Skip to main content Accessibility help

Strengthening mechanisms and deformability of nanotwinned AlMg alloys

  • Sichuang Xue (a1), Qiang Li (a1), Zhe Fan (a2), Han Wang (a1), Yifan Zhang (a1), Jie Ding (a1), Haiyan Wang (a3) and Xinghang Zhang (a1)...


AlMg alloys have widespread industrial applications. Grain refinement techniques have been frequently used to achieve high strength in these alloys. Here, we report on the fabrication of epitaxial co-sputtered AlMg thin films with high-density growth twins. The microstructure evolution with varying Mg composition has been characterized. Nanoindentation and in-situ micropillar compression tests show that the strength of AlMg alloys increases with increasing Mg composition. The flow stress of epitaxial nanotwinned Al–10 at.% Mg thin film exceeds 800 MPa. The modified Hall–Petch plots incorporating the solid solution strengthening effect suggest that, compared to high angle grain boundaries, incoherent twin boundaries are equivalent barriers to the transmission of dislocations in nanotwinned AlMg alloys.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Hirsch, J.: Recent development in aluminium for automotive applications. Trans. Nonferrous Met. Soc. China 24, 1995 (2014).
2.Hirsch, J. and Al-Samman, T.: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61, 818 (2013).
3.Fine, M.E.: Precipitation hardening of aluminum alloys. Metall. Mater. Trans. A 6, 625 (1975).
4.Park, J. and Ardell, A.: Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and AlZnMg alloys in various tempers. Mater. Sci. Eng., A 114, 197 (1989).
5.Richard, D. and Adler, P.N.: Calorimetric studies of 7000 series aluminum alloys: I. Matrix precipitate characterization of 7075. Metall. Mater. Trans. A 8, 1177 (1977).
6.Berg, L.K., Gjønnes, J., Hansen, V., Li, X.Z., Knutson-Wedel, M., Waterloo, G., Schryvers, D., and Wallenberg, L.R.: GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 3443 (2001).
7.Han, W., Cheng, G., Li, S., Wu, S., and Zhang, Z.: Deformation induced microtwins and stacking faults in aluminum single crystal. Phys. Rev. Lett. 101, 115505 (2008).
8.Chowdhury, P., Sehitoglu, H., Maier, H., and Rateick, R.: Strength prediction in NiCo alloys—The role of composition and nanotwins. Int. J. Plast. 79, 237 (2016).
9.Zhao, Y., Zhu, Y., Liao, X., Horita, Z., and Langdon, T.: Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Lett. 89, 121906 (2006).
10.Youssef, K., Scattergood, R., Murty, K., and Koch, C.: Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251 (2006).
11.Koch, C., Scattergood, R., Darling, K., and Semones, J.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264 (2008).
12.Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951 (2012).
13.Detor, A. and Schuh, C.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).
14.Zhao, S., Meng, C., Mao, F., Hu, W., and Gottstein, G.: Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al–Mg alloys. Acta Mater. 76, 54 (2014).
15.Liddicoat, P.V., Liao, X-Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., and Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010).
16.Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.: Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 68, 1216 (2016).
17.Horita, Z., Fujinami, T., Nemoto, M., and Langdon, T.G.: Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 31, 691 (2000).
18.Rupert, T.J., Trenkle, J.C., and Schuh, C.A.: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).
19.Hu, J., Shi, Y., Sauvage, X., Sha, G., and Lu, K.: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292 (2017).
20.Koch, C., Morris, D., Lu, K., and Inoue, A.: Ductility of nanostructured materials. MRS Bull. 24, 54 (1999).
21.Wang, H., Tiwari, A., Kvit, A., Zhang, X., and Narayan, J.: Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. Appl. Phys. Lett. 80, 2323 (2002).
22.Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).
23.Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).
24.Lu, K., Yan, F., Wang, H., and Tao, N.: Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878 (2012).
25.Bufford, D., Liu, Y., Wang, J., Wang, H., and Zhang, X.: In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 5, 4864 (2014).
26.Beyerlein, I.J., Zhang, X., and Misra, A.: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).
27.Zhang, X., Wang, H., Chen, X., Lu, L., Lu, K., Hoagland, R., and Misra, A.: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006).
28.Zhang, Y., Wang, J., Shan, H., and Zhao, K.: Strengthening high-stacking-fault-energy metals via parallelogram nanotwins. Scr. Mater. 108, 35 (2015).
29.Anderoglu, O., Misra, A., Ronning, F., Wang, H., and Zhang, X.: Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. J. Appl. Phys. 106, 24313 (2009).
30.Li, Q., Xue, S.C., Wang, J., Shao, S., Kwong, A.H., Giwa, A., Fan, Z., Liu, Y., Qi, Z.M., Ding, J., Wang, H., Greer, J.R., Wang, H.Y., and Zhang, X.H.: High-strength nanotwinned Al alloys with 9R phase. Adv. Mater. 30, 1704629 (2018).
31.Velasco, L. and Hodge, A.M.: Growth twins in high stacking fault energy metals: Microstructure, texture and twinning. Mater. Sci. Eng., A 687, 93 (2017).
32.Bufford, D., Bi, Z., Jia, Q., Wang, H., and Zhang, X.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012).
33.Bufford, D., Liu, Y., Zhu, Y., Bi, Z., Jia, Q., Wang, H., and Zhang, X.: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1, 51 (2013).
34.Zhang, X., Bufford, D., Wang, H., and Liu, Y.: Method for Producing High Stacking Fault Energy (SFE) Metal Films, Foils, and Coatings with High-density Nanoscale Twin Boundaries. United States Patent No. 10023977 (2014).
35.Yu, K., Bufford, D., Chen, Y., Liu, Y., Wang, H., and Zhang, X.: Basic criteria for formation of growth twins in high stacking fault energy metals. Appl. Phys. Lett. 103, 181903 (2013).
36.Liu, Y., Bufford, D., Wang, H., Sun, C., and Zhang, X.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59, 1924 (2011).
37.Yu, K., Liu, Y., Rios, S., Wang, H., and Zhang, X.: Strengthening mechanisms of Ag/Ni immiscible multilayers with fcc/fcc interface. Surf. Coat. Technol. 237, 269 (2013).
38.Medlin, D., Campbell, G., and Carter, C.B.: Stacking defects in the 9R phase at an incoherent twin boundary in copper. Acta Mater. 46, 5135 (1998).
39.Wang, J., Misra, A., and Hirth, J.: Shear response of Σ3 {112} twin boundaries in face-centered-cubic metals. Phys. Rev. B 83, 064106 (2011).
40.Bufford, D., Wang, H., and Zhang, X.: High strength, epitaxial nanotwinned Ag films. Acta Mater. 59, 93 (2011).
41.Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M.F., and Zhang, X.: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).
42.Xue, S., Kuo, W., Li, Q., Fan, Z., Ding, J., Su, R., Wang, H., and Zhang, X.: Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater. 144, 226 (2018).
43.Gallagher, P.: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1, 2429 (1970).
44.Johari, O. and Thomas, G.: Substructures in explosively deformed Cu and Cu–Al alloys. Acta Metall. 12, 1153 (1964).
45.Rohatgi, A., Vecchio, K.S., and Gray, G.T.: The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32, 135 (2001).
46.Velasco, L., Polyakov, M.N., and Hodge, A.M.: Influence of stacking fault energy on twin spacing of Cu and Cu–Al alloys. Scr. Mater. 83, 33 (2014).
47.Zhang, Y., Tao, N.R., and Lu, K.: Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys. Scr. Mater. 60, 211 (2009).
48.Sun, P-L., Zhao, Y., Cooley, J., Kassner, M., Horita, Z., Langdon, T., Lavernia, E., and Zhu, Y.: Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening. Mater. Sci. Eng., A 525, 83 (2009).
49.Chandran, M. and Sondhi, S.: First-principle calculation of stacking fault energies in Ni and Ni–Co alloy. J. Appl. Phys. 109, 103525 (2011).
50.Schulthess, T., Turchi, P., Gonis, A., and Nieh, T-G.: Systematic study of stacking fault energies of random Al-based alloys. Acta Mater. 46, 2215 (1998).
51.Campbell, G.H., Chan, D.K., Medlin, D.L., Angelo, J.E., and Carter, C.B.: Dynamic observation of the fcc to 9r shear transformation in a copper Σ = 3 incoherent twin boundary. Scr. Mater. 35, 837 (1996).
52.Ernst, F., Finnis, M.W., Hofmann, D., Muschik, T., Schönberger, U., Wolf, U., and Methfessel, M.: Theoretical prediction and direct observation of the 9R structure in Ag. Phys. Rev. Lett. 69, 620 (1992).
53.Wang, J., Anderoglu, O., Hirth, J.P., Misra, A., and Zhang, X.: Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95, 021908 (2009).
54.Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J., and Hirth, J.: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262 (2010).
55.Liu, L., Wang, J., Gong, S., and Mao, S.: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106, 175504 (2011).
56.Gu, J., Zhang, L., Ni, S., and Song, M.: Formation of large scaled zero-strain deformation twins in coarse-grained copper. Scr. Mater. 125, 49 (2016).
57.Xue, S., Fan, Z., Lawal, O.B., Thevamaran, R., Li, Q., Liu, Y., Yu, K., Wang, J., Thomas, E.L., and Wang, H.: High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium. Nat. Commun. 8, 1653 (2017).
58.Ma, K., Wen, H., Hu, T., Topping, T.D., Isheim, D., Seidman, D.N., Lavernia, E.J., and Schoenung, J.M.: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141 (2014).
59.Zha, M., Li, Y., Mathiesen, R.H., Bjørge, R., and Roven, H.J.: Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater. 84, 42 (2015).
60.Kapoor, R. and Chakravartty, J.: Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater. 55, 5408 (2007).
61.Fan, G., Choo, H., Liaw, P., and Lavernia, E.: Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater. 54, 1759 (2006).
62.Shan, Z., Stach, E., Wiezorek, J., Knapp, J., Follstaedt, D., and Mao, S.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).
63.Leyson, G.P.M., Curtin, W.A., Hector, L.G. Jr., and Woodward, C.F.: Quantitative prediction of solute strengthening in aluminium alloys. Nat. Mater. 9, 750 (2010).
64.Fleischer, R.L.: Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals. Acta Metall. 10, 835 (1962).
65.Fleischer, R.L.: Substitutional solution hardening. Acta Metall. 11, 203 (1963).
66.Hall, E.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc., London, Sect. B 64, 747 (1951).
67.Wyrzykowski, J. and Grabski, M.: The Hall–Petch relation in aluminium and its dependence on the grain boundary structure. Philos. Mag. A 53, 505 (1986).
68.Hansen, N.: Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801 (2004).
69.Misra, A., Hirth, J., and Hoagland, R.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).
70.Sangid, M.D., Ezaz, T., Sehitoglu, H., and Robertson, I.M.: Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59, 283 (2011).
71.Tsuji, N., Ito, Y., Saito, Y., and Minamino, Y.: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893 (2002).
72.Hayes, R., Witkin, D., Zhou, F., and Lavernia, E.: Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater. 52, 4259 (2004).
73.Mata, M., Anglada, M., and Alcalá, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).
74.Yu, W., Shen, S., Liu, Y., and Han, W.: Nonhysteretic superelasticity and strain hardening in a copper bicrystal with a Σ3 {112} twin boundary. Acta Mater. 124, 30 (2017).


Type Description Title
Supplementary materials

Xue et al. supplementary material
Xue et al. supplementary material 1

 Video (1.3 MB)
1.3 MB
Supplementary materials

Xue et al. supplementary material
Xue et al. supplementary material 2

 Video (1.9 MB)
1.9 MB
Supplementary materials

Xue et al. supplementary material
Xue et al. supplementary material 3

 Unknown (9.9 MB)
9.9 MB
Supplementary materials

Xue et al. supplementary material
Xue et al. supplementary material 4

 Video (2.3 MB)
2.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed