We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The butterfly plastic zone theory based on Mohr Coulomb criterion has been widely used in coal mine production. In order to verify the universality of the theory, it is necessary to compare the distribution of plastic zone under different strength criteria. Based on the elastic-plastic mechanics, the principal stress distribution function around the circular tunnel is deduced in the paper, and the boundary and radius of the plastic zone under different strength criteria are calculated. The results show that the change laws of the plastic zone around the circular tunnel under different strength criteria has the following commonness: firstly, with the increase of the lateral pressure coefficient, the shape of the plastic zone presents the change laws of “circle ellipse butterfly”; Secondly, with the increase of the lateral pressure coefficient, the radius of the plastic zone is exponential distribution, while the characteristic value is different when the radius of the plastic zone is infinite. At same time, it shows that the butterfly plastic zone has a low sensitivity dependence on the strength criterion, no matter which strength criterion is adopted, and the butterfly plastic zone will inevitably appear in the surrounding rock mass of circular tunnel in the high deviator stress environment; The plastic zone with butterfly shape is highly sensitive to the stress change, and the small stress change may promote the expansion of the plastic zone. This result is significant for us to understand and prevent rock engineering disasters and accidents.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
To investigate the value of narrow-band imaging training for differentiating between benign and malignant vocal fold leukoplakia.
Method
Thirty cases of vocal fold leukoplakia were selected.
Results
Narrow-band imaging endoscopy training had a significant positive effect on the specificity of the differential diagnosis of vocal fold leukoplakia. In addition, the consistency of diagnostic typing of vocal fold leukoplakia by narrow-band imaging improved to ‘moderate agreement’ following the combination of types I and II and the combination of types IV, V and VI in the typing of vocal fold leukoplakia.
Conclusion
The narrow-band imaging training course may improve the ability of laryngologists to diagnose vocal fold leukoplakia. The new endoscopic diagnostic classification by narrow-band imaging needs to be further simplified to facilitate clinical application.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$ T), compact ($R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of $H_{98,y2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$ keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
Fat metabolism is an important and complex biochemical reaction in vivo and is regulated by many factors. Recently, the findings on high expression of fibroblast growth factor-16 (FGF16) in brown adipose tissue have led to an interest in exploring its role in lipogenesis and lipid metabolism. The study cloned the goat’s FGF16 gene 624 bp long, including the complete open reading frame that encodes 207 amino acids. We found that FGF16 expression is highest in goat kidneys and hearts, followed by subcutaneous fat and triceps. Moreover, the expression of FGF16 reached its peak on the 2nd day of adipocyte differentiation (P < 0.01) and then decreased significantly. We used overexpression and interference to study the function of FGF16 gene in goat intramuscular preadipocytes. Silencing of FGF16 decreased adipocytes lipid droplet aggregation and triglyceride synthesis. This is in contrast to the situation where FGF16 is overexpressed. Furthermore, knockdown of FGF16 also caused down-regulated expression of genes associated with adipocyte differentiation including CCAAT enhancer-binding protein beta (P < 0.01), fatty acid-binding protein-2 (P < 0.01) and sterol regulatory element binding protein-1 (P < 0.05), but the preadipocyte factor-1 was up-regulated. At the same time, the genes adipose triglyceride lipase (P < 0.01) and hormone-sensitive lipase (P < 0.05) associated with triglyceride breakdown were highly expressed. Next, we locked the fibroblast growth factor receptor-4 (FGFR4) through the protein interaction network and interfering with FGF16 to significantly reduce FGFR4 expression. It was found that the expression profile of FGFR4 in adipocyte differentiation was highly similar to that of FGF16. Overexpression and interference methods confirmed that FGFR4 and FGF16 have the same promoting function in adipocyte differentiation. Finally, using co-transfection technology, pc-FGF16 and siRNA-FGFR4, siRNA2-FGF16 and siRNA-FGFR4 were combined to treat adipocytes separately. It was found that in the case of overexpression of FGF16, cell lipid secretion and triglyceride synthesis showed a trend of first increase and then decrease with increasing interference concentration. In the case of interference with FGF16, lipid secretion and triglyceride synthesis showed a downward trend with the increase of interference concentration. These findings illustrated that FGF16 mediates adipocyte differentiation via receptor FGFR4 expression and contributed to further study of the functional role of FGF16 in goat fat formation.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Flexibility is one of the important mechanical performance parameters of stent. The flexibility of tapered stents, especially self-expanding tapered stents, remains unknown. In this study, we developed a new selfexpanding tapered stent for tapered arteries and performed a numerical investigation of stent flexibility by using finite element method. The effect of stent design parameters, including taper and link space width, on stent flexibility was studied. The flexibility of the proposed stent was also compared with that of traditional cylindrical stents. Results show that the tapered stent is more flexible than the traditional cylindrical stent. Furthermore, the flexibility of the tapered stent increases with increasing stent taper and stent link space width. The increase in the stent link space width can contribute to the reduction in the peak stress. Therefore, tapered stents with high link space width will improve the stent flexibility. This work provides useful information for improvement of stent design and clinical selection.
Studies revealed that prenatal stress (PS) may increase the vulnerability to depression in their offspring, and ERK-CREB signal system might play a role in its mechanism.
Objectives and aims
The present study investigated the effect of MK-801 on depressive-like behavior and its impacts on ERK2, CREB, Bcl-2 mRNA expression in PS female rat offspring.
Methods
The pregnant rats were randomly divided into three groups, the control group (Con) was left undisturbed, the PS-saline group (PS-saline) and the PS-MK-801 group (PS-MK-801) were subjected to restraint stress on days 14–20 of pregnancy three times daily for 45 min, and received an i.p. administration of saline or MK-801(sigma, 0.2 mg/kg) 30 min before the first stress respectively. Forced swimming test was undertaken to assess depressive-like behavior in one month female offspring. ERK2, CREB, Bcl-2 mRNA in the hippocampus, frontal cortex, and striatum were detected by RT-PCR.
Results
PS-saline spent significantly more immobile time compared to Con and PS-MK-801 (P < 0.05). ERK2 and CREB mRNA expression in hippocampus and frontal cortex was significantly decreased in PS-saline compared to Con and PS-MK-801 (P < 0.05), while in striatum CREB mRNA expression in PS-saline was lower than Con (P < 0.05). Bcl-2 mRNA expression in hippocampus and striatum was significantly decreased in PS-saline (P < 0.05), and in frontal cortex, its expression was significantly lower in PS-saline and PS-MK-801 (P < 0.05).
Conclusions
PS may suppress ERK-CREB signal pathway in female offspring rats, which could be partly prevented by MK- 801. (Supported by National Natural Science Foundation of China, No: 30970952).
Studies have convinced that the rodents' exposure to prenatal stress (PNS) may induce depression and anxiety to their offspring. We focused on the glutamatergic system to explore the mechanisms.
Objectives and aims:
By examining EAAT2,EAAT3 (Excitatory Amino Acid Transporter 2,3), which are the only substances to inactivate glutamate in nervous system, we explored the effect of PNS on glutamatergic system.
Methods:
Pregnant rats were assigned to Control group (CON), Middle period of PNS group (MPS) and Late period of PNS group (LPS). MPS and LPS rats were exposed to restraint stress on days 7–13, 14–20 of pregnancy three times daily for 45 min. EAAT2 and EAAT3 mRNA expression in the hippocampus, frontal cortex, and striatum of one month rat offspring were checked by RT-PCR.
Results:
For the female offspring, EAAT2 mRNA expression of hippocampus in LPS and MPS was significantly lower compared to CON(P = 0.008,p = 0.003); EAAT2 and EAAT3 mRNA expression of frontal cortex in LPS were significantly lower than CON (p = 0.003,p = 0.013). for the male offspring, EAAT2 and EAAT3 mRNA expression of hippocampus in LPS and MPS were significantly lower (p = 0.005, p = 0.05); EAAT2 mRNA expression of frontal cortex was significantly lower in LPS (p = 0.022); EAAT2 mRNA in LPS group and MPS were significantly lower (p = 0.009, p = 0.014), and EAAT3 mRNA expression of striatum in MPS was significantly lower (p = 0.049).
Conclusions:
Decreased EAAT2 and EAAT3 of PNS may explain the increase of glutamate in synaptic cleft and its downstream excitotoxicity. (Supported by National Natural Science Foundation of China, No: 30970952)
Childhoods in urban or rural environments may differentially affect risk for neuropsychiatric disorders. Here, we leveraged on dramatic urbanization and rural-urban migration since the 1980s in China to explore the hypothesis that rural or urban childhoods may differentially influence memory processing and neural responses to neutral and aversive stimuli.
Objectives
Explore the underlying mechanisms of childhood environment effect on brain function and neuropsychiatric risk.
Methods
We examined 420 adult subjects with similar current socioeconomic status and living in Beijing, China, but with differing rural (n = 227) or urban (n = 193) childhoods. In an episodic memory paradigm scanned in a 3 T GE MRI, subjects viewed blocks of neutral or aversive pictures in the encoding and retrieval sessions.
Results
Episodic memory accuracy for neutral stimuli was less than for aversive stimuli (P < 0.001). However, subjects with rural childhoods apparently performed less accurately for memory of aversive but not neutral stimuli (P < 0.01). In subjects with rural childhoods, there was relatively increased engagement of bilateral striatum at encoding, increased engagement of bilateral hippocampus at retrieval of neutral and aversive stimuli, and increased engagement of amygdala at aversive retrieval (P < 0.05 FDR corrected, cluster size > 50).
Conclusions
Rural or urban childhoods appear associated with physiological and behavioural differences, particularly in the neural processing of aversive episodic memory at medial temporal and striatal brain regions. It remains to be explored the extent to which these effects relate to individual risk for neuropsychiatric or stress-related disorders.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Although numerous studies have investigated the individual effects of salinity, irrigation and fertilization on soil microbial communities, relatively less attention has been paid to their combined influences, especially using molecular techniques. Based on the field of orthogonal designed test and deoxyribonucleic acid sequencing technology, the effects of saline water irrigation amount, salinity level of irrigation water and nitrogen (N) fertilizer rate on soil bacterial community structure were investigated. The results showed that the irrigation amount was the most dominant factor in determining the bacterial richness and diversity, followed by the irrigation water salinity and N fertilizer rate. The values of Chao1 estimator, abundance-based coverage estimator and Shannon indices decreased with an increase in irrigation amount while increased and then decreased with an increase in irrigation water salinity and N fertilizer rate. The highest soil bacterial richness and diversity were obtained under the least irrigation amount (25 mm), medium irrigation water salinity (4.75 dS/m) and medium N fertilizer rate (350 kg/ha). However, different bacterial phyla were found to respond distinctively to these three factors: irrigation amount significantly affected the relative abundances of Proteobacteria and Chloroflexi; irrigation water salinity mostly affected the members of Actinobacteria, Gemmatimonadetes and Acidobacteria; and N fertilizer rate mainly influenced the Bacteroidetes' abundance. The results presented here revealed that the assessment of soil microbial processes under combined irrigation and fertilization treatments needed to be more careful as more variable consequences would be established by comparing with the influences based on an individual factor, such as irrigation amount or N fertilizer rate.
Adolescents have been largely neglected from tuberculosis control efforts. In low- to medium burden settings much of the tuberculosis burden in this age group occurs from school outbreaks. We report on a large tuberculosis outbreak in adolescents from a boarding high school in Jiangsu Province, China. From March to June 2018, a tuberculosis outbreak occurred in a boarding high school. We conducted an outbreak investigation involving clinical diagnostic tests and molecular analysis to determine the outbreak origin. Cases were detected through symptom screening, tuberculin skin testing (TST), chest radiography, sputum smear, solid sputum culture and GeneXpert MTB/RIF. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping and spoligotyping methods were performed on Mycobacterium tuberculosis (M. tuberculosis) isolates to identify the outbreak origin. A total of 845 students and 131 teachers/staff attended a TST screening for tuberculosis infection. The prevalence of elevated tuberculin reactions at ≥5, ≥10 and ≥15 mm was 12.19% (119/976), 6.35% (62/976) and 3.28% (32/976), respectively. Radiographic abnormalities were present in 5.73% (56 of 976) individuals, 40 students and 16 teachers/staff. Of these, 12 students were diagnosed with confirmed tuberculosis. In total, 14 students (two index cases and 12 confirmed cases) were diagnosed and reported in the tuberculosis outbreak, an attack rate of 1.7% (14/847) among students (two index cases and 845 screened students). Results from MIRU-VNTR typing and spoligotyping analyses demonstrated that three M. tuberculosis strains belong to the Beijing family with corresponding MIRU-VNTR alleles. This school-based tuberculosis outbreak among adolescents demonstrates that transmission among individuals in this age group is common and must be prioritised. It suggests that identifying and timely diagnosis of smear-positive cases, especially in the early phase of outbreaks, is the key to preventing further spread among close contacts.
Small intestinal epithelium homeostasis involves four principal cell types: enterocytes, goblet, enteroendocrine and Paneth cells. Epidermal growth factor (EGF) has been shown to affect enterocyte differentiation. This study determined the effect of dietary EGF on goblet, enteroendocrine and Paneth cell differentiation in piglet small intestine and potential mechanisms. Forty-two weaned piglets were used in a 2 × 3 factorial design; the major factors were time post-weaning (days 7 and 14) and dietary treatment (0, 200 or 400 µg/kg EGF supplementation). The numbers of goblet and enteroendocrine cells were generally greater with the increase in time post-weaning. Moreover, the supplementation of 200 µg/kg EGF increased (P < 0.01) the number of goblet and enteroendocrine cells in villus and crypt of the piglet small intestine as compared with the control. Dietary supplementation with 200 µg/kg EGF enhanced (P < 0.05) abundances of differentiation-related genes atonal homologue 1, mucin 2 and intestinal trefoil factor 3 messenger RNA (mRNA) as compared with the control. Piglets fed 200 or 400 µg/kg EGF diet had increased (P < 0.05) abundances of growth factor-independent 1, SAM pointed domain containing ETS transcription factor and pancreatic and duodenal homeobox 1 mRNA, but decreased the abundance (P < 0.01) of E74 like ETS transcription factor 3 mRNA as compared with the control. Animals receiving 400 µg/kg EGF diets had enhanced (P < 0.05) abundances of neurogenin3 and SRY-box containing gene 9 mRNA as compared with the control. The mRNA abundance and protein expression of lysozyme, a marker of Paneth cell, were also increased (P < 0.05) in those animals. As compared with the control, dietary supplementation with 200 µg/kg EGF increased the abundance of EGF receptor mRNA and the ratio of non-phospho(p)-β-catenin/β-catenin (P < 0.05) in villus epithelial cells at days 7 and 14. This ratio in crypt epithelial cells was higher (P < 0.05) on the both 200 and 400 µg/kg EGF groups during the same period. Our results demonstrated that dietary EGF stimulated goblet, enteroendocrine and Paneth cell differentiation in piglets during the post-weaning period, partly through EGFR and Wnt/β-catenin signalling.
Some studies have shown that the excessive metabolic heat production is the primary cause for dead chicken embryos during late embryonic development. Increasing heat shock protein (HSP) expression and adjusting metabolism are important ways to maintain body homeostasis under heat stress. This study was conducted to investigate the effects of in ovo injection (IOI) of vitamin C (VC) at embryonic age 11th day (E11) on HSP and metabolic genes expression. A total of 320 breeder eggs were randomly divided into normal saline and VC injection groups. We detected plasma VC content and rectal temperature at chick’s age 1st day, and the mRNA levels of HSP and metabolic genes in embryonic livers at E14, 16 and 18, analysed the promoter methylation levels of differentially expressed genes and predicted transcription factors at the promoter regions. The results showed that IOI of VC significantly increased plasma VC content and decreased rectal temperature (P < 0.05). In ovo injection of VC significantly increased heat shock protein 60 (HSP60) and pyruvate dehydrogenase kinase 4 (PDK4) genes expression at E16 and PDK4 and secreted frizzled related protein 1 (SFRP1) at E18 (P < 0.05). At E16, IOI of VC significantly decreased the methylation levels of total CpG sites and −336 CpG site in HSP60 promoter and −1137 CpG site in PDK4 promoter (P < 0.05). Potential binding sites for nuclear factor-1 were found around −389 and −336 CpG sites in HSP60 promoter and potential binding site for specificity protein 1 was found around −1137 CpG site in PDK4 promoter. Our results suggested that IOI of VC increased HSP60, PDK4 and SFRP1 genes expression at E16 and 18, which may be associated with the demethylation in gene promoters. Whether IOI of VC could improve hatchability needs to be further verified by setting uninjection group.
In this paper, a novel single-cavity triangular substrate-integrated waveguide (TSIW) dual-band filter loading a complementary triangular split ring resonator (CTSRR) is proposed, which has three transmission zeros (TZs) in the stopband in total. The dual-band response is achieved by the CTSRR and the degenerate modes of the TSIW cavity. In order to control the TZs, we propose two adjustment techniques, shift feeding technique and adding via perturbation. In addition, the CTSRR etched on the surface can produce a new TZ in the upper first-passband. Finally, a dual-band filter with three TZs is simulated, fabricated, and measured. There is a good agreement between the simulated results and measured ones.
Dietary protein restriction is one of the effective ways to reduce post-weaning diarrhoea and intestinal fermentation in piglets, but it may also reduce growth performance. The compensatory growth induced by subsequent protein realimentation may solve the issue. However, little research has been done on the impact of protein realimentation on the gut. In this study, the effects of protein restriction and realimentation on ileal morphology, ileal microbial composition and metabolites in weaned piglets were investigated. Thirty-six 28-day-old weaned piglets with an average body weight of 6.47 ± 0.04 kg were randomly divided into a control group and a treatment group. The CP level in the diet of the control group was 18.83% for the entire experimental period. The piglets in the treatment group were fed 13.05% CP between days 0 and 14 and restored to a diet of 18.83% CP for days 14 to 28. On day 14 and 28, six pigs from each group were sacrificed and sampled. It was found that the abundance of Lactobacillus and Salmonella in the ileal digesta was significantly lower in the treatment group than the control group on day 14, whereas the abundance of Clostridium sensu stricto 1, Streptococcus, Halomonas and Pseudomonas significantly increased in the ileal digesta of the treatment group on day 14 compared with the control group. In addition, reduced concentrations of lactic acid, total short-chain fatty acids (total SCFAs), total branched chain fatty acids, ammonia and impaired ileal morphology and mucosal barrier were observed in the treatment group on day 14. However, diarrhoea levels decreased in the treatment group throughout the experiment. During the succedent protein realimentation stage, the treatment group demonstrated compensatory growth. Compared with the control group, the treatment group showed increased abundance of Lactobacillus and reduced abundance of Salmonella, Halomonas and Pseudomonas in the ileum on day 28. The concentrations of lactic acid and total SCFAs increased significantly, whereas the concentration of ammonia remained at a lower level in the treatment group on day 28 compared with the control group. Overall, protein realimentation could improve ileal morphology and barrier functions and promote ileal digestive and absorptive functions. In conclusion, ileal microbial composition and metabolites could change according to dietary protein restriction and realimentation and eventually influence ileal morphology and barrier functions.
Force-feeding was considered as a traditional high-efficiency approach to improve growth performance and accelerate fat deposition of Pekin ducks. However, force-feeding is a serious violation of international advocacy on animal welfare, because it can induce serious injuries to animals, such as damages to the digestive tract, effects on immunity and even severe oxidative stress. Therefore, it is urgent to stop force-feeding. The aim of this study was to determine the effects of force feeding on immune function, digestive function and oxidative stress in the mucosa of duodenum and jejunum of Pekin ducks. A total of 500 ducks were randomly divided into two groups. The control group was allowed to feed freely on a basal diet. The experimental group was force-fed by inserting a plastic feeding tube 8 to 10 inches long down the esophagus for 6 days. Compared with the control group, there was a significant (P<0.05) increase in serum diamine oxidase, d-lactic acid, endotoxin and corticosterone levels in the force-feeding group. The crypt depth in duodenum and jejunum showed significant differences (P<0.05) between the two groups and the intestinal villus epithelium cell was severely damaged in force-feeding group. Similarly, the activities of digestive enzymes as well as the levels of immune function in the duodenal and jejunal mucosa in the force-feeding group were significantly higher than the control group (P<0.05). However, there was a significant decrease in the superoxide dismutase, glutathione peroxidase and catalase levels with a marked increase in malondialdehyde level in duodenal and jejunal mucosa (P<0.05). In summary, at the end of the fattening period with force-feeding for 6 days, Pekin ducks experienced an adverse effect on the integrity of their duodenal and jejunal mucosa epithelium cell as well as their immune function and antioxidant capacity of Pekin ducks but also had improvement in digestive enzyme activities.