Skip to main content Accessibility help

Strategies to tailor serrated flows in metallic glasses

  • Zhe Fan (a1), Qiang Li (a1), Cuncai Fan (a1), Haiyan Wang (a1) and Xinghang Zhang (a1)...


Serrated flow is one important characteristic of shear bands through which metallic glasses (MGs) accommodate plastic deformation. Serrated flow can be affected by intrinsic properties such as elastic modulus or extrinsic variables such as strain rate. However, the influences of pre-deformation and interfaces on serrated flow are less well understood. In this study, by using in situ micropillar compression inside a scanning electron microscope, we show that pre-deformation (consisting of cyclic loading/unloading below the nominal elastic limit) suppresses serrated flows in amorphous-CuNb but enhances serrated flows in amorphous-CuZr at both high and low strain rates. Moreover, layer interfaces in Cu/amorphous-CuNb multilayers mitigate serrated flows, and the average stress drop and strain duration associated with shear banding process can be tailored. Strain accommodation and energy dissipation via shear banding have clear impact on serrated flows. This study provides new perspectives on tailoring serrated flows and enhancing plastic deformation of MGs.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).
2.Tian, L., Cheng, Y-Q., Shan, Z-W., Li, J., Wang, C-C., Han, X-D., Sun, J., and Ma, E.: Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).
3.Greer, A. and Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 (2007).
4.Wang, W.H.: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487 (2012).
5.Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
6.Greer, A.L., Cheng, Y.Q., and Ma, E.: Shear bands in metallic glasses. Mater. Sci. Eng., R 74, 71 (2013).
7.Zhang, Z.F., Eckert, J., and Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).
8.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
9.Liu, Y.H., Wang, G., Wang, R.J., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).
10.Chen, M., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).
11.Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).
12.Argon, A.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
13.Johnson, W. and Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).
14.Bouchbinder, E., Langer, J.S., and Procaccia, I.: Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles. Phys. Rev. E 75, 036107 (2007).
15.Schuh, C., Nieh, T., and Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).
16.Schuh, C.A., Lund, A.C., and Nieh, T.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).
17.Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T., and Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng., A 375–377, 1182 (2004).
18.Wang, K., Fujita, T., Zeng, Y.Q., Nishiyama, N., Inoue, A., and Chen, M.W.: Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Mater. 56, 2834 (2008).
19.Qiao, J.W., Zhang, Y., and Liaw, P.K.: Serrated flow kinetics in a Zr-based bulk metallic glass. Intermetallics 18, 2057 (2010).
20.Ke, H.B., Sun, B.A., Liu, C.T., and Yang, Y.: Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Mater. 63, 180 (2014).
21.Ye, J.C., Lu, J., Yang, Y., and Liaw, P.K.: Study of the intrinsic ductile to brittle transition mechanism of metallic glasses. Acta Mater. 57, 6037 (2009).
22.Wang, G., Chan, K.C., Xia, L., Yu, P., Shen, J., and Wang, W.H.: Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 57, 6146 (2009).
23.Cheng, Y.Q., Han, Z., Li, Y., and Ma, E.: Cold versus hot shear banding in bulk metallic glass. Phys. Rev. B 80, 134115 (2009).
24.Sun, B.A., Yu, H.B., Jiao, W., Bai, H.Y., Zhao, D.Q., and Wang, W.H.: Plasticity of ductile metallic glasses: A self-organized critical state. Phys. Rev. Lett. 105, 035501 (2010).
25.Sun, B.A., Pauly, S., Hu, J., Wang, W.H., Kühn, U., and Eckert, J.: Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses. Phys. Rev. Lett. 110, 225501 (2013).
26.Maaß, R. and Löffler, J.F.: Shear‐band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353 (2015).
27.Han, Z., Wu, W.F., Li, Y., Wei, Y.J., and Gao, H.J.: An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367 (2009).
28.Dubach, A., Dalla Torre, F.H., and Löffler, J.F.: Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Mater. 57, 881 (2009).
29.Sun, B.A. and Wang, W.H.: The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211 (2015).
30.Gu, X.J., Poon, S.J., Shiflet, G.J., and Lewandowski, J.J.: Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr. Mater. 60, 1027 (2009).
31.Zhu, Z-D., Ma, E., and Xu, J.: Elevating the fracture toughness of Cu49Hf42Al9 bulk metallic glass: Effects of cooling rate and frozen-in excess volume. Intermetallics 46, 164 (2014).
32.Murali, P. and Ramamurty, U.: Embrittlement of a bulk metallic glass due to sub-T g annealing. Acta Mater. 53, 1467 (2005).
33.Choi-Yim, H. and Johnson, W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).
34.Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).
35.Szuecs, F., Kim, C., and Johnson, W.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).
36.Chen, G., Cheng, J., and Liu, C.T.: Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties. Intermetallics 28, 25 (2012).
37.Wu, Y., Zhou, D., Song, W., Wang, H., Zhang, Z., Ma, D., Wang, X., and Lu, Z.: Ductilizing bulk metallic glass composite by tailoring stacking fault energy. Phys. Rev. Lett. 109, 245506 (2012).
38.Fan, C., Ott, R., and Hufnagel, T.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).
39.Hofmann, D.C., Suh, J-Y., Wiest, A., Duan, G., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).
40.Knorr, I., Cordero, N., Lilleodden, E.T., and Volkert, C.A.: Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 61, 4984 (2013).
41.Zhang, J.Y., Liu, Y., Chen, J., Chen, Y., Liu, G., Zhang, X., and Sun, J.: Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng., A 552, 392 (2012).
42.Huang, H., Pei, H., Chang, Y., Lee, C., and Huang, J.: Tensile behaviors of amorphous-ZrCu/nanocrystalline-Cu multilayered thin film on polyimide substrate. Thin Solid Films 529, 177 (2013).
43.Chu, J.P., Jang, J., Huang, J., Chou, H., Yang, Y., Ye, J., Wang, Y., Lee, J., Liu, F., and Liaw, P.: Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films 520, 5097 (2012).
44.Nieh, T. and Wadsworth, J.: Bypassing shear band nucleation and ductilization of an amorphous–crystalline nanolaminate in tension. Intermetallics 16, 1156 (2008).
45.Wang, Y., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).
46.Liu, M., Du, X., Lin, I., Pei, H., and Huang, J.: Superplastic-like deformation in metallic amorphous/crystalline nanolayered micropillars. Intermetallics 30, 30 (2012).
47.Zhang, J., Liu, G., Lei, S., Niu, J., and Sun, J.: Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: Intrinsic versus extrinsic size effect. Acta Mater. 60, 7183 (2012).
48.Fan, Z., Li, J., Yang, Y., Wang, J., Li, Q., Xue, S., Wang, H., Lou, J., and Zhang, X.: “Ductile” fracture of metallic glass nanolaminates. Adv. Mater. Interfaces 4, 1700510 (2017).
49.Wang, Y.M., Hamza, A.V., and Barbee, T.W.: Incipient plasticity in metallic glass modulated nanolaminates. Appl. Phys. Lett. 91, 061924 (2007).
50.Guo, W., Jägle, E.A., Choi, P-P., Yao, J., Kostka, A., Schneider, J.M., and Raabe, D.: Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates. Phys. Rev. Lett. 113, 035501 (2014).
51.Fan, Z., Xue, S., Wang, J., Yu, K.Y., Wang, H., and Zhang, X.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).
52.Wang, J., Zhou, Q., Shao, S., and Misra, A.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1 (2017).
53.Fan, Z., Liu, Y., Xue, S., Rahimi, R.M., Bahr, D.F., Wang, H., and Zhang, X.: Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appl. Phys. Lett. 110, 161905 (2017).
54.Packard, C.E., Homer, E.R., Al-Aqeeli, N., and Schuh, C.A.: Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations. Philos. Mag. 90, 1373 (2010).
55.Packard, C.E., Witmer, L.M., and Schuh, C.A.: Hardening of a metallic glass during cyclic loading in the elastic range. Appl. Phys. Lett. 92, 171911 (2008).
56.Ye, J.C., Lu, J., Liu, C.T., Wang, Q., and Yang, Y.: Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619 (2010).
57.Tong, Y., Iwashita, T., Dmowski, W., Bei, H., Yokoyama, Y., and Egami, T.: Structural rejuvenation in bulk metallic glasses. Acta Mater. 86, 240 (2015).
58.Fan, Z., Li, Q., Li, J., Xue, S., Wang, H., and Zhang, X.: Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates. J. Mater. Res. 32, 2680 (2017).
59.Lewandowski, J., Wang, W., and Greer, A.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).
60.Ye, J., Lu, J., Yang, Y., and Liaw, P.: Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments. Intermetallics 18, 385 (2010).
61.Liu, Y., Jian, J., Lee, J., Wang, C., Cao, Q., Gutierrez, C., Wang, H., Jiang, J., and Zhang, X.: Repetitive ultra-low stress induced nanocrystallization in amorphous Cu–Zr–Al alloy evidenced by in situ nanoindentation. Mater. Res. Lett. 2, 209 (2014).
62.Volkert, C., Donohue, A., and Spaepen, F.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 83539 (2008).
63.Jang, D. and Greer, J.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215 (2010).
64.Jang, D., Gross, C.T., and Greer, J.R.: Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858 (2011).
65.Bharathula, A., Lee, S-W., Wright, W.J., and Flores, K.M.: Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater. 58, 5789 (2010).
66.Shan, Z.W., Li, J., Cheng, Y.Q., Minor, A.M., Syed Asif, S.A., Warren, O.L., and Ma, E.: Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars. Phys. Rev. B 77, 155419 (2008).
67.Tönnies, D., Maaß, R., and Volkert, C.A.: Room temperature homogeneous ductility of micrometer‐sized metallic glass. Adv. Mater. 26, 5715 (2014).
68.Thurnheer, P., Maaß, R., Laws, K.J., Pogatscher, S., and Löffler, J.F.: Dynamic properties of major shear bands in Zr–Cu–Al bulk metallic glasses. Acta Mater. 96, 428 (2015).
69.Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).
70.Sun, B.A., Pauly, S., Tan, J., Stoica, M., Wang, W.H., Kühn, U., and Eckert, J.: Serrated flow and stick–slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater. 60, 4160 (2012).
71.Ma, W., Kou, H., Li, J., Chang, H., and Zhou, L.: Effect of strain rate on compressive behavior of Ti-based bulk metallic glass at room temperature. J. Alloys Compd. 472, 214 (2009).
72.Klaumünzer, D., Lazarev, A., Maaß, R., Dalla Torre, F.H., Vinogradov, A., and Löffler, J.F.: Probing shear-band initiation in metallic glasses. Phys. Rev. Lett. 107, 185502 (2011).
73.Yang, Y. and Liu, C.T.: Size effect on stability of shear-band propagation in bulk metallic glasses: An overview. J. Mater. Sci. 47, 55 (2012).
74.Liu, C. and Maaß, R.: Elastic fluctuations and structural heterogeneities in metallic glasses. Adv. Funct. Mater., 28, 1800388 (2018).
75.Sha, Z., Qu, S., Liu, Z., Wang, T., and Gao, H.: Cyclic deformation in metallic glasses. Nano Lett. 15, 7010 (2015).
76.Jiang, M. and Dai, L.: On the origin of shear banding instability in metallic glasses. J. Mech. Phys. Solids 57, 1267 (2009).
77.Zhang, Y., Wang, W., and Greer, A.: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 (2006).
78.Yang, Y., Ye, J.C., Lu, J., and Liu, C.T.: Dual character of stable shear banding in bulk metallic glasses. Intermetallics 19, 1005 (2011).
79.Radchenko, I., Tippabhotla, S., Tamura, N., and Budiman, A.: Probing phase transformations and microstructural evolutions at the small scales: Synchrotron X-ray microdiffraction for advanced applications in 3D IC (integrated circuits) and solar PV (photovoltaic) devices. J. Electron. Mater. 45, 6222 (2016).
80.Radchenko, I., Anwarali, H., Tippabhotla, S., and Budiman, A.: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125 (2018).


Type Description Title
Supplementary materials

Fan et al. supplementary material
Fan et al. supplementary material 1

 Unknown (101.4 MB)
101.4 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed