We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Whole-genome sequencing (WGS) has shown tremendous potential in rapid diagnosis of drug-resistant tuberculosis (TB). In the current study, we performed WGS on drug-resistant Mycobacterium tuberculosis isolates obtained from Shanghai (n = 137) and Russia (n = 78). We aimed to characterise the underlying and high-frequency novel drug-resistance-conferring mutations, and also create valuable combinations of resistance mutations with high predictive sensitivity to predict multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) phenotype using a bootstrap method. Most strains belonged to L2.2, L4.2, L4.4, L4.5 and L4.8 lineages. We found that WGS could predict 82.07% of phenotypically drug-resistant domestic strains. The prediction sensitivity for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), streptomycin (STR), ofloxacin (OFL), amikacin (AMK) and capreomycin (CAP) was 79.71%, 86.30%, 76.47%, 88.37%, 83.33%, 70.00% and 70.00%, respectively. The mutation combination with the highest sensitivity for MDR prediction was rpoB S450L + rpoB H445A/P + katG S315T + inhA I21T + inhA S94A, with a sensitivity of 92.17% (0.8615, 0.9646), and the mutation combination with highest sensitivity for XDR prediction was rpoB S450L + katG S315T + gyrA D94G + rrs A1401G, with a sensitivity of 92.86% (0.8158, 0.9796). The molecular information presented here will be of particular value for the rapid clinical detection of MDR- and XDR-TB isolates through laboratory diagnosis.
This paper investigates the comprehension of Relative Clauses (RCs) in 15 Mandarin children with suspected Specific Language Impairment (SLI) (aged between 4; 5 and 6; 0) and 29 typically developing (TD) controls. Results from a Character Picture Matching Task indicate that (i) the subject RC was better understood than the object RC in children with SLI, but there was no asymmetry in the comprehension of the two RCs in TD children; (ii) the performance of children with SLI was significantly worse than that of their TD peers; (iii) children with SLI were prone to committing thematic role reversal errors and middle errors. In order to overcome the shortcomings of previous accounts, we therefore put forward the Edge Feature Underspecification Hypothesis, which can not only explain the asymmetry of comprehension seen in children with SLI but also shed light on the nature of errors committed by them in the task.
The effects of early thiamine use on clinical outcomes in critically ill patients with acute kidney injury (AKI) are unclear. The purpose of this study was to investigate the associations between early thiamine administration and clinical outcomes in critically ill patients with AKI. The data of critically ill patients with AKI within 48 h after ICU admission were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. PSM was used to match patients early receiving thiamine treatment to those not early receiving thiamine treatment. The association between early thiamine use and in-hospital mortality due to AKI was determined using a logistic regression model. A total of 15 066 AKI patients were eligible for study inclusion. After propensity score matching (PSM), 734 pairs of patients who did and did not receive thiamine treatment in the early stage were established. Early thiamine use was associated with lower in-hospital mortality (OR 0·65; 95 % CI 0·49, 0·87; P < 0·001) and 90-d mortality (OR 0·58; 95 % CI 0·45, 0·74; P < 0·001), and it was also associated with the recovery of renal function (OR 1·26; 95 % CI 1·17, 1·36; P < 0·001). In the subgroup analysis, early thiamine administration was associated with lower in-hospital mortality in patients with stages 1 to 2 AKI. Early thiamine use was associated with improved short-term survival in critically ill patients with AKI. It was possible beneficial role in patients with stages 1 to 2 AKI according to the Kidney Disease: Improving Global Outcomes criteria.
Steam jet milling was applied for the first time to ultra-fine grind the filter cake (moisture content 23.80%) produced by a kaolin concentrator. The material was dehydrated and dried simultaneously during grinding, and the final ground sample met the moisture content requirement for powder products of <2%. The particle size of the ground kaolin samples decreased and the particle-size distribution was more concentrated, indicating that the steam jet milling was more effective for kaolin processing than the conventional dry grinding process. In addition, steam jet milling can improve the whiteness and decrease the crystal order of the samples, thus improving the kaolin properties in follow-up applications.
Nutrition in early life has a long-term influence on later health. In order to the explore effects of in ovo feeding (IOF) of vitamin C on splenic development, splenic metabolism and apoptosis were detected in embryo, adult chickens and in vitro. A total of 360 fertile eggs were selected and randomly assigned to control (CON) and vitamin C (VC) groups which were injected with saline and vitamin C on embryonic day 11, respectively. Functional enrichment of differentially expressed genes by transcriptome on embryonic day 19 suggested that purine nucleotide metabolism might be a potential pathway for the IOF of vitamin C to regulate spleen development. Additionally, the IOF of vitamin C significantly increased splenic vitamin C content on post-hatch day 21. Meanwhile, the splenic expression of adenosine deaminase, serine/threonine kinase 1 and proliferating cell nuclear antigen was down-regulated, whereas the expression of cysteinyl aspartate specific proteinase 9 was up-regulated in the VC group. On post-hatch day 42, the IOF of vitamin C significantly down-regulated the splenic expression of B-cell lymphoma 2 and increased the mRNA level of cysteinyl aspartate specific proteinase 9. The IOF of vitamin C could regulate the expression of genes related to adenylate metabolism and increased the apoptosis rate in vitro, which is consistent with the result in vivo. In conclusion, the IOF of vitamin C regulated splenic development and maturation by affecting purine nucleotide metabolism pathway and promoting apoptosis.
Data on average iodine requirements for the Chinese population are limited following implementation of long-term universal salt iodisation. We explored the minimum iodine requirements of young adults in China using a balance experiment and the ‘iodine overflow’ hypothesis proposed by our team. Sixty healthy young adults were enrolled to consume a sequential experimental diet containing low, medium and high levels of iodine (about 20, 40 and 60 μg/d, respectively). Each dose was consumed for 4 d, and daily iodine intake, excretion and retention were assessed. All participants were in negative iodine balance throughout the study. Iodine intake, excretion and retention differed among the three iodine levels (P < 0·01 for all groups). The zero-iodine balance derived from a random effect model indicated a mean iodine intake of 102 μg/d, but poor correlation coefficients between observed and predicted iodine excretion (r 0·538 for μg/d data) and retention (r 0·304 for μg/d data). As iodine intake increased from medium to high, all of the increased iodine was excreted (‘overflow’) through urine and faeces by males, and 89·5 % was excreted by females. Although the high iodine level (63·4 μg/d) might be adequate in males, the corresponding level of 61·6 μg/d in females did not meet optimal requirements. Our findings indicate that a daily iodine intake of approximately half the current recommended nutrient intake (120 μg/d) may satisfy the minimum iodine requirements of young male adults in China, while a similar level is insufficient for females based on the ‘iodine overflow’ hypothesis.
Influenza is a major human respiratory pathogen. Due to the high levels of influenza-like illness (ILI) in Zhejiang, China, the control and prevention of influenza was challenging during the 2017–2018 season. To identify the clinical spectrum of illness related to influenza and characterise the circulating influenza virus strains during this period, the characteristics of ILI were studied. Viral sequencing and phylogenetic analyses were conducted to investigate the virus types, substitutions at the amino acid level and phylogenetic relationships between sequences. This study has shown that the 2017/18 influenza season was characterised by the co-circulation of influenza A (H1N1) pdm09, A (H3N2) and B viruses (both Yamagata and Victoria lineage). From week 36 of 2017 to week 12 of 2018, ILI cases accounted for 5.58% of the total number of outpatient and emergency patient visits at the surveillance sites. Several amino acid substitutions were detected. Vaccination mismatch may be a potential reason for the high percentage of ILI. Furthermore, it is likely that multiple viral introductions played a role in the endemic co-circulation of influenza in Zhejiang, China. More detailed information regarding the molecular epidemiology of influenza should be included in long-term influenza surveillance.
The aim of this study is to describe the risk factors of injured children’s posttraumatic stress disorder (PTSD) in China and provide the scientific data for PTSD prevention and control in children.
Methods:
Electronic databases, including Medline, Science Direct, Google Scholar, and CNKI (China National Knowledge Infrastructure), were searched for articles published on or before October 30, 2018, searching for the words, “PTSD,” “child”/“children,” “injury”/“injuries,” and “China”/“Chinese.” Forty-seven articles met the inclusion criteria and were meta-analyzed using random-effect models.
Results:
The total sample size in our meta-analysis was 65 298, and there were 13 402 children diagnosed with PTSD. The prevalence of PTSD after suffering from injury was 20.52% (95% CI = 17%–23%). PTSD occurrence was higher in girls than boys (24.61% vs 19.36%, P < 0.001). The PTSD rate for students was 51.82%, 37.12%, and 14.02% in senior, junior high school children, and primary school student, respectively. PTSD prevalence was 58.93% in rural children and higher than the urban children (57.36%). The prevalence of PTSD in ethnic minority children was significantly higher than that of Han Chinese children (35.38% vs 13.50%).
Conclusion:
PTSD in injured children is significantly higher in girls, senior high school children, in rural areas, and in ethnic minority children. PTSD prevention and control should be focused on these 4 subgroups.
Nanocrystalline and nanolaminated materials show enhanced radiation tolerance compared with their coarse-grained counterparts, since grain boundaries and layer interfaces act as effective defect sinks. Although the effects of layer interface and layer thickness on radiation tolerance of crystalline nanolaminates have been systematically studied, radiation response of crystalline/amorphous nanolaminates is rarely investigated. In this study, we show that irradiation can lead to formation of nanocrystals and nanotwins in amorphous CuNb layers in Cu/amorphous-CuNb nanolaminates. Substantial element segregation is observed in amorphous CuNb layers after irradiation. In Cu layers, both stationary and migrating grain boundaries effectively interact with defects. Furthermore, there is a clear size effect on irradiation-induced crystallization and grain coarsening. In situ studies also show that crystalline/amorphous interfaces can effectively absorb defects without drastic microstructural change, and defect absorption by grain boundary and crystalline/amorphous interface is compared and discussed. Our results show that tailoring layer thickness can enhance radiation tolerance of crystalline/amorphous nanolaminates and can provide insights for constructing crystalline/amorphous nanolaminates under radiation environment.
Serrated flow is one important characteristic of shear bands through which metallic glasses (MGs) accommodate plastic deformation. Serrated flow can be affected by intrinsic properties such as elastic modulus or extrinsic variables such as strain rate. However, the influences of pre-deformation and interfaces on serrated flow are less well understood. In this study, by using in situ micropillar compression inside a scanning electron microscope, we show that pre-deformation (consisting of cyclic loading/unloading below the nominal elastic limit) suppresses serrated flows in amorphous-CuNb but enhances serrated flows in amorphous-CuZr at both high and low strain rates. Moreover, layer interfaces in Cu/amorphous-CuNb multilayers mitigate serrated flows, and the average stress drop and strain duration associated with shear banding process can be tailored. Strain accommodation and energy dissipation via shear banding have clear impact on serrated flows. This study provides new perspectives on tailoring serrated flows and enhancing plastic deformation of MGs.
The overuse of antibiotics and the rapid emergence of antibiotic resistance prompted the launch of an antimicrobial stewardship programme in 2011. This study aimed to investigate the trends and correlations between antibiotic consumption and resistance of Staphylococcus aureus in a tertiary hospital of northwest China from 2010 to 2016. Trends were analysed by linear regression, and correlations were assessed by an autoregressive integrated moving average model. The total consumption of antibiotics halved during the 7-year study period, while the rates of resistance of S. aureus decreased significantly or remained stable; methicillin-resistant S. aureus (MRSA) declined markedly, from 73.3% at the beginning of the study to 41.4% by the end. This latter decrease was significantly correlated with the consumption of several classes of antibiotics. In conclusion, reduction in antibiotic use impacted significantly on resistance rates and contributed to a decline in MRSA prevalence.
AlMg alloys have widespread industrial applications. Grain refinement techniques have been frequently used to achieve high strength in these alloys. Here, we report on the fabrication of epitaxial co-sputtered AlMg thin films with high-density growth twins. The microstructure evolution with varying Mg composition has been characterized. Nanoindentation and in-situ micropillar compression tests show that the strength of AlMg alloys increases with increasing Mg composition. The flow stress of epitaxial nanotwinned Al–10 at.% Mg thin film exceeds 800 MPa. The modified Hall–Petch plots incorporating the solid solution strengthening effect suggest that, compared to high angle grain boundaries, incoherent twin boundaries are equivalent barriers to the transmission of dislocations in nanotwinned AlMg alloys.
Self-assembled oxide-based vertically aligned nanocomposite (VAN) thin films have aroused tremendous research interest in the past decade. The interest arises from the range of unique nanostructured films which can form and the multifunctionality arising from these forms. Hence, a large number of oxide VAN systems have been demonstrated and explored for enhancing specific physical properties, such as strain-enhanced ferroelectricity, tunable magnetotransport, and novel electrical/ionic transport properties. The epitaxial growth of the nanocomposite thin films and the coupling at the heterogeneous interfaces are critical considerations for future device applications. In this review, the advantages of strain coupling along vertical interfaces and film-substrate interfaces in nanocomposite films over conventional single phase films are discussed. Specifically, a unique strain compensation model enabling the epitaxial growth of two-phase nanocomposites having large lattice mismatch with substrates is proposed. Out-of-plane strain coupling between the two phases is also discussed in terms of designing strain states for desired functionalities.
Metallic glasses (MGs) are known to have high strength, but poor ductility. Prior studies have shown that plasticity in MG can be enhanced by significantly reducing their dimension to nanoscale. Here we show that, via the introduction of certain types of crystalline/amorphous interfaces, plasticity of MG can be prominently enhanced as manifested by the formation of ductile “dimples” in a 2 μm thick amorphous CuNb film. By tailoring the volume fraction and architecture of crystalline/amorphous multilayers, tensile fracture surface of MG can evolve from brittle featureless morphology to containing ductile dimples. In situ micropillar compression studies performed inside a scanning electron microscope show that shear instability in amorphous layers can be inhibited by interfaces. The mechanisms for improving plasticity and fracture resistance of MG via interface and size effect are discussed.
Previous studies have supported the theory that there is a positive association between ferritin and carotid atherosclerosis in Western people. Diet plays an important role in determining serum ferritin concentration. Asian dietary patterns are different from Western dietary patterns, implying that there may be a difference in the association of ferritin with carotid atherosclerosis between Asian and Western people. However, few studies focus on the association between ferritin and carotid atherosclerosis among Asians. The aim of this study was to investigate how serum ferritin levels are associated with carotid atherosclerosis in an Asian adult population. A cross-sectional assessment was performed in 8302 adults in Tianjin, China. Carotid intima-media thickness (IMT) and plaques were assessed using ultrasonography, and serum ferritin was measured using the protein chip-chemiluminescence method. Multiple logistic regression analysis was used to examine the association between quartiles of serum ferritin concentration and carotid atherosclerosis. In the present study, the overall prevalence of IMT and carotid plaques in participants is 29·2 and 22·7 %, respectively. In women, after adjustments for potentially confounding factors, the OR of IMT and carotid plaques by increasing serum ferritin quartiles were 1·00, 1·39 (95 % CI 0·98–1·99), 1·39 (95 % CI 0·99–1·97), 1·81 (95 % CI 1·30–2·55) (Pfor trend<0·001) and 1·00, 1·24 (95 % CI 0·89–1·73), 1·18 (95 % CI 0·85–1·65), 1·59 (95 % CI 1·15–2·20) (Pfor trend<0·01), respectively. However, no association was found between serum ferritin and carotid atherosclerosis in men. The study demonstrated that increased serum ferritin levels are independently associated with IMT and carotid plaques in Asian women but not in Asian men.
We bring the recently developed framework of dependence uncertainty into collective risk models, one of the most classic models in actuarial science. We study the worst-case values of the Value-at-Risk (VaR) and the Expected Shortfall (ES) of the aggregate loss in collective risk models, under two settings of dependence uncertainty: (i) the counting random variable (claim frequency) and the individual losses (claim sizes) are independent, and the dependence of the individual losses is unknown; (ii) the dependence of the counting random variable and the individual losses is unknown. Analytical results for the worst-case values of ES are obtained. For the loss from a large portfolio of insurance policies, an asymptotic equivalence of VaR and ES is established. Our results can be used to provide approximations for VaR and ES in collective risk models with unknown dependence. Approximation errors are obtained in both cases.
Glyphosate-resistant (GR) horseweed has become an especially problematic
weed in different crop production systems across the United States and the
world. In this field study, we used a nondestructive measurement system to
analyze the pollen production, deposition, and dispersion of a Tennessee
glyphosate resistant (TNR) horseweed biotype in Knoxville, TN during the
2013 pollination season. We observed that the pollination season of TNR
horseweed lasted about 2 mo (54 d). About 78.93% of horseweed pollen was
released between 9:00 A.M. and 7:00 P.M. during each sampling day and the
release peak was at about 1:30 P.M. The seasonal release of pollen grains
was estimated to be 5.11 million grains plant−1. The release rate
data indicated that the integrated horizontal flux density and deposition
flux density contributed to 78.17% and 21.83% of the release rate,
respectively. We also found that pollen concentration decreased with
distance from the source field; the average pollen concentration decreased
to 50.69% at a distance of 16 m from the source plot. This is the first
result of a systematic, direct examination of the release rate (emission and
deposition), release pattern (daily and seasonal), and dispersion pattern of
GR horseweed pollen.
Growth of unexpected phases from a composite target of BiFeO3:BiMnO3 and/or BiFeO3:BiCrO3 has been explored using pulsed laser deposition. The Bi2FeMnO6 tetragonal phase can be grown directly on SrTiO3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO3:BiCrO3 target. Pure X2 phase can be obtained on CeO2-buffered STO and LAO substrates. This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO3 (R = Cr, Mn, Fe, Co, Ni) targets. Furthermore, it also indicates that CeO2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity.