We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources, nonlinear crystals of large aperture are demanded for high-energy amplifiers. Yttrium calcium oxyborate (YCa4O(BO3)3, YCOB) is capable of being grown with apertures exceeding 100 mm, which makes it possible for application in systems of petawatt scale. In this paper, we experimentally demonstrated for the first time to our knowledge, an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm. Based on the SG-II 5 PW facility, amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%. A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs. The near-field and wavefront aberration represented excellent characteristics, which were comparable with those achieved in lithium triborate-based amplifiers. These results verified the great potential for YCOB utilization in the future.
To integrate the uneven terrain adaptivity of legged robots and the fast capacity of wheeled robots on even terrains, a four wheel-legged robot is addressed and the cooperative control strategy of wheels and legs based on attitude balance is investigated. Firstly, the kinematics of wheel-legged robot is analyzed, which contains the legged and wheeled motion modal. Secondly, the cooperative control strategy of wheel-legged robot based on attitude balance is proposed. The attitude is calculated by using the quaternion method and complementary filtering, and the attitude stability control of the wheel-legged robot is studied. The trajectory planning of leg motion including walk and trot gait is implemented, and the differential control of wheeled motion is deduced. And then, the cooperative motion control of wheels and legs is achieved by keeping the attitude balance of robot body. Finally, a small prototype is set up to validate the feasibility and effectiveness of proposed method. The experimental results show that the established wheel-legged robot can do walk, trot, and wheel-leg compound motion to overcome many complex terrains and environments.
In this paper, a broadband, low insertion loss, and compact folded substrate integrated waveguide (FSIW) phase shifter is proposed for the first time. By loading the complementary split-ring resonators (CSRRs) on the middle metal layer of the FSIW, a closed-type slow-wave transmission line (TL) is obtained, which can provide a wideband phase shift (39%) compared with the equal-length fast-wave one. The enclosed structure of the CSRR-loaded FSIW prevents the CSRRs from radiation as suffered in the previous reported CSRR-loaded TLs, resulting in a low insertion loss. This feature greatly reduces the amplitude imbalance between the main line and the reference line of the phase shifter. In addition, no transition structure is required between the FSIWs with and without CSRRs for broadband impedance matching, which makes the phase shifter more compact and easier to integrate with other FSIW devices. To validate the performance of the proposed phase shifter and to illustrate its ease integration, a novel FSIW 180° directional coupler that consists of an FSIW 90° coupler and an FSIW 90° phase shifter is designed, fabricated, and measured. The measured results agree well with the simulated data.
In this paper, effects of discharge parameters and modulation frequency on the signal of laser-induced fluorescence measurements of ion velocity distribution functions are investigated in the LIF Test Source. A maximum modulation frequency is found for each given set of parameters, beyond which the signal gradually declines. Meanwhile, this maximum modulation frequency occurred consistently at ~1/10 of the theoretical frequency limit and photon counts received by a photomultiplier tube, which indicates that as modulation frequency and the associated per-pulse-excitation-event count decrease, the transition from the macroscopic statistical signal to the microscopic probabilistic signal is a gradual process.
Emerging functional imaging studies suggest that schizophrenia is associated with aberrant spatiotemporal interaction which may result in aberrant global and local dynamic properties.
Methods
We investigated the dynamic functional connectivity (FC) by using instantaneous phase method based on Hilbert transform to detect abnormal spatiotemporal interaction in schizophrenia. Based on resting-state functional magnetic resonance imaging, two independent datasets were included, with 114 subjects from COBRE [51 schizophrenia patients (SZ) and 63 healthy controls (HCs)] and 96 from OpenfMRI (36 SZ and 60 HCs). Phase differences and instantaneous coupling matrices were firstly calculated at all time points by extracting instantaneous parameters. Global [global synchrony and intertemporal closeness (ITC)] and local dynamic features [strength of FC (sFC) and variability of FC (vFC)] were compared between two groups. Support vector machine (SVM) was used to estimate the ability to discriminate two groups by using all aberrant features.
Results
We found SZ had lower global synchrony and ITC than HCs on both datasets. Furthermore, SZ had a significant decrease in sFC but an increase in vFC, which were mainly located at prefrontal cortex, anterior cingulate cortex, temporal cortex and visual cortex or temporal cortex and hippocampus, forming significant dynamic subnetworks. SVM analysis revealed a high degree of balanced accuracy (85.75%) on the basis of all aberrant dynamic features.
