. (e evaluation network is continuously
trained to update the value of θ; however, the target
network only copies the weight parameters from the
evaluation network intermittently (i.e., θ′ � θ). In each
neural network learning epoch, the loss function is de-
fined as

loss(θ) � E y − Qe(s, a, θ)( 
2

 . (17)

where y represents the real Q value and is calculated as

y � w s, a, s′(  + ε max
a′∈A

, Qt s′, a′, θ′( , (18)

where ε is the learning rate. As the loss function updates, the
values are backpropagated to the neural network to update
the weight of the eval_net.

In order to better train the neural network, we apply the
experience reply method to remove the correlation between
different training data. Each experience consists of the
current system state s, the action a, the next system state s′,
and the corresponding reward w(s, a, s′). (e experience is
denoted by the set ep � s, a, w(s, a, s′), s′ . (e algorithm
records D experiences, and randomly select Ds (with
Ds <D) experiences from D for training. After the training is
finished, target_net clones all the weight parameters from
the eval_net (i.e., θ′ � θ).

(e algorithm used for the DQN training process is
presented in Algorithm 1. In the algorithm, we define in each
training iteration, we generate D usable experiences ep and
select Ds of all for training the eval_net. In total, we suppose
there are U training iterations.We consider that, for both the
eval_net and the target_net, there are Nl layers in the neural
network. In the learning process, we useC to denote all energy
harvesters’ channel condition in a particular time slot.

3.2.3. Dueling Double Deep Q-Network. Since more har-
vesters and time-varying channel conditions incur more
system states, even if we utilize the original DQN, it is hard
to study the transmit rules for the transmitter. (erefore, we
can apply dueling double DQN in order to deal with the
overestimating problem during the training process and
improve the learning efficiency of the neural network.
Doubling DQN is a technique that strengthens the tradi-
tional DQN algorithm by preventing overestimating to
happen [17]. In traditional DQN, as shown in equation (18),
we utilize the target_net to predict the maximum Q value of
the next state. However, the target_net is not updated at
every training episode, which may lead to an increase in the
training error and therefore complicate the training process.
In doubling DQN, we utilize both the target_net and the
eval_net to predict the Q value. (e eval_net is used to
determine the optimal action to be taken for the system state
s′ as follows:

y � w s, a, s′(  + εmax
a′∈A

Qe s′, arg
a∈A

maxQ s′, a, θ( , θ′ .

(19)

It can be shown that, following this approach, the
training error considerably decreases [17].

In traditional DQN, the neural network only has the Q

value as the output. In order to speed up the convergence, we
apply dueling DQN by setting up two output streams from
the neural network. (e first stream is represented by the
output value V(s, θ, β) results of the neural network, which
represents the Q value of each system state. (e second
stream is called advantage output A(s′, a, θ, α) and describes
the advantage of applying each particular action to the
current system state [18]. α and β are parameters that relate
the two streams and the neural network output, which is
denoted as

Q(s, a, θ, α, β) � V(s, θ, β)

+ A s′, a, θ, α(  −
1

|A|


a′

A s′, a, θ, α( ⎛⎝ ⎞⎠.

(20)

Dueling DQN can efficiently eliminate the extra training
freedom, which speeds up the training [18].

4. Simulation Results

We simulate a MIMO wireless communication system with
nearby RF energy harvesters. (e wireless transmitter has at
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most M � 4 antennas. (e 4 × 4 communication MIMO
channel matrixH is measured by twoWireless Open-Access
Research Platform (WARP) v3 boards. Both WARP boards
are mounted with the FMC-RF-2X245 dual-radio module,
which is operated in 5.805GHz frequency band. (e Xilinx
Virtex-6 FPGA operates as the central processing system and
the WARPLab is used for rapid physical layer prototyping
which is compiled by MATLAB [23]. We deploy two
transceivers as line-of-sight transmission. (e maximum
transmitted power is P � 12W. ρ2 � −70 dBm. (e infor-
mation rate requirement R is 53 bps/Hz. (e average
channel gain from the transmitter to the energy harvester is
−30 dB.(e energy conversion efficiency is 0.1. (e duration
of one time slot is defined as T � 100ms.

