We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
Student's t test is valid for statistical inference under the normality assumption or asymptotically. By contrast, although the bootstrap t test was proposed in 1993, it is seldom adopted in medical research. We aim to demonstrate that the bootstrap t test outperforms Student's t test under normality in data. Using random data samples from normal distributions, we evaluated the testing performance, in terms of true-positive rate (TPR) and false-positive rate and diagnostic abilities, in terms of the area under the curve (AUC), of the bootstrap t test and Student's t test. We explore the AUC of both tests with varying sample size and coefficient of variation. We compare the testing outcomes using the COVID-19 serial interval (SI) data in Shenzhen and Hong Kong, China, for demonstration. With fixed TPR, the bootstrap t test maintained the equivalent accuracy in TPR, but significantly improved the true-negative rate from the Student's t test. With varying TPR, the diagnostic ability of bootstrap t test outperformed or equivalently performed as Student's t test in terms of the AUC. The equivalent performances are possible but rarely occur in practice. We find that the bootstrap t test outperforms by successfully detecting the difference in COVID-19 SI, which is defined as the time interval between consecutive transmission generations, due to sex and non-pharmaceutical interventions against the Student's t test. We demonstrated that the bootstrap t test outperforms Student's t test, and it is recommended to replace Student's t test in medical data analysis regardless of sample size.
The onset of magnetic reconnection in space, astrophysical and laboratory plasmas is reviewed discussing results from theory, numerical simulations and observations. After a brief introduction on magnetic reconnection and approach to the question of onset, we first discuss recent theoretical models and numerical simulations, followed by observations of reconnection and its effects in space and astrophysical plasmas from satellites and ground-based detectors, as well as measurements of reconnection in laboratory plasma experiments. Mechanisms allowing reconnection spanning from collisional resistivity to kinetic effects as well as partial ionization are described, providing a description valid over a wide range of plasma parameters, and therefore applicable in principle to many different astrophysical and laboratory environments. Finally, we summarize the implications of reconnection onset physics for plasma dynamics throughout the Universe and illustrate how capturing the dynamics correctly is important to understanding particle acceleration. The goal of this review is to give a view on the present status of this topic and future interesting investigations, offering a unified approach.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
‘Recurrence’ of coronavirus disease 2019 (COVID-19) has triggered numerous discussions of scholars at home and abroad. A total of 44 recurrent cases of COVID-19 and 32 control cases admitted from 11 February to 29 March 2020 to Guanggu Campus of Tongji Hospital affiliated to Tongji Medical College Huazhong University of Science and Technology were enrolled in this study. All the 44 recurrent cases were classified as mild to moderate when the patients were admitted for the second time. The gender and mean age in both cases (recurrent and control) were similar. At least one concomitant disease was observed in 52.27% recurrent cases and 34.38% control cases. The most prevalent comorbidity among them was hypertension. Fever and cough being the most prevalent clinical symptoms in both cases. On comparing both the cases, recurrent cases had markedly elevated concentrations of alanine aminotransferase (ALT) (P = 0.020) and aspartate aminotransferase (AST) (P = 0.007). Moreover, subgroup analysis showed mild to moderate abnormal concentrations of ALT and AST in recurrent cases. The elevated concentrations of ALT and AST may be recognised as predictive markers for the risk of ‘recurrence’ of COVID-19, which may provide insights into the prevention and control of COVID-19 in the future.
To conduct international comparisons of self-reports, collateral reports, and cross-informant agreement regarding older adult psychopathology.
Participants:
We compared self-ratings of problems (e.g. I cry a lot) and personal strengths (e.g. I like to help others) for 10,686 adults aged 60–102 years from 19 societies and collateral ratings for 7,065 of these adults from 12 societies.
Measurements:
Data were obtained via the Older Adult Self-Report (OASR) and the Older Adult Behavior Checklist (OABCL; Achenbach et al., 2004).
Results:
Cronbach’s alphas were .76 (OASR) and .80 (OABCL) averaged across societies. Across societies, 27 of the 30 problem items with the highest mean ratings and 28 of the 30 items with the lowest mean ratings were the same on the OASR and the OABCL. Q correlations between the means of the 0–1–2 ratings for the 113 problem items averaged across all pairs of societies yielded means of .77 (OASR) and .78 (OABCL). For the OASR and OABCL, respectively, analyses of variance (ANOVAs) yielded effect sizes (ESs) for society of 15% and 18% for Total Problems and 42% and 31% for Personal Strengths, respectively. For 5,584 cross-informant dyads in 12 societies, cross-informant correlations averaged across societies were .68 for Total Problems and .58 for Personal Strengths. Mixed-model ANOVAs yielded large effects for society on both Total Problems (ES = 17%) and Personal Strengths (ES = 36%).
Conclusions:
The OASR and OABCL are efficient, low-cost, easily administered mental health assessments that can be used internationally to screen for many problems and strengths.
Using frequency-modulated continuous wave radar data from the 32nd Chinese Antarctic Research Expedition in 2015/16, subsurface profiles were obtained along an East Antarctic inland traverse from Zhongshan station to Dome A, and four distinct regions were selected to analyze the spatiotemporal variability in historical surface mass balance (SMB). Based on depth, density, and age data from ice cores along the traverse, the radar data were calibrated to yield average SMB data. The zone 49–195 km from the coast has the highest SMB (235 kg m−2 a−1). The 780–892 km zone was most affected by the Medieval Warm Period and the Little Ice Age, and the SMB during ad 1454–1836 (71 kg m−2 a−1) was only one-quarter of that in the 20th century. The SMB in the 1080–1157 km zone fluctuates the most, possibly due to erosion or irregular deposition of snow by katabatic winds in low SMB areas with surface elevation fluctuations. Dome A (1157–1236 km) has the lowest SMB (29 kg m−2 a−1) and did not decrease during Little Ice Age. Understanding the spatiotemporal variability of SMB in a larger space can help us understand the complex climate history of Antarctica.
Previous work led to the proposal that the precision feeding of a high-concentrate diet may represent a potential method with which to enhance feed efficiency (FE) when rearing dairy heifers. However, the physiological and metabolic mechanisms underlying this approach remain unclear. This study used metabolomics analysis to investigate the changes in plasma metabolites of heifers precision-fed diets containing a wide range of forage to concentrate ratios. Twenty-four half-sib Holstein heifers, with a similar body condition, were randomly assigned into four groups and precision fed with diets containing different proportions of concentrate (20%, 40%, 60% and 80% based on DM). After 28 days of feeding, blood samples were collected 6 h after morning feeding and gas chromatography time-of-flight/MS was used to analyze the plasma samples. Parameters of oxidative status were also determined in the plasma. The FE (after being corrected for gut fill) increased linearly (P < 0.01) with increasing level of dietary concentrate. Significant changes were identified for 38 different metabolites in the plasma of heifers fed different dietary forage to concentrate ratios. The main pathways showing alterations were clustered into those relating to carbohydrate and amino acid metabolism; all of which have been previously associated with FE changes in ruminants. Heifers fed with a high-concentrate diet had higher (P < 0.01) plasma total antioxidant capacity and superoxide dismutase but lower (P ≤ 0.02) hydroxyl radical and hydrogen peroxide than heifers fed with a low-concentrate diet, which might indicate a lower plasma oxidative status in the heifers fed a high-concentrate diet. Thus, heifers fed with a high-concentrate diet had higher FE and antioxidant capacity but a lower plasma oxidative status as well as changed carbohydrate and amino acid metabolism. Our findings provide a better understanding of how forage to concentrate ratios affect FE and metabolism in the precision-fed growing heifers.
We present a long-term seasonal tree ring cellulose oxygen isotope (δ18Oc) time series created by analyzing four segments (S1, S2, S3, and S4) per year during the period of 1951–2009 from southeastern Tibetan Plateau. This intraseasonal δ18Oc reveals the onset and mature phase of the summer monsoon precipitation in this region. Analysis indicates that the δ18Oc of S1 has the strongest correlation with precipitation during the regional monsoon onset (29–33 pentads, May 21–June 10, r = −0.69), and the δ18Oc values for S2, S3, and S4 correlate strongly with June, July, and August precipitation, respectively. Combined δ18Oc of S2, S3, and S4 shows the most robust correlation (r = −0.82) with the mature-phase monsoon precipitation (June-July-August, JJA), passing rigorous statistical tests for calibration and verification in dendroclimatology. These results demonstrate the feasibility in using long-term intraseasonal δ18Oc to reconstruct the Asian summer monsoon's intraseasonal variations.
The present study was designed to detect three single nucleotide polymorphisms (SNPs) located on 22q11 that was thought as being of particularly importance for genetic research into schizophrenia. We recruited a total of 176 Chinese family trios of Han descent, consisting of mothers, fathers and affected offspring with schizophrenia for the genetic analysis. The transmission disequilibrium test (TDT) showed that of three SNPs, rs10314 in the 3′-untranslated region of the CLDN5 locus was associated with schizophrenia (χ2 = 4.75, P = 0.029). The other two SNPs, rs1548359 present in the CDC45L locus centromeric of rs10314 and rs739371 in the 5′-flanking region of the CLDN5 locus, did not show such an association. The global chi-square (χ2) test showed that the 3-SNP haplotype system was not associated with schizophrenia although the 1-df test for individual haplotypes showed that the rs1548359(C)-rs10314(G)-rs739371(C) haplotype was excessively non-transmitted (χ2 = 5.32, P = 0.02). Because the claudin proteins are a major component for barrier-forming tight junctions that could play a crucial role in response to changing natural, physiological and pathological conditions, the CLDN5 association with schizophrenia may be an important clue leading to look into a meeting point of genetic and environmental factors.
The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among patients with SSD, major depressive disorder (MDD) and healthy controls.
Methods
Gene expression profiling was conducted in peripheral blood leucocytes from drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group) using global mRNA expression arrays. Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step.
Results
We identified SSD and MDD gene signatures from blood-based gene expression profile and build a SSD- MDD disorder model with higher predictive power. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (P <= 5.0E-4) and 30 differentially expressed MDD signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy.
Conclusion
Blood cell-derived RNA may have significant value for performing diagnostic functions and identifying disease biomarkers in SSD and MDD. These 48 gene model could classify SSD, MDD, and healthy controls.
Major depressive disorder (MDD) is the second leading cause of disability in China.
Objective
To analyze functioning during the course of treating MDD in China, Taiwan and Hong Kong.
Aims
To study the influence of pain and clinical remission on functioning.
Methods
This was a post-hoc analysis of a 6-month, prospective, observational study (n = 909) with 422 patients enrolled from China (n = 205; 48.6%), Taiwan (n = 199; 47.2%) and Hong Kong (n = 18; 4.2%). Functioning was measured with the Sheehan Disability Scale (SDS), pain with the Somatic Symptom Inventory, and severity of depression with the Quick Inventory of Depressive Symptomatology-Self Report 16 (QIDS). Patients were classified as having no pain, persistent pain (pain at any visit) or remitted pain (pain only at baseline). A mixed model with repeated measures was fitted to analyze the relationship between pain and functioning.
Results
At baseline, 40% of the patients had painful physical symptoms. Patients with pain had a higher QIDS and lower SDS (P < 0.05) at baseline. At 6 months, patients with persistent pain had lower functioning (P < 0.05). The regression model confirmed that clinical remission was associated with higher functioning at endpoint and that patients with persistent pain had lower functioning at endpoint when compared with the no pain group.
Conclusions
Patients presenting with pain symptoms had lower functioning at baseline. At 6 months, pain persistence was associated with significantly lower functioning as measured by the SDS. Clinical remission was associated with better functional outcomes. The course of pain was related to the likelihood of achieving remission.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
We examine the dynamics of a thin film composed of a non-evaporative silicone oil (high surface tension) with trace amounts of an evaporative silicone oil (low surface tension) over an air bubble. An evaporating thin liquid film is formed atop a capillary-pinned air bubble by squeezing then holding the bubble against the air–silicone oil interface. Despite the simplicity of the system, complex oscillatory dynamical behaviour has been observed. Through interferometric experiments and numerical simulations, we show that as the bubble is moved towards the opposite interface, a dimple forms and during the subsequent holding period the dimple spontaneously oscillates. The evaporation-driven solutal–thermal Marangoni flow thickens the film and capillarity subsequently discharges the dimple. Solutal and thermal Marangoni flows both contribute to film thickening and as the local concentration of the non-evaporative species increases, the strength of the Marangoni flows increases. The oscillation frequency and waveform depend on initial composition and the maximum dimple volume. We suggest that these oscillatory solutions and the associated mechanism are a partial explanation for the film stabilization in multicomponent oils, reported experimentally in a recent publication (Chandran Suja et al., Proc. Natl Acad. Sci., vol. 115, 2018, pp. 7919–7924).
The Asian elephant Elephas maximus is at risk of extinction as a result of anthropogenic pressures, and remaining populations are often small and fragmented remnants, occupying a fraction of the species' former range. Once widely distributed across China, only a maximum of 245 elephants are estimated to survive across seven small populations. We assessed the Asian elephant population in Nangunhe National Nature Reserve in Lincang Prefecture, China, using camera traps during May–July 2017, to estimate the population size and structure of this genetically important population. Although detection probability was low (0.31), we estimated a total population size of c. 20 individuals, and an effective density of 0.39 elephants per km2. Social structure indicated a strong sex ratio bias towards females, with only one adult male detected within the population. Most of the elephants associated as one herd but three adult females remained separate from the herd throughout the trapping period. These results highlight the fragility of remnant elephant populations such as Nangunhe and we suggest options such as a managed metapopulation approach for their continued survival in China and more widely.
Lassa fever (LF) is increasingly recognised as an important rodent-borne viral haemorrhagic fever presenting a severe public health threat to sub-Saharan West Africa. In 2017–18, LF caused an unprecedented epidemic in Nigeria and the situation was worsening in 2018–19. This work aims to study the epidemiological features of epidemics in different Nigerian regions and quantify the association between reproduction number (R) and state rainfall. We quantify the infectivity of LF by the reproduction numbers estimated from four different growth models: the Richards, three-parameter logistic, Gompertz and Weibull growth models. LF surveillance data are used to fit the growth models and estimate the Rs and epidemic turning points (τ) in different regions at different time periods. Cochran's Q test is further applied to test the spatial heterogeneity of the LF epidemics. A linear random-effect regression model is adopted to quantify the association between R and state rainfall with various lag terms. Our estimated Rs for 2017–18 (1.33 with 95% CI 1.29–1.37) was significantly higher than those for 2016–17 (1.23 with 95% CI: (1.22, 1.24)) and 2018–19 (ranged from 1.08 to 1.36). We report spatial heterogeneity in the Rs for epidemics in different Nigerian regions. We find that a one-unit (mm) increase in average monthly rainfall over the past 7 months could cause a 0.62% (95% CI 0.20%–1.05%)) rise in R. There is significant spatial heterogeneity in the LF epidemics in different Nigerian regions. We report clear evidence of rainfall impacts on LF epidemics in Nigeria and quantify the impact.
In the livestock husbandry compensatory growth may be explored as a means to improve nutrient utilization, to reduce gut health problems due to excess protein intake, to simplify feeding strategies and thus to improve production efficiencies. This study investigated the effects of early protein restriction (EPR) and early antibiotic intervention (EAI) on growth performance, intestinal morphology, colonic bacteria, metabolites and mucosal gene expressions during the restriction phase and re-alimentation phase. A total of 64 piglets (10.04 ± 0.73 kg) were randomly divided into four treatment groups according to a 2 × 2 factorial arrangement with two levels of proteins (14% v. 20%) and two levels of antibiotics (0 v. 50 mg/kg kitasamycin and 20 mg/kg colistin sulphate). After a 30-day restriction phase with four kinds of diets, all groups were fed the same diets for another 74 days. The results showed that EPR decreased BW, average daily gain (ADG), average daily feed intake in the restriction phase (P < 0.01) and increased ADG on days 66 to 104 of the late re-alimentation phase. Early protein restriction could decrease the villus height in the jejunum (P < 0.05), while shifting to the same diets restored the villus height. Meanwhile, during the re-alimentation phase, pigs in the protein restriction groups had increased concentrations of total short chain fatty acids (P < 0.05), and modified the abundances of Firmicutes and Bacteroidetes in the colon. Furthermore, the lower microbial diversity caused by EPR was improved, and gene expression analysis indicated a better barrier function in the colon. During the whole trial, EAI had no interaction with EPR and played a dispensable role in compensatory growth. Collectively, the retardation of growth caused by EPR can be compensated for in the later stages of pig raising, and accompanied by altered intestinal morphology, microbial composition.
Estimating the feed intake of grazing herbivores is critical for determining their nutrition, overall productivity and utilization of grassland resources. A 17-day indoor feeding experiment was conducted to evaluate the potential use of Medicago sativa as a natural supplement for estimating the total feed intake of sheep. A total of 16 sheep were randomly assigned to four diets (four sheep per diet) containing a known amount of M. sativa together with up to seven forages common to typical steppes. The diets were: diet 1, M. sativa + Leymus chinensis + Puccinellia distans; diet 2, species in diet 1 + Phragmites australis; diet 3, species in diet 2 + Chenopodium album + Elymus sibiricus; and diet 4, species in diet 3 + Artemisia scoparia + Artemisia tanacetifolia. After faecal marker concentrations were corrected by individual sheep recovery, treatment mean recovery or overall recovery, the proportions of M. sativa and other dietary forages were estimated from a combination of alkanes and long-chain alcohols using a least-square procedure. Total intake was the ratio of the known intake of M. sativa to its estimated dietary proportion. Each dietary component intake was obtained using total intake and the corresponding dietary proportions. The estimated values were compared with actual values to assess the estimation accuracy. The results showed that M. sativa exhibited a distinguishable marker pattern in comparison to the other dietary forage species. The accuracy of the dietary composition estimates was significantly (P < 0.001) affected by both diet diversity and the faecal recovery method. The proportion of M. sativa and total intake across all diets could be accurately estimated using the individual sheep or the treatment mean recovery methods. The largest differences between the estimated and observed total intake were 2.6 g and 19.2 g, respectively, representing only 0.4% and 2.6% of the total intake. However, they were significantly (P < 0.05) biased for most diets when using the overall recovery method. Due to the difficulty in obtaining individual sheep recovery under field conditions, treatment mean recovery is recommended. This study suggests that M. sativa, a natural roughage instead of a labelled concentrate, can be utilized as a dietary supplement to accurately estimate the total feed intake of sheep indoors and further indicates that it has potential to be used in steppe grassland of northern China, where the marker patterns of M. sativa differ markedly from commonly occurring plant species.
Clozapine treatment increases the risk of agranulocytosis, but findings on the epidemiology of agranulocytosis have been inconsistent. This meta-analysis examined the prevalence of agranulocytosis and related death in clozapine-treated patients.
Methods
A literature search in the international (PubMed, PsycINFO, and EMBASE) and Chinese (WanFang, Chinese National Knowledge Infrastructure, and Sinomed) databases was conducted. Prevalence estimates of agranulocytosis and related death in clozapine-treated patients were synthesized with the Comprehensive Meta-Analysis program using the random-effects model.
Results
Thirty-six studies with 260 948 clozapine-treated patients published between 1984 and 2018 were included in the meta-analysis. The overall prevalence of agranulocytosis and death caused by agranulocytosis were 0.4% (95% CI 0.3–0.6%) and 0.05% (95% CI 0.03–0.09%), respectively. The prevalence of agranulocytosis was moderated by sample size, study quality, year of publication, and that of data collection.
Conclusions
The prevalence of clozapine-associated agranulocytosis is low. Agranulocytosis-related death appears rare.