Conclusions
SZ has worse overall spatiotemporal stability and extensive FC subnetwork lesions compared to HCs, which to some extent elucidates the pathophysiological mechanism of schizophrenia, providing insight into time-variation properties of patients with other mental illnesses.
Deep nets have done well with early adopters, but the future will soon depend on crossing the chasm. The goal of this paper is to make deep nets more accessible to a broader audience including people with little or no programming skills, and people with little interest in training new models. A github is provided with simple implementations of image classification, optical character recognition, sentiment analysis, named entity recognition, question answering (QA/SQuAD), machine translation, speech to text (SST), and speech recognition (STT). The emphasis is on instant gratification. Non-programmers should be able to install these programs and use them in 15 minutes or less (per program). Programs are short (10–100 lines each) and readable by users with modest programming skills. Much of the complexity is hidden behind abstractions such as pipelines and auto classes, and pretrained models and datasets provided by hubs: PaddleHub, PaddleNLP, HuggingFaceHub, and Fairseq. Hubs have different priorities than research. Research is training models from corpora and fine-tuning them for tasks. Users are already overwhelmed with an embarrassment of riches (13k models and 1k datasets). Do they want more? We believe the broader market is more interested in inference (how to run pretrained models on novel inputs) and less interested in training (how to create even more models).
This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China.
Methods
This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10–20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used.
Results
There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures.
Conclusions
The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.
Little is known about poverty trends in people with severe mental illness (SMI) over a long time span, especially under conditions of fast socioeconomic development.
Aims
This study aims to unravel changes in household poverty levels among people with SMI in a fast-changing rural community in China.
Method
Two mental health surveys, using ICD-10, were conducted in the same six townships of Xinjin county, Chengdu, China. A total of 711 and 1042 people with SMI identified in 1994 and 2015, respectively, participated in the study. The Foster-Greer-Thorbecke poverty index was adopted to measure the changes in household poverty. These changes were decomposed into effects of growth and equity using a static decomposition method. Factors associated with household poverty in 1994 and 2015 were examined and compared by regression analyses.
Results
The proportion of poor households, as measured by the headcount ratio, increased significantly from 29.8% in 1994 to 39.5% in 2015. Decomposition showed that poverty in households containing people with SMI had worsened because of a redistribution effect. Factors associated with household poverty had also changed during the study period. The patient's age, ability to work and family size were of paramount significance in 2015.
Conclusions
This study shows that the levels of poverty faced by households containing people with SMI has become more pressing with China's fast socioeconomic development. It calls for further integration of mental health recovery and targeted antipoverty interventions for people with SMI as a development priority.
In a high-level radioactive waste repository, bentonite may react with the alkaline solution produced by cement degradation. In this study, bentonite was mixed with alkaline solution in a closed system and reacted for 3–24 months. Furthermore, swelling tests were conducted on the alkaline-dissolved bentonite immersed in distilled water. The swelling deformation decreased significantly with increases in the concentration of NaOH solution and reaction time, and this was mainly due to montmorillonite dissolution. The fractal e–p relationship (e is the void ratio and p is the vertical pressure) with two calculation coefficients (the swelling coefficient and the fractal dimension) was employed to determine the swelling of alkaline-dissolved bentonite. The fractal dimension increased slightly with increasing reaction time or concentration of NaOH solution, as the dissolution traces caused by the alkaline solution favoured an increase in the irregularity and fractality of the bentonite surface. The swelling coefficient decreased linearly with decreasing montmorillonite content. In addition, the swelling coefficient and the fractal dimension were related exponentially to the reaction time in alkaline solution. A relationship between the swelling of alkaline-dissolved samples and the reaction time was proposed, which might be used to assess the swelling properties of bentonite barriers that would be affected by long-term dissolution of the alkaline solution in a closed repository.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
Iron sulfides have attracted much interests for their potential as anode materials in energy storage devices in view of their low costs, and environmentally benign and high theoretical capacities. Among them, Fe1−xS is relatively rarely investigated. In this work, Fe1−xS@rGO has been synthesized using a facile in situ hydrothermal method. After wrapped by rGO, the morphology of Fe1−xS particles changes from hexagonal flakes to irregular particles with much smaller sizes. As the anode material for lithium ion batteries, Fe1−xS@rGO exhibits excellent lithium storage ability. It can deliver an initial discharge capacity of 1575.5 mA h/g in the potential window of 0.005–3 V, and a reversible capacity of 907.8 mA h/g can be maintained after 200 cycles at 100 mA/g. Its improved electrochemical performance can be attributed to the effect of enhanced contact area and shortened Li+ ion transport distance because of rGO’s contribution.
Swelling deformation tests of Kunigel bentonite and its sand mixtures were performed in distilled water and NaCl solution. The salinity of NaCl solution has a significant impact on the swelling properties of bentonite, but not on its surface structure. The surface structure was characterized using the fractal dimension Ds. Based on the fractal dimension, a unique curve of the em–pe relationship (em is the void ratio of montmorillonite and pe is the effective stress) at full saturation was introduced to express the swelling deformation of bentonite–sand mixtures. In mixtures with a large bentonite content, the swelling deformation always followed the em–pe relationship. In mixtures with a small bentonite content, when the effective stress reached a threshold, the void ratio of montmorillonite em deviated from the unique em–pe curve due to the appearance of a sand skeleton. The threshold of vertical pressure for mixtures in different solutions and the maximum swelling strains were estimated using the em–pe relationship. The good agreement between estimates and experimental data suggest that the em–pe relationship might be an alternative method for predicting the swelling deformation of bentonite–sand mixtures in salt solution.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
The effect of severe warm rolling on microstructure and texture homogeneities was investigated in a lamellar (L12 + B2) AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA). The EHEA 90% warm-rolled at 400 °C showed disordering of the L12 phase and a remarkable increase in hardness. A much finer microstructure was observed on ND-RD (Normal Direction-Rolling Direction) plane as compared with that on the RD-TD (Rolling Direction-Transverse Direction) plane. The L12/Face Centered Cubic (FCC) phase developed α-fiber texture ND//〈110〉 with a particularly strong brass ({110}〈112〉) component, while the B2 phase developed the usual RD (//〈110〉) and ND (//〈111〉) fibers. Nevertheless, inhomogeneities in texture were noticed. Upon annealing at 800 °C, the ND-RD showed an ultrafine microduplex structure, while the RD-TD showed a retained lamellar structure. A rather uniform microduplex structure evolved after annealing at 1200 °C due to the accelerated kinetics of transformation at higher temperatures. The L12/FCC phase showed the retention of the α-fiber components, while the B2 phase showed stronger ND-fiber after annealing, although inhomogeneities in texture existed.
For the first time, an experiment has been conducted to investigate synthetic jet laminar vortex rings impinging onto porous walls with different geometries by time-resolved particle image velocimetry. The geometry of the porous wall is changed by varying the hole diameter on the wall (from 1.0 mm to 3.0 mm) when surface porosity is kept constant ($\unicode[STIX]{x1D719}=75\,\%$). The finite-time Lyapunov exponent and phase-averaged vorticity field derived from particle image velocimetry data are presented to reveal the evolution of the vortical structures. A mechanism associated with vorticity cancellation is proposed to explain the formation of downstream transmitted vortex rings; and both the vortex ring trajectory and the time-mean flow feature are compared between different cases. It is found that the hole diameter significantly influences the evolution of the flow structures on both the upstream and downstream sides of the porous wall. In particular, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), the transmitted finger-type jets will reorganize into a well-formed transmitted vortex ring in the downstream flow. However, for the case of a large hole diameter of $d_{h}^{\ast }=0.20$, the transmitted vortex ring is not well formed because of insufficient vorticity cancellation. Additionally, the residual vorticity gradually evolves into discrete jet-like structures downstream, which further weaken the intensity of the transmitted vortex ring. Consequently, the transmitted flow structures for the $d_{h}^{\ast }=0.20$ case would lose coherence more easily (or probably even transition to turbulence), resulting in a faster decay of the axial velocity and stronger entrainment of the transmitted jet. For all porous wall cases, the velocity profile of the transmitted jet exhibits self-similar behaviour in the far field ($z/D_{0}\geqslant 6.03$), which agrees well with the velocity distribution of free synthetic jets. With the help of the control-volume approach, the time-mean drag of the porous wall is evaluated experimentally for the first time. It is shown that the porous wall drag increases with the decrease in the hole diameter. Moreover, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), it appears that the porous wall drag mainly derives from the viscous effect. However, as $d_{h}^{\ast }$ increases to 0.20, the form drag associated with the porous wall geometry becomes significant.
Disclosing the diagnosis of Alzheimer's disease (AD) to a patient is controversial. There is significant stigma associated with a diagnosis of AD or dementia in China, but the attitude of the society toward disclosure of such a diagnosis had not been formally evaluated prior to our study. Therefore, we aimed to evaluate the attitude toward disclosing an AD diagnosis to patients in China with cognitive impairment from their caregivers, and the factors that may affect their attitude.
Methods:
We designed a 17-item questionnaire and administered this questionnaire to caregivers, who accompanied patients with cognitive impairment or dementia in three major hospitals in Shanghai, China. The caregiver's attitude toward disclosing the diagnosis of AD as evaluated by the questionnaire was compared to that of disclosing the diagnosis of terminal cancer.
Results:
A majority (95.7%) of the 175 interviewed participants (mean 14.2 years of education received) wished to know their own diagnosis if they were diagnosed with AD, and 97.6% preferred the doctor to tell their family members if they were diagnosed with AD. If a family member of the participants suffered from AD, 82.9% preferred to have the diagnosis disclosed to the patient. “Cognitive impairment” was the most accepted term by caregivers to disclose AD diagnosis in Chinese.
Conclusion:
This study suggests most of the well-educated individuals in a Chinese urban area favored disclosing the diagnosis when they or their family members were diagnosed with AD.
This paper presents a novel reconfigurable parallel mechanism, which can serve as a machine tool. The proposed parallel mechanism can change its structure parameters by driving a bevel gear system fixed in the base platform. First, the forward and inverse kinematics of the proposed mechanism are investigated. Second, the reachable workspace and Jacobian matrix are conducted. Based on the Jacobian matrix, the stiffness model and dexterity of the end effector are developed in detail. Finally, a multi-objective optimization is performed by using the Genetic Algorithm, and the workspace and global performance indexes of stiffness as well as the dexterity are considered as the performance indices to improve the performance of the reconfigurable parallel mechanism. Finally, Pareto frontier figure and several tables are provided to illustrate the results of the optimization. The results showed the proposed method has improved the performance of the reconfigurable machine tool in terms of its stiffness and dexterity.
Recent advances in synchrotron based x-ray spectroscopy enable materials scientists to emanate fingerprints on important materials properties, e.g., electronic, optical, structural, and magnetic properties, in real-time and under nearly real-world conditions. This characterization in combination with optimized materials synthesis routes and tailored morphological properties could contribute greatly to the advances in solid-state electronics and renewable energy technologies. In connection to this, such perspective reflects the current materials research in the space of emerging energy technologies, namely photocatalysis, with a focus on transition metal oxides, mainly on the Fe2O3- and TiO2-based materials.
The dynamics of vortical structures in flow over a circular cylinder in the vicinity of a flat plate is investigated using particle image velocimetry (PIV). The cylinder is placed above the flat plate with its axis parallel to the wall and normal to the flow direction. The Reynolds number $Re_{D}$ based on the cylinder diameter $D$ is 1072 and the gap $G$ between the cylinder and the flat plate is varied from gap-to-diameter ratio $G/D=0$ to $G/D=3.0$. The flow statistics and vortex dynamics are strongly dependent on the gap ratio $G/D$. Statistics show that as the cylinder comes close to the wall ($G/D\leqslant 2.0$), the cylinder wake becomes more and more asymmetric and a boundary layer separation is induced on the flat plate downstream of the cylinder. The wake vortex shedding frequency increases with decreasing $G/D$ until a critical gap ratio (about $G/D=0.25$) below which the vortex shedding is irregular. The deflection of the gap flow away from the wall and its following interaction with the upper shear layer may be the cause of the higher shedding frequency. The vortex dynamics is investigated based on the phase-averaged flow field and virtual dye visualization in the instantaneous PIV velocity field. It is revealed that when the cylinder is close to the wall ($G/D=2.0$), the cylinder wake vortices can periodically induce secondary spanwise vortices near the wall. As the cylinder approaches the wall ($G/D=1.0$) the secondary vortex can directly interact with the lower wake vortex, and a further approaching of the cylinder ($G/D=0.5$) can result in more complex interactions among the secondary vortex, the lower wake vortex and the upper wake vortex. The breakdown of vortices into filamentary debris during vortex interactions is clearly revealed by the coloured virtual dye visualizations. For $G/D<0.25$, the lower shear layer is strongly inhibited and only the upper shear layer can shed vortices. Investigation of the vortex formation, evolution and interaction in the flow promotes the understanding of the flow physics for different gap ratios.