DQN is trained to solve for the optimal transmit
strategies for each system state. (e simulation parameters
used for DQN are presented in Table 1.

As described in Section 3.2, the exploration rate εc de-
termines the probability that the network selects an action
randomly or follows the values of the Q-table. Initially, we
set εc � 1 because the experience pool has to accumulate
reasonable amount of data to train the neural network. εc � 1
decreases with 0.001 at each training interval and finally
stops at εch � 0.1, since the experience pool has collected
enough training data.

Refer to [24]. (e dueling double DQN is used in our
paper, which is shown in Figure 2. (e software environ-
ment for simulation is TensorFlow 0.12.1 with Python 3.6 in
Jupyter Notebook 5.6.0.

For the energy harvesters’ channel, to show an example
of the performance achievable by the proposed algorithm,
we consider the Rician channel fading model [25]. We
suppose within each time slot t, the channel is invariant and
varies in different time slots [26]. At the end of each time
slot, the energy harvester feedbacks the current energy level
back to the transmitter. For the Rician fading channel model,

the total gain of the signal is denoted as g � gs + gd, where gs

is the invariant LOS component and gd denotes a zero-mean
Gaussian diffuse component. (e channel between the
transmit antenna m and the energy harvester i can be
denoted as gim � gs

im + gd
im. (e magnitude of the faded

envelope can be modeled using the Rice factor Kr such that
Kr

im � ρ2im/2σ2im, where ρ2im denotes the average power of the
main LOS component between the transmit antenna m and
energy harvester i and σ2im denotes the variance of the scatter
component. We can derive the magnitude of the main LOS
component as |gs

im| �
�����
2Kr

im


σim since 1/2E[(|gd

im|)2] � σ2im.
(e mean and the variance of gim are denoted as μgim

� gs
im

and σ2gim
� σ2im, respectively. In polar coordinates,

gim � rimejθim .
First, we explore the optimal deep Q-network structure

under fading channels. We suppose the number of antennas
is M � 3 and the number of energy harvesters is K � 2. (e
channel between each antenna of the transmitter and each
harvester is individually Rician distributed. (e action setA
contains 13 actions satisfying the information rate re-
quirement: [2, 2, 8]T, [2, 4, 6]T, [2, 6, 4]T, [2, 8, 2]T, [4, 2, 6]T,
[4, 4, 4]T, [4, 6, 2]T, [4, 8, 0]T, [6, 2, 4]T, [6, 4, 2]T, [6, 6, 0]T,
[8, 2, 2]T, and [8, 4, 0]T.

(e LOS amplitude components of all channel links are
defined as rim � 0.5, with i � 1, 2 and m � 1, 2, 3. (e LOS
phase components of all channel links are defined as
θ11 � π/4, θ12 � π/2, θ13 � −π/4, θ21 � −π/2, θ22 � 0, and
θ23 � 3π/4. (e standard deviation of the gim amplitude and
phase is denoted as σim and 1/

�����
2Kr

im


, respectively. We

suppose σim � 0.05, ∀i, m. Hence, 1/
�����
2Kr

im


� (rim/

σim)− 1 � 0.1, ∀i, m.
Using the fading channel model above, in Figure 3, we

show how the structure of the neural network together with
the learning rate can affect the performance of the DQN, for
a fixed number of training episodes (i.e., 40000). (e per-
formance of DQN is measured by the average number of

(1) Randomly generate the weight parameter θ for the eval_net. (e target_net clones the weight parameters θ′ � θ. u � 1. s � s0.
C � Ct. t � 1. D � d � 1.

(2) At the beginning of the time slot, randomly generate a probability p ∈ [0, 1].
IFD> 200 and p≥ εch:
we choose the action a as a � maxa∈AQ(s, a)

ELSEIFp< εch:
Randomly choose the action from action set A.
(e transmitter transmits with the selected beam pattern.

(3) (roughout the whole time slot, the RF energy is accumulated in the harvesters’ energy buffer, as si
′ � si + 

M
m�1 |gt

im|2amT, ∀i ∈K.
At the end of each time slot, each harvester feedbacks the energy level to the transmitter and the system state is updated to s′.

(4) ep(d) � s, a, w(s, a, s′), s′ . d � d + 1. IfD reaches the maximum of experience pool, D remains constant, d � 1, otherwise,D � d.
s � s′. t � t + 1. C � Ct.

(5) After experience pool accumulates enough data, from D experiences, randomly select Ds experiences to train the neural network
eval_net. Backpropagation method is applied to minimize the loss function loss(θ). Clone the weight parameters from eval_net to
target_net after several time intervals.

(6) IFs′ � sG:
s � s0. t � 1. C � Ct. u � u + 1. If u � U, algorithm terminates; otherwise, go back to step 2.
IF s′ ≠ sG:
go to step 3.

ALGORITHM 1: Deep Q-network algorithm training process.
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time slots required to fully charge two harvesters. (e
average time-consumption is obtained over 1000 testing
data. Figure 3 shows that if the deep Q-network has multiple
hidden layers, a smaller learning rate is necessary to achieve
better performance. When the learning rate is 0.1, the DQN
with 4 hidden layers performs worse than a neural network
with 2 or 3 hidden layers. On the other side, when the
learning rate decreases, we can see that the neural network
with 4 hidden layers and a learning rate of 0.00005 achieves
the best overall performance. We do not see a monotonic
decrease in the average number of time slots due to the
stochastic nature of the channel that causes some

fluctuations in the DQN optimization. After an initial im-
provement, decreasing the learning rate results in a slight
increase in the average number of charging steps for all three
neural network structures. (is is due to the fixed number of
training episodes. As a result, for all the simulations pre-
sented in this section, we consider a DQN algorithm using a
4 hidden layer deep neural network, with 100 nodes in each
layer and a learning rate of 0.00005.

In Figure 4, we can observe that the size of the experience
pool also affects the performance of DQN (40000 training
episodes). To eliminate the correlation between the training
data, we select part of the experience pool for training. In our

Table 1: DQN simulation parameters.

Dueling Deep Q-network Value
Number of hidden layers (NL) 4
Number of nodes of each hidden layer 100
Learning rate (ε) ≤0.1
Mini-batch size 10
Learning frequency 5
Training starting step 200
Experience pool ≥20000
Initial exploration rate (εc) 1
Final exploration rate (εc) 0.1
Exploration interval 0.001
target_net weight replacement interval ≥100
Discount factor 0.9
Training episodes ≥40000
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Figure 2: Dueling double deep Q-network structure.
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simulation, this parameter, called mini-batch, is set to 10.
Larger experience pool contains more training data; hence,
selecting the mini-batch from it for training can eliminate
the correlation between the training data. However, we need
to balance the size of the experience pool and the target_net
weight replacement interval. If the experience pool is large
but the replacement iteration interval is small, even if we
address the correlation problem between the training data,
the neural network does not have enough training episodes
to reduce the training error before the weight of the
target_net is replaced. From Figure 4, we can observe that a
large number of replacement iteration intervals may not be
the best choice too. (erefore, we determine that, for our
problem, DQN achieves the best performance when the size
of the experience pool and the neural network replacement
iteration interval are 60000 and 1000, respectively.

Figure 5 shows the impact of the reward function (see
Section 3.1) on the DQN performance. In this figure, we
consider the following reward functions: Reward1:
w(s, a, s′) � 0 if s′ � sG and w(s, a, s′) �

−λ(KBmax − 
K
i�1 min(si

′, Bmax)) otherwise; Reward2:
w(s, a, s′) � 10 if s′ � sG and w(s, a, s′) � −1 otherwise;
Reward3: w(s, a, s′) � 1 if s′ � sG and w(s, a, s′) � −1 oth-
erwise. Here, K � 2 and λ � 0.25. All three reward functions
are designed to minimize the number of time slots required
to fully charge all the harvesters. However, from Figure 5, we
can observe that the best performance can be obtained using
Reward1. In this case, the energy level accumulated by each
harvester increases uniformly, which results in the DQN to
converge faster to the optimal policy. Both Reward2 and
Reward3, instead, do not penalize states that unevenly charge
the harvesters and therefore require more iterations to
converge to the optimal solution (not shown in the figure)

due to the large number of system states to explore.
(erefore, in the following simulations, we use the reward
function Reward1 in both Figures 5 and 6, we average 40000
training steps every 100 steps in order to better show the
convergence of the algorithm.

Figure 6 shows that when each energy harvester in the
system is equipped with a larger energy buffer, the number of
system states increases, and therefore, DQN requires more
training period to converge to the steady transmit strategy
for each system state. We can observe that when
Bmax � 1.6mJ, the system only needs less than 5000 training
episodes to converge to the optimal strategy, and when
Bmax � 3.2mJ, the system needs around 12000 training
episodes to converge to the optimal policy. However, for
Bmax � 4.8mJ, the system needs as many as 20000 training
episodes to converge to the optimal strategy.

In the following simulations, we explore the impact of
the channel model on optimization problem P1. For the
Rician fading channel model, we consider Kr

im ≥ 10 and to be
the same for all i, m. In this way, we can approximate the
Rician distribution as a Gaussian distribution. We fix
rim � 0.5, ∀i, m, but allow the standard deviation of both the
amplitude and the phase of the channel to change to evaluate
the performance on the system under different channel
conditions. Since rim � 0.5 and

�����
2Kr

im


� rim/σim,

1/
�����
2Kr

im


� 2σim. We define σim ≤ 0.1 to guarantee Kr

im ≥ 10.
In Figure 7, we express the standard deviation σamp �

σim, ∀i, m of the phase and amplitude of the channel, and we
compare the performance attained by the optimal policy
with the performance of different other algorithms. (e
multiarmed bandit (MAB) algorithm is also implemented to
compare with the DQN. In MAB, each bandit arm repre-
sents a particular transmission pattern. (e upper confi-
dence bound (UCB) algorithm [27] is implemented to
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Figure 3: Deep Q-network performance on different learning rates
and number of hidden layers for the neural network.
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maximize the reward w(s, a, s′) and determine the optimal
action. Once the action is selected from the action spaceA, it
will be used for transmission continuously. (e myopic
algorithm is another machine learning algorithm that can be
compared with DQN. Myopic solution has the same
structure as the DQN; however, the reward discount is

defined as c � 0. As a result, the optimal strategy is deter-
mined only according to the current observation instead of
considering the future consequence. Myopic solution has
been widely used to solve the complex optimization in
wireless communication problem and achieve good system
performance [28]. Besides two machine learning algorithms,
another two heuristic algorithms are also used for system
performance comparison. For even power allocation, the
transmit power P is evenly allocated on parallel channel for
transmission.(e random action selection is also applied for
performance comparison. (e random action selection has
the worst performance while DQN performs best. Com-
pared to the optimal existing algorithm multiarmed bandit
algorithm, the DQN can consume 20% fewer time slots to
complete charging. In some channel conditions, the myopic
solution can achieve a similar performance as the DQN.
However, the myopic solution cannot perform stably. For
example, as the standard deviation of the channel amplitude
is σamp � 0.025, DQN can outperform myopic solution by
45%. (e instability can be explained as the myopic solution
makes the decision only on the current system state and the
current reward, which does not consider the future con-
sequence. Hence, the training effects cannot be guaranteed.
Overall, the DQN has superiority in both the charging time
consumption and performing stability corresponding to
different channel conditions.

To better explain the performance of the optimal policy,
in Figure 8, we plot the action selected by DQN at a par-
ticular system state when σamp � 0.05. When σamp � 0.05,
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Figure 7: (e comparison of average time consumption between
DQN and other algorithms (myopic solution, multiarmed bandit,
even power allocation, and random action selection) in the Rician
fading channel model. (e number of transmit antennas is M � 3.
(e number of energy harvesters is N � 2.
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the optimal action selected by multiarmed bandit is the third
action a3 � [2, 6, 4]T, which can finish charging both har-
vesters in around 60 time slots. Meanwhile, the optimal
policy determined by DQN can finish charging in around 43
time slots. To this end, Figure 8 shows that the charging
process can actually be divided into two parts: before har-
vester 1 accumulates 1.2mJ energy and harvester 2 accu-
mulates 0.8mJ energy, mostly action 4 a4 � [2, 8, 2]T is
selected. After that, mostly action 1 a1 � [2, 2, 8]T is selected.
As defined above, both the amplitude and the phase of the
channel are Gaussian distributed with zero standard devi-
ation, g01 � [0.05, 0.59, 0.11]T and g02 � [0.04, 0.19, 0.51]T. So
when both the amplitude and the phase of the channel
change, the simplified channel state information will be
distributed around g01 and g02. As a result, it can be shown that
a policy that selects either action 1 or action 4 with different
probabilities can have better performance than the policy that
only selects action 3. Henceforth, the DQN can consume 40%
fewer time slots to fully charge two energy harvesters.

In Figure 9, the performance of the DQN is compared
with the other four algorithms by varying the number of
energy harvesters in the system. In general, as the number of
energy harvesters increases, all four algorithms consume
more time slots to complete the wireless charging process.
Compared to the random action selection, DQN can con-
sume at least 58% less time slots to complete the charging.
(e performance of the multiarmed bandit and the even
power allocation is very similar, which can be explained as
the optimal action determined by the multiarmed bandit
algorithm is close to the even power allocation strategy.
Compared with two fixed action selection strategies (mul-
tiarmed bandit and even power allocation), DQN can reduce

the time consumption by up to 72% (when the number of
energy harvesters is N � 3). (e myopic solution is still not
the optimal strategy. From the figure, we can observe that the
myopic solution outperforms two fixed action selection
algorithms. Even though in some conditions (N � 6), the
performance difference between DQN and myopic solution
is very small, the myopic solution consumes more than 15%
of the time slot than DQN in average. Overall, the DQN is
the optimal algorithm which consumes fewest time slots to
fully charge all the energy harvesters regardless of the
number of energy harvesters.

In Figure 10, the number of transmit antennas is in-
creased from M � 3 to M � 4. (e number of energy
harvesters varies from N � 2 to N � 6. (ough the number
of antennas increases, the channel conditions between the
transmitter and the energy harvesters become more com-
plicated; DQN still outperforms all the other four algo-
rithms. Compared with myopic solution, multiarmed
bandit, even action selection, and random action selection,
DQN can consume up to 27%, 54%, 55%, and 76% fewer
time slots to fulfill the wireless charging, respectively. As the
number of energy harvesters increases, the superiority of the
DQN becomes more obvious compared to two fixed action
selection algorithms, which can be explained as it is more
inefficient to select one fixed action to deal with a more
complicated varying channel environment. Even though in
some conditions, the performance of the myopic solution
and DQN is similar, the myopic solution is not stable in
dealing with different energy harvesters conditions. (e
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Figure 9: (e comparison of average time consumption between
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results from both Figures 9 and 10 demonstrate the supe-
riority of the DQN in optimizing the time consumption for
wireless power transfer.

5. Conclusions

In this paper, we design the optimal wireless power transfer
system for multiple RF energy harvesters. Deep learning
methods are used to enable the wireless transmitter to fully
charge the energy buffers of all energy harvesters in the
shortest time while meeting the information rate require-
ment of the communication system.

As the channel conditions between the transmitter and
the energy harvesters are time-varying and unknown, we
model the problem as a Markov decision process. Due to the
large number of system states in the model and the difficulty
of training, we adapt a deep Q-network approach to find the
best transmit strategy for each system state. In the simulation
section, multiple experimental environments are explored.
(e measured real-time data are used to run the simulation.
Deep Q-network is compared with the other four existing
algorithms. (e simulation results validate that the deep
Q-network is superior to all the other algorithms in terms of
the time consumption for fulfilling wireless power transfer.
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