Skip to main content Accessibility help
×
Home

Development and homogeneity of microstructure and texture in a lamellar AlCoCrFeNi2.1 eutectic high-entropy alloy severely strained in the warm-deformation regime

  • Seelam Rajasekhar Reddy (a1), Upender Sunkari (a1), Adrianna Lozinko (a2), Sheng Guo (a2) and Pinaki Prasad Bhattacharjee (a1)...

Abstract

The effect of severe warm rolling on microstructure and texture homogeneities was investigated in a lamellar (L12 + B2) AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA). The EHEA 90% warm-rolled at 400 °C showed disordering of the L12 phase and a remarkable increase in hardness. A much finer microstructure was observed on ND-RD (Normal Direction-Rolling Direction) plane as compared with that on the RD-TD (Rolling Direction-Transverse Direction) plane. The L12/Face Centered Cubic (FCC) phase developed α-fiber texture ND//〈110〉 with a particularly strong brass ({110}〈112〉) component, while the B2 phase developed the usual RD (//〈110〉) and ND (//〈111〉) fibers. Nevertheless, inhomogeneities in texture were noticed. Upon annealing at 800 °C, the ND-RD showed an ultrafine microduplex structure, while the RD-TD showed a retained lamellar structure. A rather uniform microduplex structure evolved after annealing at 1200 °C due to the accelerated kinetics of transformation at higher temperatures. The L12/FCC phase showed the retention of the α-fiber components, while the B2 phase showed stronger ND-fiber after annealing, although inhomogeneities in texture existed.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: pinakib@iith.ac.in

References

Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).
2.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213218 (2004).
3.Zhao, Y.J., Qiao, J.W., Ma, S.G., Gao, M.C., Yang, H.J., Chen, M.W., and Zhang, Y.: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 1015 (2016).
4.Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 19841992 (2014).
5.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).10.1016/j.pmatsci.2013.10.001
6.Yeh, J.W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 17591771 (2013).
7.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 6201, 11531158 (2014).
8.Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).
9.Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).
10.Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494525 (2014).
11.Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 685, 342348 (2017).
12.Liu, W., Lu, Z., He, J., Luan, J., Wang, Z., Liu, B., Liu, Y., Chen, M., and Liu, C.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332342 (2016).
13.Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183202 (2016).
14.Li, Z.M., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).
15.Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124133 (2015).
16.Zhang, Z., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., , E.P., Yu, Q., and Ritchie, R.O.: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).
17.Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., Wen, B., Wang, Z.J., Jie, J.C., Cao, Z.Q., Ruan, H.H., and Li, T.J.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).
18.Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H., Zhao, Y., Cao, Z., and Li, T.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143150 (2017).
19.Wani, I.S., Bhattacharjee, T., Sheikh, S., Lu, Y.P., Chatterjee, S., Bhattacharjee, P.P., Guo, S., and Tsuji, N.: Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Res. Lett. 4, 174179 (2016).
20.Wani, I.S., Bhattacharjee, T., Sheikh, S., Bhattacharjee, P.P., Guo, S., and Tsuji, N.: Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng., A 675, 99109 (2016).
21.Wani, I., Bhattacharjee, T., Sheikh, S., Lu, Y., Chatterjee, S., Guo, S., Bhattacharjee, P., and Tsuji, N.: Effect of severe cold-rolling and annealing on microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy. IOP Conf. Ser.: Mater. Sci. Eng. 194, 012018 (2017).10.1088/1757-899X/194/1/012018
22.Wani, I., Bhattacharjee, T., Sheikh, S., Clark, I., Park, M., Okawa, T., Guo, S., Bhattacharjee, P., and Tsuji, N.: Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 84, 4251 (2017).
23.Bhattacharjee, T., Wani, I.S., Sheikh, S., Clark, I.T., Okawa, T., Guo, S., Bhattacharjee, P.P., and Tsuji, N.: Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018).
24.Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd ed., Vol. 24 (Elsevier, Oxford, U.K., 2004); p. 25.
25.Wani, I.S., Sathiaraj, G.D., Ahmed, M.Z., Reddy, S.R., and Bhattacharjee, P.P.: Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al0.5CoCrFeMnNi high entropy alloy. Mater. Charact. 118, 417424 (2016).
26.Furuhara, T., Mizoguchi, T., and Maki, T.: Ultra-fine (α + θ) duplex structure formed by cold rolling and annealing of pearlite. ISIJ Int. 45, 392398 (2005).
27.Ball, J. and Gottstein, G.: Large-strain deformation of Ni3Al + B: Part III microstructure, long-range order and mechanical-properties of deformed and recrystallized Ni3Al + B. Intermetallics 2, 205219 (1994).
28.Ciuca, O., Tsuchiya, K., Yokoyama, Y., Todaka, Y., and Umemoto, M.: Heterogeneous process of disordering and structural refinement in Ni3Al during severe plastic deformation by high-pressure torsion. Mater. Trans. 51, 1422 (2010).
29.Rentenberger, C. and Karnthaler, H.P.: On the evolution of a deformation induced nanostructure in a Ni3Al alloy. Acta Mater. 53, 30313040 (2005).
30.Rentenberger, C. and Karnthaler, H.P.: Extensive disordering in long-range-ordered Cu3Au induced by severe plastic deformation studied by transmission electron microscopy. Acta Mater. 56, 25262530 (2008).
31.Jang, J.S.C. and Koch, C.C.: Amorphization and disordering of the Ni3Al ordered intermetallic by mechanical milling. J. Mater. Res. 5, 498510 (1990).
32.Dadras, M.M. and Morris, D.G.: Mechanical disordering of Fe–28% Al–4% Cr alloy. Scr. Mater. 28, 12451250 (1993).
33.Ray, R.K.: Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys. Acta Mater. 43, 38613872 (1995).
34.Symons, D.M.: Hydrogen embrittlement of Ni–Cr–Fe alloys. Metall. Mater. Trans. A 28, 655663 (1997).
35.Gallagher, P.C.J.: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1, 24292461 (1970).
36.Leffers, T. and Ray, R.K.: The brass-type texture and its deviation from the copper-type texture. Prog. Mater. Sci. 54, 351396 (2009).
37.Madhavan, R., Ray, R.K., and Suwas, S.: Texture transition in cold-rolled nickel–40 wt% cobalt alloy. Acta Mater. 74, 151164 (2014).10.1016/j.actamat.2014.03.066
38.Madhavan, R., Ray, R.K., and Suwas, S.: New insights into the development of microstructure and deformation texture in nickel–60 wt% cobalt alloy. Acta Mater. 78, 222235 (2014).
39.Deng, J., Yang, Y., Wang, Y., Chen, J., and Peng, R.: Texture evolution in heavily cold-rolled FeCo–2V alloy during annealing. J. Mater. Sci. Technol. 25, 219224 (2009).
40.Raabe, D. and Keichel, J.: On the inhomogeneity of the crystallographic rolling texture of polycrystalline Fe3Al. J. Mater. Res. 11, 16941701 (2011).
41.Raabe, D., Keichel, J., and Sun, Z.: Microstructure and crystallographic texture of rolled polycrystalline Fe3Al. J. Mater. Sci. 31, 339344 (1996).
42.Kad, B.K., Schoenfeld, S.E., Asaro, R.J., McKamey, C.G., and Sikka, V.K.: Deformation textures in Fe3Al alloys: An assessment of dominant slip system activity in the 900–1325 K temperature range of hot working. Acta Mater. 45, 13331350 (1997).
43.Ahmed, M.Z. and Bhattacharjee, P.P.: Evolution of microstructure and texture during isothermal annealing of a heavily warm-rolled duplex steel. ISIJ Int. 54, 28442853 (2014).
44.Verlinden, B., Driver, J., Samajdar, I., and Doherty, R.D.: Thermo-mechanical Processing of Metallic Materials, 1st ed., Vol. 11 (Elsevier, Oxford, U.K., 2007); p. 179.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed