Skip to main content Accessibility help

An in situ study on Kr ion–irradiated crystalline Cu/amorphous-CuNb nanolaminates

  • Zhe Fan (a1), Cuncai Fan (a1), Jin Li (a1), Zhongxia Shang (a1), Sichuang Xue (a1), Marquis A. Kirk (a2), Meimei Li (a2), Haiyan Wang (a3) and Xinghang Zhang (a1)...


Nanocrystalline and nanolaminated materials show enhanced radiation tolerance compared with their coarse-grained counterparts, since grain boundaries and layer interfaces act as effective defect sinks. Although the effects of layer interface and layer thickness on radiation tolerance of crystalline nanolaminates have been systematically studied, radiation response of crystalline/amorphous nanolaminates is rarely investigated. In this study, we show that irradiation can lead to formation of nanocrystals and nanotwins in amorphous CuNb layers in Cu/amorphous-CuNb nanolaminates. Substantial element segregation is observed in amorphous CuNb layers after irradiation. In Cu layers, both stationary and migrating grain boundaries effectively interact with defects. Furthermore, there is a clear size effect on irradiation-induced crystallization and grain coarsening. In situ studies also show that crystalline/amorphous interfaces can effectively absorb defects without drastic microstructural change, and defect absorption by grain boundary and crystalline/amorphous interface is compared and discussed. Our results show that tailoring layer thickness can enhance radiation tolerance of crystalline/amorphous nanolaminates and can provide insights for constructing crystalline/amorphous nanolaminates under radiation environment.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All

These authors contributed equally to this work.



