Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T15:41:55.850Z Has data issue: false hasContentIssue false

Preparation and Characterization of Halloysite-Based Carriers for Quercetin Loading and Release

Published online by Cambridge University Press:  01 January 2024

Shu-Ting Liu*
Affiliation:
Department of Geochemistry, Chengdu University of Technology, Chengdu 610059, China
Xue-Gang Chen
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, China
Shi-Long Zhang
Affiliation:
School of Physics and Electronics, Qiannan Normal University for Nationalities, Duyun 558000, China
Xue-Min Liu
Affiliation:
Department of Geochemistry, Chengdu University of Technology, Chengdu 610059, China
Jun-Ji Zhang
Affiliation:
Department of Geochemistry, Chengdu University of Technology, Chengdu 610059, China
*
*E-mail address of corresponding author: liushuting@zju.edu.cn

Abstract

Halloysite nanotubes (HNTs) have attracted much attention as delivery carriers for various drugs, but the loading of one such drug, quercetin, on HNTs has been investigated only rarely and usually involved cyclic vacuum pumping. The main objective of the present study was to develop a novel carrier system based on HNTs for quercetin delivery without a vacuum process and to investigate the effect of chemical modification of HNTs on the loading and release of quercetin. For this purpose, comparative studies of five chemical modification reagents (sodium lauroamphoacetate, cocoamidopropyl betaine, 1-hydroxyethyl 2-nonyl imidazoline betaine, triethanolamine, and dipicolinic acid) functionalized on HNTs were investigated for quercetin loading and in vitro release. Characterization of raw halloysite, modified halloysite, and quercetin-loaded halloysite were done by X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The results indicated that chemical modification could improve the interactions between HNTs and quercetin. After chemical modification, quercetin was anchored to both the inner and outer surfaces of HNTs by electrostatic attraction, hydrogen bonding, and van der Waals forces. Sodium lauroamphoacetate-modified HNTs were given the highest loading of 1.96 wt.% among the five reagents. Cocamidopropyl betaine-modified HNTs exhibited the best sustained-release profile with only 29.07% for initial burst release and 480 h of consecutive release. Carboxyl groups of the modification reagent improved the loading capacity of quercetin. Amide groups prolonged drug release due to the strong affinity between amine and phenolic hydroxyl groups of quercetin. The release of quercetin from the cocamidopropyl betaine-modified HNTs fitted a first-order kinetics model well. The present study suggested that cocamidopropyl betaine-modified HNTs offer promise as vehicles for delivery of quercetin and for extending the application of quercetin.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 36, 2236.CrossRefGoogle Scholar
Aguzzi, C., Viseras, C., Cerezo, P., Salcedo, I., Sanchez-Espejo, R., & Valenzuela, C. (2013). Release kinetics of 5-aminosalicylic acid from halloysite. Colloids Surface B: Biointerfaces, 105, 7580.CrossRefGoogle ScholarPubMed
Avila, L. R., de Faria, E. H., Ciuffi, K. J., Nassar, E. J., Calefi, P. S., Vicente, M. A., & Trujillano, R. (2010). New synthesis strategies for effective functionalization of kaolinite and saponite with silylating agents. Journal of Colloid and Interface Science, 341, 186193.CrossRefGoogle ScholarPubMed
Ben Salah, I., Sdiri, A., Ben M'barek Jemai, M., & Boughdiri, M. (2018). Potential use of the Lower Cretaceous clay (Kef area, northwestern Tunisia). as raw material to supply ceramic industry. Applied Clay Science, 161, 151162.CrossRefGoogle Scholar
Bobos, I., Duplay, J., Rocha, J., & Gomes, C. (2001). Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596607.CrossRefGoogle Scholar
Cavallaro, G., Chiappisi, L., Pasbakhsh, P., Gradzielski, M., & Lazzara, G. (2018). A structural comparison of halloysite nanotubes of different origin by small-angle neutron scattering (SANS) and electric birefringence. Applied Clay Science, 160, 7180.CrossRefGoogle Scholar
Cheng, H., Liu, Q., Yang, J., Zhang, J., & Frost, R. L. (2010). Thermal analysis and infrared emission spectroscopic study of halloysite–potassium acetate intercalation compound. Thermochimica Acta, 511, 124128.CrossRefGoogle Scholar
de Faria, E. H., Lima, O. J., Ciuffi, K. J., Nassar, E. J., Vicente, M. A., Trujillano, R., & Calefi, P. S. (2009). Hybrid materials prepared by interlayer functionalization of kaolinite with pyridine-carboxylic acids. Journal of Colloid and Interface Science, 335, 210215.CrossRefGoogle ScholarPubMed
de Faria, E. H., Ciuffi, K. J., Nassar, E. J., Vicente, M. A., Trujillano, R., & Calefi, P. S. (2010). Novel reactive amino-compound: Tris(hydroxymethyl)aminomethane covalently grafted on kaolinite. Applied Clay Science, 48, 516521.CrossRefGoogle Scholar
Dedzo, G. K., Letaief, S., & Detellier, C. (2012). Kaolinite-ionic liquid nanohybrid materials as electrochemical sensors for size-selective detection anions. Journal of Materials Chemistry, 22, 2059320601.CrossRefGoogle Scholar
Dian, L. H., Yu, E. J., Chen, X. N., Wen, X. G., Zhang, Z. Z., Qin, L. Z., Wang, Q. Q., Li, G., & Wu, C. B. (2014). Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Research Letters, 9, 684695.CrossRefGoogle ScholarPubMed
Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: A review. Polymer International, 59, 574582.CrossRefGoogle Scholar
Franco, F., & Cruz, M. D. R. (2002). High-temperature X-ray diffraction, differential thermal analysis and thermogravimetry of the kaolinite-dimethylsulfoxide intercalation complex. Clays and Clay Minerals, 50, 4755.CrossRefGoogle Scholar
Frost, R. L., & Kloprogge, J. T. (1999). Raman spectroscopy of the low-frequency region of kaolinite at 298 and 77 K. Applied Spectroscopy, 53, 16101616.CrossRefGoogle Scholar
Frost, R. L., & Shurvell, H. F. (1997). Raman microprobe spectroscopy of halloysite. Clays and Clay Minerals, 45, 6872.CrossRefGoogle Scholar
Guo, C., Yang, C., Li, Q., Tan, Q., Xi, Y., Liu, W., & Zhai, G. (2012). Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. International Journal of Pharmaceutics, 430, 292298.Google Scholar
Hanif, M., Jabbar, F., Sharif, S., Abbas, G., Farooq, A., & Aziz, M. (2018). Halloysite nanotubes as a new drug-delivery system: A review. Clay Minerals, 51, 469477.CrossRefGoogle Scholar
Hári, J., Polyák, P., Mester, D., Mičušík, M., Omastová, M., Kállay, M., & Pukánszky, B. (2016). Adsorption of an active molecule on the surface of halloysite for controlled release application: Interaction, orientation, consequences. Applied Clay Science, 132–133, 167174.CrossRefGoogle Scholar
Hemmatpour, H., Haddadi-Asl, V., & Roghani-Mamaqani, H. (2015). Synthesis of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer, 65, 143153.CrossRefGoogle Scholar
Hollman, P. C., & Katan, M. B. (1999). Dietary flavonoids: Intake, health effects and bioavailability. Food and Chemical Toxicology, 37, 937942.CrossRefGoogle ScholarPubMed
Karunadasa, K. S. P., Manoratne, C. H., Pitawala, H. M. T. G. A., & Rajapakse, R. M. G. (2019). Thermal decomposition of calcium carbonate (calcite polymorph). as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 134, 2128.CrossRefGoogle Scholar
Kodama, H., & Oinuma, K. (1963). Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infra-red adsorption spectra. Clays and Clay Minerals, 11, 236249.CrossRefGoogle Scholar
Kumari, A., Yadav, S. K., Pakade, Y. B., Singh, B., & Yadav, S. C. (2010). Development of biodegradable nanoparticles for delivery of quercetin. Colloids and Surfaces B: Biointerfaces, 80, 184192.CrossRefGoogle ScholarPubMed
Kuo, S. M. (1996). Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Letters, 110, 4148.CrossRefGoogle ScholarPubMed
Lazzara, G., Cavallaro, G., Panchal, A., Fakhrullin, R., Stavitskaya, A., Vinokurov, V., & Lvov, Y. (2018). An assembly of organic-inorganic composites using halloysite clay nanotubes. Current Opinion in Colloid & Interface Science, 35, 4250.CrossRefGoogle Scholar
