We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In order to decrease the influence of system parameters and load on the dynamic performance of permanent magnet synchronous motor (PMSM) in cooperative robot joint modules, a practical model-based robust control method was proposed. It inherits the traditional proportional-integral-derivative (PID) control and robust control based on error and model-based control. We first set up the nominal controller using the dynamics model. In order to limit the influence of uncertainty on dynamic performance, a robust controller is established based on Lyapunov method. The control can be regarded as an improved PID control or a redesigned robust control. Compared with the traditional control method, it is simple to implement and has practical effects. It is proved by theoretical analysis that the controller can guarantee the uniform boundedness and uniform final boundedness of the system. In addition, the prototype of fast controller cSPACE is built on the experiment platform, which averts long-time programming and debugging. It offers immense convenience for practical operation. Finally, numerical simulation and real-time experiment results are presented. Based on cSPACE and a PMSM in the joint module of a practical cooperative robot, the availability of the control design and the achievable control performance are verified.
It is crucial to understand the genetic mechanisms and biological pathways underlying the relationship between obesity and serum lipid levels. Structural equation models (SEMs) were constructed to calculate heritability for body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the genetic connections between BMI and the four classes of lipids using 1197 pairs of twins from the Chinese National Twin Registry (CNTR). Bivariate genomewide association studies (GWAS) were performed to identify genetic variants associated with BMI and lipids using the records of 457 individuals, and the results were further validated in 289 individuals. The genetic background affecting BMI may differ by gender, and the heritability of males and females was 71% (95% CI [.66, .75]) and 39% (95% CI [.15, .71]) respectively. BMI was positively correlated with TC, TG and LDL-C in phenotypic and genetic correlation, while negatively correlated with HDL-C. There were gender differences in the correlation between BMI and lipids. Bivariate GWAS analysis and validation stage found 7 genes (LOC105378740, LINC02506, CSMD1, MELK, FAM81A, ERAL1 and MIR144) that were possibly related to BMI and lipid levels. The significant biological pathways were the regulation of cholesterol reverse transport and the regulation of high-density lipoprotein particle clearance (p < .001). BMI and blood lipid levels were affected by genetic factors, and they were genetically correlated. There might be gender differences in their genetic correlation. Bivariate GWAS analysis found MIR144 gene and its related biological pathways may influence obesity and lipid levels.
Reconstructing past climate events relies on the relevant proxies and how they are related. Depending only on such relationships, however, could not be robust because only few proxy observations are usually available at each age. A state-space model employs a prior to make the hidden past climate events correlated with one another so that extreme inferences are precluded. Here, we construct a Gaussian process state-space model for reconstructing past sea surface temperatures from the alkenone paleotemperature proxy and apply the model to nine sediment cores with three different calibration curves and compare the results.
Metamorphic robots are a new type of unmanned vehicle that can reconfigure and morph between a car mode and a biped walking machine mode. Such a vehicle is superior in trafficability because it can drive at high speeds on its wheels on structured pavement and walk on its legs on unstructured pavement. An engineering prototype of a metamorphic robot was proposed and designed based on the characteristics of wheeled–legged hybrid motion, and reconfiguration planning of the robot was conducted. A kinematics model of the reconfiguration process was established using the screw theory for metamorphic robots. To avoid component impact during the rapid global reconfiguration and achieve smoothness of the reconfiguration process, a rotation rule for each rotating joint was designed and the kinematics model was used to simulate and validate the motion of the system’s end mechanism (front frame) and the entire robot system. Based on the kinematics model and the rotation rules of the rotating joints, a zero-moment point (ZMP) calculation model of the entire robot mechanism in the reconfiguration process was established, and the stability of the reconfiguration motions was evaluated based on the ZMP motion trajectory. The foot landing position was optimized to improve the robot’s stability during the reconfiguration. Finally, the smoothness and stability of the reconfiguration motion were further validated by testing the prototype of the metamorphic robot.
It has been suggested that added sugar intake is associated with non-alcoholic fatty liver disease (NAFLD). However, previous studies only focused on sugar-sweetened beverages; the evidence for associations with total added sugars and their sources is scarce. This study aimed to examine the associations of total added sugars, their physical forms (liquid vs. solid), and food sources with risk of NAFLD among adults in Tianjin, China. We used data from 15,538 participants, free of NAFLD, other liver diseases, cardiovascular disease, cancer, or diabetes at baseline (2013-2018 years). Added sugar intake was estimated from a validated 100-item food frequency questionnaire. NAFLD was diagnosed by ultrasonography after exclusion of other causes of liver diseases. Multivariable Cox proportional hazards models were fitted to calculate hazards ratios (HRs) and corresponding 95% confidence intervals (CIs) for NAFLD risk with added sugar intake. During a median follow-up of 4.2 years, 3,476 incident NAFLD cases were documented. After adjusting for age, sex, body mass index and its change from baseline to follow-up, lifestyle factors, personal and family medical history, and overall diet quality, the multivariable HRs (95% CIs) of NAFLD risk were 1.18 (1.06, 1.32) for total added sugars, 1.20 (1.08, 1.33) for liquid added sugars, and 0.96 (0.86, 1.07) for solid added sugars when comparing the highest quartiles of intake with the lowest quartiles of intake. In this prospective cohort of Chinese adults, higher intakes of total added sugars and liquid added sugars, but not solid added sugars, were associated with a higher risk of NAFLD.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Despite an elevated risk of psychopathology stemming from COVID-19-related stress, many essential workers stigmatise and avoid psychiatric care. This randomised controlled trial was designed to compare five versions of a social-contact-based brief video intervention for essential workers, differing by protagonist gender and race/ethnicity.
Aims
We examined intervention efficacy on treatment-related stigma (‘stigma’) and openness to seeking treatment (‘openness’), especially among workers who had not received prior mental healthcare. We assessed effectiveness and whether viewer/protagonist demographic concordance heightened effectiveness.
Method
Essential workers (N = 2734) randomly viewed a control video or brief video of an actor portraying an essential worker describing hardships, COVID-related anxiety and depression, and psychotherapy benefits. Five video versions (Black/Latinx/White and male/female) followed an identical 3 min script. Half the intervention group participants rewatched their video 14 days later. Stigma and openness were assessed at baseline, post-intervention, and at 14- and 30-day follow-ups. Trial registration: NCT04964570.
Results
All video intervention groups reported immediately decreased stigma (P < 0.0001; Cohen's d = 0.10) and increased openness (P < 0.0001; d = 0.23). The initial increase in openness was largely maintained in the repeated-video group at day 14 (P < 0.0001; d = 0.18), particularly among viewers without history of psychiatric treatment (P < 0.0001; d = 0.32). Increases were not sustained at follow-up. Female participants viewing a female protagonist and Black participants viewing a Black protagonist demonstrated greater openness than other demographic pairings.
Conclusions
Brief video-based interventions improved immediate stigma and openness. Greater effects among female and Black individuals viewing demographically matched protagonists emphasise the value of tailored interventions, especially for socially oppressed groups. This easily disseminated intervention may proactively increase care-seeking, encouraging treatment among workers in need. Future studies should examine intervention mechanisms and whether linking referrals to psychiatric services generates treatment-seeking.
Various coatings in high-power laser facilities suffer from laser damage due to nodule defects. We propose a nodule dome removal (NDR) strategy to eliminate unwanted localized electric-field (E-field) enhancement caused by nodule defects, thereby improving the laser-induced damage threshold (LIDT) of laser coatings. It is theoretically demonstrated that the proposed NDR strategy can reduce the localized E-field enhancement of nodules in mirror coatings, polarizer coatings and beam splitter coatings. An ultraviolet (UV) mirror coating is experimentally demonstrated using the NDR strategy. The LIDT is improved to about 1.9 and 2.2 times for the UV mirror coating without artificial nodules and the UV mirror coating with artificial nodule seeds with a diameter of 1000 nm, respectively. The NDR strategy, applicable to coatings prepared by different deposition methods, improves the LIDT of laser coating without affecting other properties, such as the spectrum, stress and surface roughness, indicating its broad applicability in high-LIDT laser coatings.
The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults.
Design:
This is a cross-sectional study.
Setting:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations.
Participants:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used, which can provide the information of participants.
Results:
Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose–response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05).
Conclusions:
Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
Pressure fluctuations play an essential role in the transport of turbulent kinetic energy and vibrational loading. This study focuses on examining the effect of wall cooling on pressure fluctuations in compressible turbulent boundary layers by high-fidelity direct numerical simulations. Pressure fluctuations result from the vorticity mode and the acoustic mode that are both closely dependent on compressibility. To demonstrate the effects of wall cooling at various compressibility intensities, three free-stream Mach numbers are investigated, i.e. $M_\infty =0.5$, 2.0 and 8.0, with real gas effects being absent for $M_\infty =8.0$ due to a low enthalpy inflow. Overall, opposite effects of wall cooling on pressure fluctuations are found between the subsonic/supersonic cases and the hypersonic case. Specifically, the pressure fluctuations normalized by wall shear stress $p^\prime _{rms}/\tau _w$ are suppressed in the subsonic and supersonic cases, while enhanced in the hypersonic case near the wall. Importantly, travelling-wave-like alternating positive and negative structures (APNS), which greatly contribute to pressure fluctuations, are identified within the viscous sublayer and buffer layer in the hypersonic cases. Furthermore, generating mechanisms of pressure fluctuations are explored by extending the decomposition based on the fluctuating pressure equation to compressible turbulent boundary layers. Pressure fluctuations are decomposed into five components, in which rapid pressure, slow pressure and compressible pressure are dominant. The suppression of pressure fluctuations in the subsonic and supersonic cases is due to both rapid pressure and slow pressure being suppressed by wall cooling. In contrast, wall cooling strengthens compressible pressure for all Mach numbers, especially in the hypersonic case, resulting in increased wall pressure fluctuations. Compressible pressure plays a leading role in the hypersonic case, mainly due to the APNS. Essentially, the main effects of wall cooling can be interpreted by the suppression of the vorticity mode and the enhancement of the acoustic mode.
This study evaluated the association between inflammatory diets as measured by the Dietary Inflammatory index (DII), inflammation biomarkers and the development of preeclampsia among the Chinese population. We followed the reporting guidelines of the Strengthening the Reporting of Observational Studies in Epidemiology statement for observational studies. A total of 466 preeclampsia cases aged over 18 years were recruited between March 2016 and June 2019, and 466 healthy controls were 1:1 ratio matched by age (±3 years), week of gestation (±1 week) and gestational diabetes mellitus. The energy-adjusted DII (E-DII) was computed based on dietary intake assessed using a seventy-nine item semiquantitative FFQ. Inflammatory biomarkers were analysed by ELISA kits. The mean E-DII scores were −0·65 ± 1·58 for cases and −1·19 ± 1·47 for controls (P value < 0·001). E-DII scores positively correlated with interferon-γ (rs = 0·194, P value = 0·001) and IL-4 (rs = 0·135, P value = 0·021). After multivariable adjustment, E-DII scores were positively related to preeclampsia risk (Ptrend < 0·001). The highest tertile of E-DII was 2·18 times the lowest tertiles (95 % CI = 1·52, 3·13). The odds of preeclampsia increased by 30 % (95 % CI = 18 %, 43 %, P value < 0·001) for each E-DII score increase. The preeclampsia risk was positively associated with IL-2 (OR = 1·07, 95 % CI = 1·03, 1·11), IL-4 (OR = 1·26, 95 % CI = 1·03, 1·54) and transforming growth factor beta (TGF-β) (OR = 1·17, 95 % CI = 1·06, 1·29). Therefore, proinflammatory diets, corresponding to higher IL-2, IL-4 and TGF-β levels, were associated with increased preeclampsia risk.
Maternal nutrition during pregnancy plays a vital role in foetal growth and development. The present study aimed to describe the diet quality of pregnant women and explore the association between maternal diet and the prevalence of low birth weight (LBW) and small for gestational age (SGA). A total of 3 856 participants from a birth cohort in Beijing, China were recruited between June 2018 and February 2019. Maternal diet in the 1st and 2nd trimesters was assessed by inconsecutive 2-day 24-hour dietary recalls. The Chinese diet balance index for pregnancy (DBI-P) was used to assess the diet quality of the participants. Multivariate logistic regressions were performed to explore the independent effects of DBI-P components on LBW and SGA. The prevalence of LBW and SGA was 3.8% and 6.0%, respectively. Dietary intakes of the participants were imbalanced. The proportions of participants having insufficient intake of vegetables (87.3% and 86.6%), dairy (95.9% and 96.7%), and aquatic foods (80.5% and 85.3%) were high in both trimesters. The insufficiency of fruit intake was more severe in the 2nd trimester (85.2%) than in the 1st trimester (22.5%) (P<0.05). After adjusting for potential confounders, the intake of fruits and dairy in the 2nd trimester was negatively associated with the risk of LBW (OR=0.850, 95% CI: 0.723-0.999) and SGA (OR=0.885, 95% CI: 0.787-0.996), respectively. The diet of Beijing pregnant women was imbalanced. Higher consumption of fruits and dairy products in the 2nd trimester was associated with lower risks of LBW and SGA. Sufficient consumption of fruits and dairy products in pregnancy may be suggested, in an attempt to prevent the occurrence of LBW and SGA.
Prospective cohort studies linking organ meat consumption and nonalcoholic fatty liver disease (NAFLD) are limited, especially in Asian populations. This study aimed to prospectively investigate the association between organ meat consumption and risk of NAFLD in a general Chinese adult population. This prospective cohort study included a total of 15,568 adults who were free of liver disease, cardiovascular disease, and cancer at baseline. Dietary information was collected at baseline using a validated food frequency questionnaire. NAFLD was diagnosed by abdominal ultrasound after excluding other causes related to chronic liver disease. Cox proportional regression models were used to assess the association between organ meat consumption and risk of NAFLD. During a median of 4.2 years of follow-up, we identified 3,604 incident NAFLD cases. After adjusting for demographic characteristics, lifestyle factors, vegetable, fruit, soft drink, seafood, and red meat consumption, the multivariable hazard ratios (95% confidence intervals) for incident NAFLD across consumption of organ meat were 1.00 (reference) for almost never, 1.04 (0.94, 1.15) for tertile 1, 1.08 (0.99, 1.19) for tertile 2, and 1.11 (1.01, 1.22) for tertile 3, respectively (P for trend <0.05). Such association did not differ substantially in the sensitivity analysis. Our study indicates that organ meat consumption was related to a modestly higher risk of NAFLD among Chinese adults. Further investigations are needed to confirm this finding.
Mammal sex determination depends on whether the X sperm or Y sperm binds to the oocyte during fertilization. If the X sperm joins in oocyte, the offspring will be female, if the Y sperm fertilizes, the offspring will be male. Livestock sex control technology has tremendous value for livestock breeding as it can increase the proportion of female offspring and improve the efficiency of livestock production. This review discusses the detailed differences between mammalian X and Y sperm with respect to their morphology, size, and motility in the reproductive tract and in in vitro conditions, as well as ’omics analysis results. Moreover, research progress in mammalian sex control technology has been summarized.
Strike-slip earthquakes near major subduction zones have received less attention than thrust or reverse earthquakes in subduction zone areas. The occurrence of the 2018 Palu Mw 7.5 earthquake in eastern Indonesia provides an unprecedented opportunity to investigate the characteristics of one of these events. The Palu earthquake occurred on the left-lateral, north–south-striking Palu–Koro fault, which is the main plate boundary structure accommodating the convergence between blocks in a triple junction area. It excited a significant tsunami, which unusually is associated with strike-slip earthquakes, and also ruptured at a supershear speed, which is mostly observed on strike-slip faults in continents. Based on our fieldwork, we speculate that the normal slip component of the offshore rupture section in Palu bay on the middle segment probably favours tsunami genesis. Our field investigation has revealed evidence of a simple geometry as well as slip partitioning of dip-slip and strike-slip motion on two subparallel strands on the main segment, both of which may have contributed to the supershear of the rupture propagation. Instead of only a transtensive behaviour of the middle segment, our results also illustrate the transpressional property of the northern and southern rupture segments, which shows more complex behaviour than that of a common continental strike-slip fault.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
Neuronal intranuclear inclusion disease (NIID) is a rare slowly progressive neurodegenerative disorder that is characterized pathologically by the presence of eosinophilic intranuclear inclusions. NIID is a heterogeneous disease with diverse clinical manifestations, making diagnosis difficult. Here, we analyzed the clinical, pathological, and radiological features of Chinese NIID patients to improve our understanding of NIID.
Methods:
A total of 17 patients with sporadic NIID were recruited from the Ruijin Hospital Database between 2014 and 2021. Clinical patient information and brain MRI data were collected. All of the patients underwent standard skin biopsy procedures.
Results:
The average age of onset for symptoms was 60.18 years, and the average duration of illness was 4.06 years. All patients were diagnosed with NIID due to the presence of intranuclear inclusions confirmed by skin biopsy. Tremor was the most common initial symptom. The average ages at onset and at diagnosis were both lower in patients with tremor than in patients without tremor. NIID may be a systemic disease that affects multiple organs, for one patient had a history of chronic renal insufficiency for more than 10 years. In addition to high-intensity U-fibers signals on diffusion-weighted imaging, there were several other MRI findings, such as focal leukoencephalopathy and cortical swelling. Encephalitic episodes followed by reversible leukoencephalopathy was another important imaging feature of NIID.
Conclusion:
The clinical manifestations of NIID are highly variable. Tremor may be the most common initial symptom in certain cohorts. Encephalitic episodes followed by reversible asymmetric leukoencephalopathy may also indicate this disease.
Primitive lamprophyres in orogenic belts can provide crucial insights into the nature of the subcontinental lithosphere and the relevant deep crust–mantle interactions. This paper reports a suite of relatively primitive lamprophyre dykes from the North Qiangtang, central Tibetan Plateau. Zircon U–Pb ages of the lamprophyre dykes range from 214 Ma to 218 Ma, with a weighted mean age of 216 ± 1 Ma. Most of the lamprophyre samples are similar in geochemical compositions to typical primitive magmas (e.g. high MgO contents, Mg no. values and Cr, with low FeOt/MgO ratios), although they might have experienced a slightly low degree of olivine crystallization, and they show arc-like trace-element patterns and enriched Sr–Nd isotopic composition ((87Sr/86Sr)i = 0.70538–0.70540, ϵNd(t) = −2.96 to −1.65). Those geochemical and isotopic variations indicate that the lamprophyre dykes originated from partial melting of a phlogopite- and spinel-bearing peridotite mantle modified by subduction-related aqueous fluids. Combining with the other regional studies, we propose that slab subduction might have occurred during Late Triassic time, and the rollback of the oceanic lithosphere induced the lamprophyre magmatism in the central Tibetan Plateau.