Skip to main content Accessibility help
×
Home

Prediction for swelling deformation of fractal-textured bentonite and its sand mixtures in salt solution

  • Guo-sheng Xiang (a1) (a2), Feng Yu (a1), Yong-fu Xu (a2), Yuan Fang (a1) and Sheng-hua Xie (a1)...

Abstract

Swelling deformation tests of Kunigel bentonite and its sand mixtures were performed in distilled water and NaCl solution. The salinity of NaCl solution has a significant impact on the swelling properties of bentonite, but not on its surface structure. The surface structure was characterized using the fractal dimension Ds. Based on the fractal dimension, a unique curve of the empe relationship (em is the void ratio of montmorillonite and pe is the effective stress) at full saturation was introduced to express the swelling deformation of bentonite–sand mixtures. In mixtures with a large bentonite content, the swelling deformation always followed the empe relationship. In mixtures with a small bentonite content, when the effective stress reached a threshold, the void ratio of montmorillonite em deviated from the unique empe curve due to the appearance of a sand skeleton. The threshold of vertical pressure for mixtures in different solutions and the maximum swelling strains were estimated using the empe relationship. The good agreement between estimates and experimental data suggest that the empe relationship might be an alternative method for predicting the swelling deformation of bentonite–sand mixtures in salt solution.

Copyright

Corresponding author

Footnotes

Hide All

Associate Editor: Stephan Kaufhold

Footnotes

References

Hide All
Chen, Y.G., Zhu, C.M., Ye, W.M., Cui, Y.J. & Chen, B. (2016) Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite. Applied Clay Science, 124–125, 1120.
Gökalp, Z., Başaran, M. & Uzun, O. (2011) Compaction and swelling characteristics of sand–bentonite and pumice–bentonite mixtures. Clay Minerals, 46, 449459.
Helmy, A.K., Ferreiro, E.A., Bussetti, S.G.D. & Peinemann, N. (1998) Surface areas of kaolin, α-Fe2O3, and hydroxyl-Al montmorillonite. Colloid and Polymer Science, 276, 539543.
Kaufhold, S. & Dohrmann, R. (2016) Distinguishing between more and less suitable bentonites for storage of high-level radioactive waste. Clay Minerals, 51, 289302.
Kaufhold, S., Dohrmann, R., Götze, N. & Svensson, D. (2017) Characterisation of the second parcel of the alternative buffer material (ABM) experiment – I mineralogical reactions. Clays and Clay Minerals, 65, 2741.
Komine, H.K., Yasuhara, K.Y. & Murakami, S.M. (2009) Swelling characteristics of bentonites in artificial seawater. Canadian Geotechnical Journal, 46, 177189.
Liu, L. (2013) Prediction of swelling pressures of different types of bentonite in dilute solutions. Colloids and Surfaces. A Physicochemical and Engineering Aspects, 434, 303318.
Low, P.F. (1980) The swelling of clay. II. Montmorillonites. Soil Science Society of America Journal, 44, 667676.
Mollins, L.H., Stewart, D.I. & Cousens, T.W. (1996) Predicting the properties of bentonite–sand mixtures. Clay Minerals, 31, 243252.
Rao, S.M. & Shivananda, P. (2005) Role of osmotic suction in swelling of salt-amended clays. Canadian Geotechnical Journal, 42, 307315.
Rao, S.M. & Thyagaraj, T. (2007) Swell–compression behaviour of compacted clays under chemical gradient. Canadian Geotechnical Journal, 44, 520532.
Risović, D., Mahović Poljaček, S., Furić, K. & Gojo, M. (2008) Inferring fractal dimension of rough/porous surfaces – a comparison of SEM image analysis and electrochemical impedance spectroscopy methods. Applied Surface Science, 255, 30633070.
Saiyouri, N., Tessier, D. & Hicher, P.Y. (2004) Experimental study of swelling in unsaturated compacted clays. Clay Minerals, 39, 469479.
Schanz, T. & Tripathy, S. (2009) Swelling pressure of a divalent-rich bentonite: diffuse double-layer theory revisited. Water Resources Research, 45, W00C12.
Siddiqua, S.S., Blatz, J.B. & Siemens, G.S. (2011) Evaluation of the impact of pore fluid chemistry on the hydro-mechanical behavior of clay based sealing materials. Canadian Geotechnical Journal, 48, 199213.
Studds, P.G., Stewart, D.I. & Cousens, T.W. (1998) The effects of salt solutions on the properties of bentonite–sand mixtures. Clay Minerals, 33, 651661.
Sun, D., Cui, H. & Sun, W. (2009) Swelling of compacted sand–bentonite mixtures. Applied Clay Science, 43, 485492.
Tripathy, S., Bag, R. & Thomas, H.R. (2014) Effects of post-compaction residual lateral stress and electrolyte concentration on swelling pressures of a compacted bentonite. Geotechnical and Geological Engineering, 32, 749763.
Tripathy, S., Sridharan, A. & Schanz, T. (2004) Swelling pressures of compacted bentonites from diffuse double layer theory. Canadian Geotechnical Journal, 41, 437450.
Viani, B.E., Low, P.F. & Roth, C.B. (1983) Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. Journal of Colloid and Interface Science, 96, 229244.
Xiang, G.S., Xu, Y.F. & Jiang, H. (2014) Surface fractal dimension of bentonite and its application in calculation of swelling deformation. Surface Review and Letters, 21, 1450074.
Xu, Y.F., Matsuoka, H. & Sun, D.A. (2003) Swelling characteristics of fractal-textured bentonite and its mixtures. Applied Clay Science, 22, 197209.
Xu, Y.F., Xiang, G.S., Jiang, H., Chen, T. & Chu, F.F. (2014) Role of osmotic suction in volume change of clays in salt solution. Applied Clay Science, 101, 354361.
Ye, W.M., Zhang, F., Chen, Y.G., Chen, B. & Cui, Y.J. (2017) Influences of salt solutions and salinization–desalinization processes on the volume change of compacted GMZ01 bentonite. Engineering Geology, 222, 140145.
Yigzaw, Z.G., Cuisinier, O., Massat, L. & Masrouri, F. (2016) Role of different suction components on swelling behavior of compacted bentonites. Applied Clay Science, 120, 8190.
Yong, R.N. (1999) Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Engineering Geology, 54, 313.
Yong, R.N. & Mohamed, A.M.O. (1992) A study of particle interaction energies in wetting of unsaturated expensive; clays. Canadian Geotechnical Journal, 29, 10601070.
Yustres, A., Jenni, A., Asensio, L., Pintado, X., Koskinen, K., Navarro, V. & Wersin, P. (2017) Comparison of the hydrogeochemical and mechanical behaviours of compacted bentonite using different conceptual approaches. Applied Clay Science, 141, 280291.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed