Skip to main content Accessibility help
×
Home

Numerical Investigation of the Flexibility of a New Self-Expandable Tapered Stent

  • X. Shen (a1), J. B. Jiang (a1), H. F. Zhu (a1), Y. Q. Deng (a1) and S. Ji (a1)...

Abstract

Flexibility is one of the important mechanical performance parameters of stent. The flexibility of tapered stents, especially self-expanding tapered stents, remains unknown. In this study, we developed a new selfexpanding tapered stent for tapered arteries and performed a numerical investigation of stent flexibility by using finite element method. The effect of stent design parameters, including taper and link space width, on stent flexibility was studied. The flexibility of the proposed stent was also compared with that of traditional cylindrical stents. Results show that the tapered stent is more flexible than the traditional cylindrical stent. Furthermore, the flexibility of the tapered stent increases with increasing stent taper and stent link space width. The increase in the stent link space width can contribute to the reduction in the peak stress. Therefore, tapered stents with high link space width will improve the stent flexibility. This work provides useful information for improvement of stent design and clinical selection.

Copyright

Corresponding author

*Corresponding author (sx@ujs.edu.cn)

References

Hide All
1.Ragkousis, G. E., Curzen, N., and Bressloff, N. W., “Multi-objective optimisation of stent dilation strategy in a patient-specific coronary artery via computational and surrogate modelling,” Journal of biomechanics, 49, pp. 205215 (2016).
2.Oderich, G. S., “Endovascular aortic repair: current techniques with fenestrated, branched and parallel stent-grafts,” Springer. (2017)
3.NoadR, L. R, L., Hanratty, C. G., S. J., “Clinical impact of stant design.” Interventional Cardiology Review,9, pp.8993 (2014)
4.Syaifudin, A., Takeda, R., and Sasaki, K., “Effect of Asymmetric Geometry on the Flexibility of Stent,” The International Journal of Mechanical Engineering and Sciences, 1, pp. 17 (2017).
5.Azaouzi, M., Makradi, A., and Belouettar, S., “Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method,” Computational Materials Science, 72, pp. 5461 (2013).
6.Guan, Y., Lin, J., Dong, Z., and Wang, L., “Comparative Study of the Effect of Structural Parameters on the Flexibility of Endovascular Stent Grafts,” Advances in Materials Science and Engineering, 2018, pp. 110 (2018).
7.Mori, K., and Saito, T., “Effects of stent structure on stent flexibility measurements,” Annals of Biomedical Engineering, 33, pp. 733742 (2005).
8.Shen, X., Deng, Y. Q., Ji, S., Xie, Z. M., and Zhu, H. F., “Flexibility behavior of coronary stents: the role of linker investigated with numerical simulation,” Journal of Mechanics in Medicine and Biology, 17, pp. 1750112 (2017).
9.Bobel, A. C., Petisco, S., Sarasua, J. R., Wang, W., and McHugh, P. E., “Computational bench testing to evaluate the short-term mechanical performance of a polymeric stent,” Cardiovascular engineering and technology, 6, pp. 519532 (2015).
10.Ju, F., Xia, Z., and Zhou, C., “Repeated unit cell (RUC) approach for pure bending analysis of coronary stents,” Computer methods in biomechanics and biomedical engineering, 11, pp. 419431 (2008).
11.Imani, M., Goudarzi, A. M., Ganji, D. D., and Aghili, A. L., “The comprehensive finite element model for stenting: The influence of stent design on the outcome after coronary stent placement,” Journal of Theoretical and Applied Mechanics, 51, pp. 639648 (2013).
12.Gu, L., Zhao, S., and Froemming, S. R., “Arterial wall mechanics and clinical implications after coronary stenting: comparisons of three stent designs,” International Journal of Applied Mechanics, 4, pp.1250013 (2012).
13.Ni, X. Y., Pan, C. W., and Gangadhara Prusty, B., “Numerical investigations of the mechanical properties of a braided non-vascular stent design using finite element method,” Computer methods in biomechanics and biomedical engineering, 18, pp. 11171125 (2015).
14.Ni, Z., Gu, X., and Wang, Y., “Rapid prediction method for nonlinear expansion process of medical vascular stent,” Science in China, 52, pp. 1323 (2009).
15.Ni, X. Y., Zhang, Y. H., Zhao, H. X., and Pan, C. W., “Numerical research on the biomechanical behaviour of braided stents with different end shapes and stentoesophagus interaction,” International journal for numerical methods in biomedical engineering, pp. e2971 (2018).
16.Gu, L., Zhao, S., and Froemming, S. R., “Arterial wall mechanics and clinical implications after coronary stenting: comparisons of three stent designs,” International Journal of Applied Mechanics, 4, pp. 1250013 (2012).
17.Sun, A., Fan, Y., and Deng, X., “Intentionally induced swirling flow may improve the hemodynamic performance of coronary bifurcation stenting,” Catheterization and Cardiovascular Interventions, 79, pp. 371377 (2012).
18.Imani, M., Goudarzi, A. M., and Hojjati, M. H., “Finite element analysis of mechanical behaviors of multilink stent in a coronary artery with plaque,” World Applied Sciences Journal, 21, pp. 15971602 (2013).
19.Zubaid, M., Buller, C., and Mancini, G. B., “Normal angiographic tapering of the coronary arteries,” The Canadian journal of cardiology, 18, pp. 973980 (2002).
20.Shen, X., Xie, Z. M., Sun, Y. Y., and Wu, B. B., “Balloon-expandable stents expansion in tapered vessels and their interactions,” Journal of Mechanics in Medicine and Biology, 14, pp.1440013 (2014).
21.Shen, X., Deng, Y. Q., Xie, Z. M., and Ji, S., “Assessment of coronary stent deployment in tapered arteries: Impact of arterial tapering,” Journal of Mechanics in Medicine and Biology, 16, pp. 1640015 (2016).
22.Shen, X., Ji, S., Xie, Z., & Deng, Y., “Effect of different expansion strategies on coronary stent deployment in a tapered artery,” Technology and Health Care, 25, pp. 2128 (2017).
23Valero, E.et al., “Initial experience with the novel biomime 60mm-long sirolimus-eluting tapered stent system in long coronary lesions,” Eurointervention, 13, pp.15911594 (2018).
24.Zivelonghi, C.et al., “First report of the use of long-tapered sirolimus - eluting coronary stent for the treatment of chronic total occlusions with the hybrid algorithm,” Catheterization and Cardiovascular Interventions, 92, pp. e299307 (2018).
25.Auricchio, F., Taylor, R. L., and Lubliner, J., “Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior,” Computer methods in applied mechanics and engineering, 146, pp. 281312 (1997).
26.Zhao, S., Gu, L., and Froemming, S. R., “Performance of self-expanding Nitinol stent in a curved artery: impact of stent length and deployment orientation,” Journal of biomechanical engineering, 134, pp. 071007 (2012).
27.Kleinstreuer, C., Li, Z., Basciano, C. A., Seelecke, S., and Farber, M. A., “Computational mechanics of Nitinol stent grafts,” Journal of biomechanics, 41, pp. 23702378 (2008).
28.Rebelo, N., Walker, N., Foadian, H., “Simulation of implantable nitinol stents,” Abaqus User’S Conference, pp. 114 (2001).
29.Hsiao, H. M., et al., “Effects of stent design on new clinical issue of longitudinal stent compression in interventional cardiology,” Biomedical microdevices, 16, pp. 599607 (2014).
30.Takayuki, O.et al., “A pilot study for evaluating the longitudinal strength and flexibility of coronary stents: results of a bench test (original),” Jikeikai Medical Journal, 62, pp. 913 (2015).
31.Demanget, N.et al., “Severe bending of two aortic stent-grafts: an experimental and numerical mechanical analysis,” Annals of biomedical engineering, 40, pp. 26742686 (2012).
32.Wang, J.et al., “Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis,” Regenerative Biomaterials, 5, pp. 177187 (2018)

Keywords

Numerical Investigation of the Flexibility of a New Self-Expandable Tapered Stent

  • X. Shen (a1), J. B. Jiang (a1), H. F. Zhu (a1), Y. Q. Deng (a1) and S. Ji (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.