We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Direct numerical simulations of temporally developing compressible mixing layers have been performed to investigate the effects of large-scale structures (LSSs) on turbulent kinetic energy (TKE) budgets at convective Mach numbers ranging from $M_c=0.2$ to $1.8$ and at Taylor Reynolds numbers up to 290. In the core region of mixing layers, the volume fraction of low-speed LSSs decreases linearly with respect to the vertical distance at a Mach-number-independent rate. The contributions of low-speed LSSs to TKE, and its budget, including production, dissipation, pressure-strain and spatial diffusion terms, are primarily concentrated in the upper region of mixing layer. The streamwise and vertical mass flux coupling terms mainly transport TKE downwards in low-speed LSSs, and their magnitudes are comparable to the other dominant terms. Near the edges of LSSs, the sources and losses of all three components of TKE are completely different to each other, and dominated by turbulent diffusion, pressure diffusion, pressure-strain and dissipation terms. The TKE, their total variation and dissipation are significantly amplified at edges of low-speed LSSs, especially at the upper edge. This observation supports the existence of amplitude modulation exerted by the LSSs onto the near-edge small-scale structures in mixing layers. The level of amplitude modulation is strongest for the vertical velocity, followed by the streamwise velocity, and weakest for the spanwise velocity. Additionally, the amplitude modulation effect decreases significantly with increasing convective Mach number. The results on the amplitude modulation effect is helpful for developing predictive models of budget terms of TKE in mixing layers.
This study aimed to investigate the effects of physical multimorbidity on the trajectory of cognitive decline over 17 years and whether vary across wealth status. The study was conducted in 9035 respondents aged 50+ at baseline from nine waves (2002–2019) of the English Longitudinal Study of Aging. A latent class analysis was used to identify patterns of physical multimorbidity, and mixed multilevel models were performed to determine the association between physical multimorbidity and trajectories of cognitive decline. Joint analyses were conducted to further verify the influence of wealth status. Four patterns of physical multimorbidity were identified. Mixed multilevel models with quadratic terms of time and status/patterns indicated significant non-linear trajectories of multimorbidity on cognitive function. The magnitude of the association between complex multisystem patterns and cognitive decline increased the most as follow-up progressed. Individuals with high wealth and hypertension/diabetes patterns have significantly lower composite global cognitive z scores over time as compared with respiratory/osteoporosis patterns. Physical multimorbidity at baseline is associated with the trajectory of cognitive decline, and the magnitude of the association increased over time. The trend of cognitive decline differed in specific combinations of wealth status and physical multimorbidity.
Establishing the invariance property of an instrument (e.g., a questionnaire or test) is a key step for establishing its measurement validity. Measurement invariance is typically assessed by differential item functioning (DIF) analysis, i.e., detecting DIF items whose response distribution depends not only on the latent trait measured by the instrument but also on the group membership. DIF analysis is confounded by the group difference in the latent trait distributions. Many DIF analyses require knowing several anchor items that are DIF-free in order to draw inferences on whether each of the rest is a DIF item, where the anchor items are used to identify the latent trait distributions. When no prior information on anchor items is available, or some anchor items are misspecified, item purification methods and regularized estimation methods can be used. The former iteratively purifies the anchor set by a stepwise model selection procedure, and the latter selects the DIF-free items by a LASSO-type regularization approach. Unfortunately, unlike the methods based on a correctly specified anchor set, these methods are not guaranteed to provide valid statistical inference (e.g., confidence intervals and p-values). In this paper, we propose a new method for DIF analysis under a multiple indicators and multiple causes (MIMIC) model for DIF. This method adopts a minimal \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L_1$$\end{document} norm condition for identifying the latent trait distributions. Without requiring prior knowledge about an anchor set, it can accurately estimate the DIF effects of individual items and further draw valid statistical inferences for quantifying the uncertainty. Specifically, the inference results allow us to control the type-I error for DIF detection, which may not be possible with item purification and regularized estimation methods. We conduct simulation studies to evaluate the performance of the proposed method and compare it with the anchor-set-based likelihood ratio test approach and the LASSO approach. The proposed method is applied to analysing the three personality scales of the Eysenck personality questionnaire-revised (EPQ-R).
Advances in artificial intelligence (AI) have great potential to help address societal challenges that are both collective in nature and present at national or transnational scale. Pressing challenges in healthcare, finance, infrastructure and sustainability, for instance, might all be productively addressed by leveraging and amplifying AI for national-scale collective intelligence. The development and deployment of this kind of AI faces distinctive challenges, both technical and socio-technical. Here, a research strategy for mobilising inter-disciplinary research to address these challenges is detailed and some of the key issues that must be faced are outlined.
The breaking and energy distribution of mode-1 depression internal solitary wave interactions with Gaussian ridges are examined through laboratory experiments. A series of processes, such as shoaling, breaking, transmission and reflection, are captured completely by measuring the velocity field in a large region. It is found that the maximum interface descent ($a_{max}$) during wave shoaling is an important parameter for diagnosing the type of wave–ridge interaction and energy distribution. The wave breaking on the ridge depends on the modified blockage parameter $\zeta _m$, the ratio of the sum of the upper layer depth and $a_{max}$ to the water depth at the top of the ridge. As $\zeta _m$ increases, the interaction type transitions from no breaking to plunging and mixed plunging–collapsing breaking. Within the scope of this experiment, the energy distribution can be characterized solely by $\zeta _m$. The transmission energy decreases monotonically with increasing $\zeta _m$, and there is a linear relationship between $\zeta _m^2$ and the reflection coefficient. The value of $a_{max}$ can be determined from the basic initial parameters of the experiment. Based on the incident wave parameters, the depth of the upper and lower layers, and the topographic parameters, two new simple methods for predicting $a_{max}$ on the ridge are proposed.
where ɛ is apositive parameter, $0 \lt s \lt 1$, $2 \leqslant p \lt q \lt \min\{2p, N / s\}$, $0 \lt \mu \lt sp$, $(- \Delta)_t^s$$(t \in \left\{p,q\right\})$ is the fractional t-Laplace operator, the reaction term $f : \mathbb{R} \mapsto \mathbb{R}$ is continuous, and the potential $V \in C (\mathbb{R}^N , \mathbb{R})$ satisfying a local condition. Using a variational approach and topological tools (the non-standard C1-Nehari manifold analysis and the abstract category theory), multiplicity of positive solutions and concentration properties for the above problem are established. Our results extend and complement some previous contributions related to double phase variational integrals.
Emerging evidence has shown a strong correlation between serum triacylglycerol (TAG) levels, the inflammatory response, and Parkinson’s disease (PD) onset. However, the causal relationship between TAG levels and PD has not been well-established. We aimed to investigate the relationship between serum TAG levels and risk of PD and explore the potential mediating role of circulating immune cells and inflammatory proteins. We utilised genotype data from the GeneRISK cohort, and summary data from genome wide association studies investigating PD, circulating immune cells, inflammatory proteins, and plasma lipidomes. Using Mendelian randomization (MR) and multivariate MR (MVMR) analysis, we further adjusted for phosphatidylcholine (17:0_18:1) and triacylglycerol (58:7). Our results suggested a robust causal link between higher serum TAG (51:4) levels and a decreased risk of PD, with one standard deviation genetically instrumented higher serum TAG (51:4) level leading to a 21 percent [95% CI, 0.66 – 0.96] reduction in the risk of PD (p = 0.015). Additionally, the results of the mediation analysis suggested a possible role for mediation through circulating immune cells (including IgD-CD38-B cells and resting CD4 regulatory T cells), but not circulating inflammatory proteins, in the causal relationship between the plasma lipidomes and PD. Our study confirms a causal relationship between higher serum TAG (51:4) levels and a lower risk of PD and clarifies a possible role for mediation through circulating immune cells, but not inflammatory proteins. These findings indicate that serum triacylglycerol (51:4) regulates immunity to effectively lower the risk of PD.
One species-general life history (LH) principle posits that challenging childhood environments are coupled with a fast or faster LH strategy and associated behaviors, while secure and stable childhood environments foster behaviors conducive to a slow or slower LH strategy. This coupling between environments and LH strategies is based on the assumption that individuals’ internal traits and states are independent of their external surroundings. In reality, individuals respond to external environmental conditions in alignment with their intrinsic vitality, encompassing both physical and mental states. The present study investigated attachment as an internal mental state, examining its role in mediating and moderating the association between external environmental adversity and fast LH strategies. A sample of 1169 adolescents (51% girls) from 9 countries was tracked over 10 years, starting from age 8. The results confirm both mediation and moderation and, for moderation, secure attachment nullified and insecure attachment maintained the environment-LH coupling. These findings suggest that attachment could act as an internal regulator, disrupting the contingent coupling between environmental adversity and a faster pace of life, consequently decelerating human LH.
The integration of camera and LiDAR technologies has the potential to significantly enhance construction robots’ perception capabilities by providing complementary construction information. Structured light cameras (SLCs) are a desirable alternative as they provide comprehensive information on construction defects. However, fusing these two types of information depends largely on the sensors’ relative positions, which can only be established through extrinsic calibration. This paper introduces a novel calibration algorithm considering a customized board for SLCs and repetitive LiDARs, which are designed to facilitate the automation of construction robots. The calibration board is equipped with four symmetrically distributed hemispheres, whose centers are obtained by fitting the spheres and adoption with the geometric constraints. Subsequently, the spherical centers serve as reference features to estimate the relationship between the sensors. These distinctive features enable our proposed method to only require one calibration board pose and minimize human intervention. We conducted both simulation and real-world experiments to assess the performance of our algorithm. And the results demonstrate that our method exhibits enhanced accuracy and robustness.
Data on epidemiology trends of paediatric tuberculosis (TB) are limited in China. So, we investigated the clinical and epidemiological profiles in diagnosed TB disease and TB infection patients at Beijing Children’s Hospital. Of 3 193 patients, 51.05% had pulmonary TB (PTB) and 15.16% had extrapulmonary TB (EPTB). The most frequent forms of EPTB were TB meningitis (39.05%), pleural TB (29.75%), and disseminated TB (10.33%). PTB patients were significantly younger and associated with higher hospitalization frequency. Children aged 1–4 years exhibited higher risk of PTB and TB meningitis, and children aged 5–12 years had higher risk of EPTB. The proportion of PTB patients increased slightly from 40.9% in 2012 to 65% in 2019, and then decreased to 17.8% in 2021. The percentage of EPTB cases decreased from 18.3% in 2012 to 15.2% in 2019, but increased to 16.4% in 2021. Among EPTB cases, the largest increase was seen in TB meningitis. In conclusion, female and young children had higher risk of PTB in children. TB meningitis was the most frequent forms of EPTB among children, and young children were at high risk of TB meningitis. The distribution of different types of EPTB differed by age.
To examine the effectiveness of Self-Help Plus (SH+) as an intervention for alleviating stress levels and mental health problems among healthcare workers.
Methods
This was a prospective, two-arm, unblinded, parallel-designed randomised controlled trial. Participants were recruited at all levels of medical facilities within all municipal districts of Guangzhou. Eligible participants were adult healthcare workers experiencing psychological stress (10-item Perceived Stress Scale scores of ≥15) but without serious mental health problems or active suicidal ideation. A self-help psychological intervention developed by the World Health Organization in alleviating psychological stress and preventing the development of mental health problems. The primary outcome was psychological stress, assessed at the 3-month follow-up. Secondary outcomes were depression symptoms, anxiety symptoms, insomnia, positive affect (PA) and self-kindness assessed at the 3-month follow-up.
Results
Between November 2021 and April 2022, 270 participants were enrolled and randomly assigned to either SH+ (n = 135) or the control group (n = 135). The SH+ group had significantly lower stress at the 3-month follow-up (b = −1.23, 95% CI = −2.36, −0.10, p = 0.033) compared to the control group. The interaction effect indicated that the intervention effect in reducing stress differed over time (b = −0.89, 95% CI = −1.50, −0.27, p = 0.005). Analysis of the secondary outcomes suggested that SH+ led to statistically significant improvements in most of the secondary outcomes, including depression, insomnia, PA and self-kindness.
Conclusions
This is the first known randomised controlled trial ever conducted to improve stress and mental health problems among healthcare workers experiencing psychological stress in a low-resource setting. SH+ was found to be an effective strategy for alleviating psychological stress and reducing symptoms of common mental problems. SH+ has the potential to be scaled-up as a public health strategy to reduce the burden of mental health problems in healthcare workers exposed to high levels of stress.
Vegetables are known to be beneficial to human health, but the association between vegetable consumption and gastric cancer remains uncertain. To synthesise knowledge about the relationship between vegetable group consumption and gastric cancer risk, update present meta-analyses and estimate associations between vegetable consumption and gastric cancer risk based solely on prospective studies, we perform a PRISMA-compliant three-level meta-analysis. Systematic search identified thirteen prospective studies with fifty-two effect sizes that met all inclusion criteria and no exclusion criteria for our meta-analysis. Pooled risk ratios (RRs) showed a positive association between high vegetable consumption and low gastric cancer risk (pooled RR 0·93, 95% confidence interval 0·90–0·97, P = 0·06). In moderator analyses for indicators of gender, region and quantity of vegetable intake, there was no significant difference between subgroups. However, the effect became significant in populations with lower than the minimum risk exposure level (TMREL) of vegetable consumption (P < 0·05). Higher vegetable intake is associated with a decreased risk of gastric cancer. This effect may be limited to specific populations, such as ones with lower vegetable consumption. Evidence from our study has important public health implications for dietary recommendations.
Direct numerical simulations of temporally developing mixing layers have been performed to investigate the effects of compressibility on statistics and structures near the interfaces of high- and low-speed large-scale structures (LSSs), covering a range of convective Mach numbers from $M_c=0.2$ to $1.8$ and Taylor Reynolds numbers up to 290. The interfaces of LSSs are directly defined by the isosurface of zero fluctuating streamwise velocity. The characteristic velocity jump at the interfaces grows rapidly in the transition stage and then decreases until reaching a gradual self-similar stage. The evolution of velocity jump is evidently delayed as the convective Mach number increases. The interface layer is formed by the shearing motion of neighbouring LSSs. A small vortical motion characterized by the Kolmogorov scale is induced in the interface layer by shear-dominated outer regions. The strengths of outer shearing motion and central vortical motion are greater at the leading edge, but smaller at the trailing edge, which is also reflected in a larger velocity jump at the leading edge. As the convective Mach number increases, the small-scale vortical structure is obviously suppressed by compressibility. At high convective Mach number $M_c=1.8$, the compressive shear-dominated outer regions are linked with a sheet-like structure passing through the centre of the expansion region corresponding to a small-scale vortical structure. The compressibility and shearing strength near the interface are highly dependent on the interface orientation.
Previous studies have revealed an association between dietary factors and atopic dermatitis (AD). To explore whether there was a causal relationship between diet and AD, we performed Mendelian randomisation (MR) analysis. The dataset of twenty-one dietary factors was obtained from UK Biobank. The dataset for AD was obtained from the publicly available FinnGen consortium. The main research method was the inverse-variance weighting method, which was supplemented by MR‒Egger, weighted median and weighted mode. In addition, sensitivity analysis was performed to ensure the accuracy of the results. The study revealed that beef intake (OR = 0·351; 95 % CI 0·145, 0·847; P = 0·020) and white bread intake (OR = 0·141; 95 % CI 0·030, 0·656; P = 0·012) may be protective factors against AD. There were no causal relationships between AD and any other dietary intake factors. Sensitivity analysis showed that our results were reliable, and no heterogeneity or pleiotropy was found. Therefore, we believe that beef intake may be associated with a reduced risk of AD. Although white bread was significant in the IVW analysis, there was large uncertainty in the results given the wide 95 % CI. Other factors were not associated with AD in this study.
Creating an environmentally friendly precursor to form a kaolinite intercalation compound is important for promoting the applications of nanohybrid kaolinite in electrochemical sensors, low- or zero-toxicity drug carriers, and clay-polymer nanocompounds. In the present study, a stable hydrated kaolinite pre-cursor with d001= 0.84 nm was prepared successfully by heating the transition phase, the as-prepared kaolinite-hydrazine intercalate, at temperatures between 40 and 70ºC. The structure of the hydrated kaolinite was characterized by X-ray diffraction and infrared spectroscopy. The morphology was examined using scanning electron microscopy. The results showed that the hydrated hydrazine of the transition phase was easy to decompose to hydrazines and water molecules in the interlayer at 40-70ºC. Hydrazine molecules de-intercalated gradually, and water molecules remained in the ditrigonal holes of the silicate layer with sufficient stability, finally forming the stable 0.84 nm hydrated kaolinite in the system with a success rate of 80–90%. The 0.84 nm hydrated kaolinite may become an excellent precursor for the preparation of other kaolinite intercalates. A degree of intercalation of ~100% was obtained for the kaolinite-ethylene glycol intercalate, and a degree of intercalation of ~80% was obtained for the kaolinite-glycine intercalate from the 0.84 nm hydrated kaolinite precursor.
The elimination of Pb2+ and recovery of lead metal during the treatment of industrial sewage is an important research topic. Montmorillonite (Mnt) is a promising material in this regard. The purpose of the present study was to improve the Pb2+ adsorption ability of Na-containing Mnt (Na-Mnt) by pillaring titania (anatase) into its interlayer spaces using a sol-gel method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The ratio of Ti to Mnt affected the crystal phase of titania-pillared Na-Mnt (Ti-Mnt), and changed the interlayer spacing of the (001) plane of Ti-Mnt and the growth of anatase. The Pb2+-adsorption capabilities of Ti-Mnt were tested using an aqueous solution of lead nitrate as a wastewater model. The Ti-Mnt prepared adsorbed >99.99% of the Pb2+; leached and activated Ti-Mnt adsorbed >95.7% of the Pb2+, indicating that Ti-Mnt could be recycled effectively. Furthermore, the Pb2+-adsorption capability of Ti- Mnt was related to the interlayer spacing of Mnt, the distribution of anatase particles pillared in Mnt, and the specific surface area, especially with respect to the relationship between the anatase particles and the interlayer spacing of the (001) plane.
The efficient separation of hexane isomers from the light naphtha fraction is a significant challenge in the petrochemical industry. 5A zeolite adsorbent is used commercially to sieve alkane isomers. In this study, 5A zeolites were synthesized using a low-cost natural clay mineral precursor, i.e. palygorskite (PAL), with the addition of crystallization directing agent (CDA). By varying the mass ratio of CDA/deionized water, 5A zeolites were obtained as CDA-5%, CDA-7.5%, and CDA-10%. All products were submicron particles with an average particle size of 400–800 nm. A sieving test of CDA-induced 5A zeolites was carried out on hexane adsorbates including n-hexane (nHEX), 2-methylpentane (2MP), and 3-methylpentane (3MP). According to vapor-phase batch adsorption experiments, a significant equilibrium amount (0.149 g/g) of nHEX and only 0.0321 g/g 2MP and 0.0416 g/g 3MP were adsorbed on the 5A zeolite product with CDA-5%. The dynamic adsorption performance of 5A zeolite (CDA-5%) was evaluated by breakthrough curves of binary mixtures of nHEX/2MP and nHEX/3MP. Palygorskite 5A (PAL 5A) zeolite achieved maximum dynamic adsorption capacities of nHEX (0.16 g/g in both cases) at 200°C and 1.2 MPa total pressure. This work provided an economic alternative for the synthesis of 5A zeolites using natural clay minerals instead of chemical raw materials.
Supported silver nanoparticles (Ag NPs) have been used extensively as antibacterial agents in biomedicine, biotechnology, and environmental remediation. However, a facile and scalable method for preparing Ag NPs dispersed homogeneously on supports remains a challenge. In this study, a novel molten salt method was developed successfully to synthesize the supported, homogeneously dispersed Ag NPs on palygorskite. Abundant pores and ample surface hydroxyl groups of palygorskite served as anchoring sites, preventing the rapid growth, aggregation, and sintering of Ag NPs. Typically, palygorskite was mixed with AgNO3 (as a precursor) and NaNO3 (as a dispersant), and then the mixture was heated slowly. During the heating process, the AgNO3 decomposed gradually into Ag NPs and the molten NaNO3 with a high concentration of ions dispersed the newly formed Ag NPs. The Ag NPs were dispersed homogeneously on the palygorskite and had very small particle sizes (~5.8 nm) even for a significant loading amount (~9 wt.%). As antibacterial agents, the Ag/palygorskite nanocomposites showed enhanced antibacterial activity, compared with those synthesized without the introduction of molten NaNO3. In addition, the key effect of the surface hydroxyl groups of palygorskite on the characteristics of the loaded Ag and the corresponding antibacterial activity were also elucidated. As such, the present work provided a novel and facile strategy for the synthesis, without a chemical reductant or surfactant, of supported, highly dispersed Ag NPs on clay minerals and this could have potential in the scalable production and practical application of Ag-based antibacterial materials.