Lee, K. W., Kang, N. J., Heo, Y. S., Rogozin, E. A., Pugliese, A., Hwang, M. K., Bowden, G. T., Bode, A. M., Lee, H. J., & Dong, Z. (2008). Raf and mek protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Research, 68, 946955.CrossRefGoogle Scholar
Lee, Y., Jung, G. E., Cho, S. J., Geckeler, K. E., & Fuchs, H. (2013). Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes. Nanoscale, 5, 85778585.CrossRefGoogle ScholarPubMed
Letaief, S., & Detellier, C. (2007). Functionalized nanohybrid materials obtained from the interlayer grafting of aminoalcohols on kaolinite. Chemical Communications, 25, 26132615.CrossRefGoogle Scholar
Letaief, S., Tonle, I. K., Diaco, T., & Detellier, C. (2008). Nanohybrid materials from interlayer functionalization of kaolinite. Application to the electrochemical preconcentration of cyanide. Applied Clay Science, 42, 95101.CrossRefGoogle Scholar
Li, X., Yang, Q., Ouyang, J., Yang, H., & Chang, S. (2016). Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Applied Clay Science, 126, 306312.CrossRefGoogle Scholar
Li, Y., Zhang, Y., Zhang, Y., Liu, M., Zhang, F., & Wang, L. (2017). Thermal behavior analysis of halloysite selected from Inner Mongolia autonomous region in China. Journal of Thermal Analysis and Calorimetry, 129, 13331339.CrossRefGoogle Scholar
Lisuzzo, L., Cavallaro, G., Milioto, S., & Lazzara, G. (2019). Layered composite based on halloysite and natural polymers: A carrier for the ph controlled release of drugs. New Journal of Chemistry, 43, 1088710893.CrossRefGoogle Scholar
Lun, H., Ouyang, J., & Yang, H. (2014). Natural halloysite nanotubes modified as an aspirin carrier. RSC Advances, 4, 4419744202.CrossRefGoogle Scholar
Massaro, M., Piana, S., Colletti, C. G., Noto, R., Riela, S., Baiamonte, C., Giordano, C., Pizzolanti, G., Cavallaro, G., Milioto, S., & Lazzara, G. (2015). Multicavity halloysite–amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. Journal of Materials Chemistry B, 3, 40744081.CrossRefGoogle ScholarPubMed
Massaro, M., Riela, S., Guernelli, S., Parisi, F., Lazzara, G., Baschieri, A., Valgimigli, L., & Amorati, R. (2016). A synergic nanoantioxidant based on covalently modified halloysite-trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry B, 4, 22292241.CrossRefGoogle ScholarPubMed
Matusik, J., & Wścisło, A. (2014). Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols. Applied Clay Science, 100, 5059.CrossRefGoogle Scholar
Matusik, J., Gaweł, A., Bielańska, E., Osuch, W., & Bahranowski, K. (2009). The effect of structural order on nanotubes derived from kaolin-group minerals. Clays and Clay Minerals, 57, 452464.CrossRefGoogle Scholar
Mei, D., Zhang, B., Liu, R., Zhang, H., & Liu, J. (2011). Preparation of stearic acid/halloysite nanotube composite as form-stable pcm for thermal energy storage. International Journal of Energy Research, 35, 828834.CrossRefGoogle Scholar
Natarajan, V., Krithica, N., Madhan, B., & Sehgal, P. K. (2011). Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. Journal of Pharmaceutical Sciences, 100, 195205.CrossRefGoogle ScholarPubMed
Panda, A. K., Mishra, B. G., Mishra, D. K., & Singh, R. K. (2010). Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363, 98104.CrossRefGoogle Scholar
Paul, D. R. (2011). Elaborations on the higuchi model for drug delivery. International Journal of Pharmaceutics, 418, 1317.CrossRefGoogle ScholarPubMed
Pereira, A. B., Silva, A. M.d., Barroca, M. J., Marques, M. P. M., & Braga, S. S. (2020). Physicochemical properties, antioxidant action and practical application in fresh cheese of the solid inclusion compound γ-cyclodextrin· quercetin, in comparison with β-cyclodextrin· quercetin. Arabian Journal of Chemistry, 13, 205215.CrossRefGoogle Scholar
Pool, H., Mendoza, S., Xiao, H., & McClements, D. J. (2013). Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: Impact of physical form on quercetin bioaccessibility. Food & Function, 4, 162174.CrossRefGoogle ScholarPubMed
Qi, Y., Jiang, M., Cui, Y.-L., Zhao, L., & Zhou, X. (2015). Synthesis of quercetin loaded nanoparticles based on alginate for Pb(II) adsorption in aqueous solution. Nanoscale Research Letters, 10, 19.CrossRefGoogle ScholarPubMed
Santos, A. C., Pereira, I., Reis, S., Veiga, F., Saleh, M., & Lvov, Y. (2019). Biomedical potential of clay nanotube formulations and their toxicity assessment. Expert Opinion on Drug Delivery, 16, 11691182.CrossRefGoogle ScholarPubMed
Seifi, S., Diatta-Dieme, M. T., Blanchart, P., Lecomte-Nana, G. L., Kobor, D., & Petit, S. (2016). Kaolin intercalated by urea. Ceramic applications. Construction and Building Materials, 113, 579585.CrossRefGoogle Scholar
Tan, D., Yuan, P., Annabi-Bergaya, F., Liu, D., Wang, L., Liu, H., & He, H. (2014). Loading and in vitro release of ibuprofen in tubular halloysite. Applied Clay Science, 96, 5055.CrossRefGoogle Scholar
Vikulina, A., Voronin, D., Fakhrullin, R., Vinokurov, V., & Volodkin, D. (2020). Naturally derived nano- and micro-drug delivery vehicles: Halloysite, vaterite and nanocellulose. New Journal of Chemistry, 44, 56385655.CrossRefGoogle Scholar
Vinokurov, V. A., Stavitskaya, A. V., Chudakov, Y. A., Ivanov, E. V., Shrestha, L. K., Ariga, K., Darrat, Y. A., & Lvov, Y. M. (2017). Formation of metal clusters in halloysite clay nanotubes. Science and Technology of Advanced Materials, 18, 147151.CrossRefGoogle ScholarPubMed
Wada, K. (1961). Lattice expansion of kaolin minerals by treatment with potassium acetate. American Mineralogist, 46, 7891.Google Scholar
Wang, C. S., Liu, P., & Yu, N. (2013). Site-preference of uracil and thymine hydrogen bonding to quercetin. Acta Physico-Chimica Sinica, 29, 11731182.Google Scholar
Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., & Gao, Y. (2016). The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology, 56, 2138.CrossRefGoogle Scholar
Williamson, G., & Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. Ii. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81, 243S–255S.CrossRefGoogle ScholarPubMed
Xia, Y.-q., Guo, T.-y., Song, M.-d., Zhang, B.-h., & Zhang, B.-L.. (2006). Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. Reactive and Functional Polymers, 66, 17341740.CrossRefGoogle Scholar
Yariv, S., & Lapides, I. (2008). Thermo-infrared-spectroscopy analysis of dimethylsulfoxide-kaolinite intercalation complexes. Journal of Thermal Analysis and Calorimetry, 94, 433440.CrossRefGoogle Scholar
Zeraatpishe, L., Mohebali, A., & Abdouss, M. (2019). Fabrication and characterization of biocompatible ph responsive halloysite nanotubes grafted with sodium alginate for sustained release of phenytoin sodium. New Journal of Chemistry, 43, 1052310530.CrossRefGoogle Scholar
Zhang, Y., Liu, Q., Wu, Z., Zheng, Q., & Cheng, H. (2011). Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex. Journal of Thermal Analysis and Calorimetry, 110, 11671172.CrossRefGoogle Scholar
Zhang, Y., He, X., Ouyang, J., & Yang, H. (2013). Palladium nanoparticles deposited on silanized halloysite nanotubes: Synthesis, characterization and enhanced catalytic property. Scientific Reports, 3, 16.Google ScholarPubMed
Zhang, H., Ren, T., Ji, Y., Han, L., Wu, Y., Song, H., Bai, L., & Ba, X. (2015). Selective modification of halloysite nanotubes with 1-pyrenylboronic acid: A novel fluorescence probe with highly selective and sensitive response to hyperoxide. ACS Applied Materials & Interfaces, 7, 2380523811.CrossRefGoogle ScholarPubMed
Zhang, A., Mu, B., Luo, Z., & Wang, A. (2017). Bright blue halloysite/CoAl2O4 hybrid pigments: Preparation, characterization and application in water-based painting. Dyes and Pigments, 139, 473481.CrossRefGoogle Scholar
Zhang, R., Li, Y., He, Y., & Qin, D. (2020). Preparation of iodopropynyl butycarbamate loaded halloysite and its anti-mildew activity. Journal of Materials Research and Technology, 9, 1014810156.CrossRefGoogle Scholar
Zhou, Y., Liu, Q., Xu, P., Cheng, H., & Liu, Q. (2018). Molecular structure and decomposition kinetics of kaolinite/alkylamine intercalation compounds. Frontiers in Chemistry, 6, 310.CrossRefGoogle ScholarPubMed
Zich, D., Zacher, T., Darmo, J., Szöcs, V., Lorenc, D., & Janek, M. (2013). Far-infrared investigation of kaolinite and halloysite intercalates using terahertz time-domain spectroscopy. Vibrational Spectroscopy, 69, 17.CrossRefGoogle Scholar