Hide All
1.Mansur, L.K., Rowcliffe, A., Nanstad, R., Zinkle, S., Corwin, W., and Stoller, R.: Materials needs for fusion, Generation IV fission reactors and spallation neutron sources–similarities and differences. J. Nucl. Mater. 329, 166 (2004).
2.Zinkle, S.J. and Busby, J.T.: Structural materials for fission & fusion energy. Mater. Today 12, 12 (2009).
3.Allen, T., Busby, J., Meyer, M., and Petti, D.: Materials challenges for nuclear systems. Mater. Today 13, 14 (2010).
4.Zinkle, S.J. and Was, G.: Materials challenges in nuclear energy. Acta Mater. 61, 735 (2013).
5.Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., and Samolyuk, G.D.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).
6.Beyerlein, I., Caro, A., Demkowicz, M., Mara, N., Misra, A., and Uberuaga, B.: Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).
7.Odette, G., Alinger, M., and Wirth, B.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).
8.Aydogan, E., Almirall, N., Odette, G., Maloy, S., Anderoglu, O., Shao, L., Gigax, J., Price, L., Chen, D., and Chen, T.: Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations. J. Nucl. Mater. 486, 86 (2017).
9.Chen, T., Aydogan, E., Gigax, J.G., Chen, D., Wang, J., Wang, X., Ukai, S., Garner, F.A., and Shao, L.: Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation. J. Nucl. Mater. 467, 42 (2015).
10.Edmondson, P., Parish, C., Li, Q., and Miller, M.: Thermal stability of nanoscale helium bubbles in a 14YWT nanostructured ferritic alloy. J. Nucl. Mater. 445, 84 (2014).
11.El-Atwani, O., Hattar, K., Hinks, J., Greaves, G., Harilal, S., and Hassanein, A.: Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. J. Nucl. Mater. 458, 216 (2015).
12.Yu, K., Liu, Y., Sun, C., Wang, H., Shao, L., Fu, E., and Zhang, X.: Radiation damage in helium ion irradiated nanocrystalline Fe. J. Nucl. Mater. 425, 140 (2012).
13.Chen, Y., Li, J., Yu, K.Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ studies on radiation tolerance of nanotwinned Cu. Acta Mater. 111, 148 (2016).
14.Fan, C., Li, J., Fan, Z., Wang, H., and Zhang, X.: In situ studies on the irradiation-induced twin boundary-defect interactions in Cu. Metall. Mater. Trans. A 48, 5172 (2017).
15.Jiao, L., Chen, A., Myers, M.T., General, M.J., Shao, L., Zhang, X., and Wang, H.: Enhanced ion irradiation tolerance properties in TiN/MgO nanolayer films. J. Nucl. Mater. 434, 217 (2013).
16.Kim, I., Jiao, L., Khatkhatay, F., Martin, M.S., Lee, J., Shao, L., Zhang, X., Swadener, J.G., Wang, Y.Q., Gan, J., Cole, J.I., and Wang, H.: Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films. J. Nucl. Mater. 441, 47 (2013).
17.Yu, K.Y., Sun, C., Chen, Y., Liu, Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study. Philos. Mag. 93, 3547 (2013).
18.Chen, D., Li, N., Yuryev, D., Baldwin, J.K., Wang, Y., and Demkowicz, M.J.: Self-organization of helium precipitates into elongated channels within metal nanolayers. Sci. Adv. 3, eaao2710 (2017).
19.Zhang, X., Hattar, K., Chen, Y., Shao, L., Li, J., Sun, C., Yu, K., Li, N., Taheri, M.L., Wang, H., Wang, J., and Nastasi, M.: Radiation damage in nanostructured materials. Prog. Mater. Sci. 96, 217 (2018).
20.Hattar, K., Demkowicz, M., Misra, A., Robertson, I., and Hoagland, R.: Arrest of He bubble growth in Cu–Nb multilayer nanocomposites. Scr. Mater. 58, 541 (2008).
21.Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).
22.Han, W., Mara, N., Wang, Y., Misra, A., and Demkowicz, M.: He implantation of bulk Cu–Nb nanocomposites fabricated by accumulated roll bonding. J. Nucl. Mater. 452, 57 (2014).
23.Fu, E.G., Misra, A., Wang, H., Shao, L., and Zhang, X.: Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J. Nucl. Mater. 407, 178 (2010).
24.Fu, E.G., Carter, J., Swadener, G., Misra, A., Shao, L., Wang, H., and Zhang, X.: Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates. J. Nucl. Mater. 385, 629 (2009).
25.Li, N., Martin, M.S., Anderoglu, O., Misra, A., Shao, L., Wang, H., and Zhang, X.: He ion irradiation damage in Al/Nb multilayers. J. Appl. Phys. 105, 123522 (2009).
26.Li, N., Carter, J.J., Misra, A., Shao, L., Wang, H., and Zhang, X.: The influence of interfaces on the formation of bubbles in He-ion-irradiated Cu/Mo nanolayers. Philos. Mag. Lett. 91, 18 (2011).
27.Yu, K.Y., Liu, Y., Fu, E.G., Wang, Y.Q., Myers, M.T., Wang, H., Shao, L., and Zhang, X.: Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers. J. Nucl. Mater. 440, 310 (2013).
28.Li, N., Fu, E.G., Wang, H., Carter, J.J., Shao, L., Maloy, S.A., Misra, A., and Zhang, X.: He ion irradiation damage in Fe/W nanolayer films. J. Nucl. Mater. 389, 233 (2009).
29.Zhang, J., Wang, Y., Liang, X., Zeng, F., Liu, G., and Sun, J.: Size-dependent He-irradiated tolerance and plastic deformation of crystalline/amorphous Cu/Cu–Zr nanolaminates. Acta Mater. 92, 140 (2015).
30.Yu, K.Y., Fan, Z., Chen, Y., Song, M., Liu, Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe2Zr nanocomposite alloy. Mater. Res. Lett. 3, 35 (2014).
31.Chen, Y., Jiao, L., Sun, C., Song, M., Yu, K., Liu, Y., Kirk, M., Li, M., Wang, H., and Zhang, X.: In situ studies of radiation induced crystallization in Fe/a-Y2O3 nanolayers. J. Nucl. Mater. 452, 321 (2014).
32.Hofmann, D.C., Suh, J-Y., Wiest, A., Duan, G., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).
33.He, G., Löser, W., Eckert, J., and Schultz, L.: Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure. J. Mater. Res. 17, 3015 (2002).
34.Fan, Z., Li, J., Yang, Y., Wang, J., Li, Q., Xue, S., Wang, H., Lou, J., and Zhang, X.: “Ductile” fracture of metallic glass nanolaminates. Adv. Mater. Interfaces 4, 1700510 (2017).
35.Wang, Y., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).
36.Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).
37.Kim, J.Y., Jang, D., and Greer, J.R.: Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv. Funct. Mater. 21, 4550 (2011).
38.Fan, Z., Xue, S., Wang, J., Yu, K.Y., Wang, H., and Zhang, X.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).
39.Wu, Y., Xiao, Y., Chen, G., Liu, C.T., and Lu, Z.: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770 (2010).
40.Fan, Z., Liu, Y., Xue, S., Rahimi, R.M., Bahr, D.F., Wang, H., and Zhang, X.: Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appl. Phys. Lett. 110, 161905 (2017).
41.Chen, M., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).
42.Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).
43.Nino, A., Nagase, T., and Umakoshi, Y.: Electron irradiation induced nano-crystallization in Fe77Nd4.5B18.5 metallic glass. Mater. Trans. 46, 1814 (2005).
44.Nagase, T., Nakamura, M., and Umakoshi, Y.: Electron irradiation induced nano-crystallization in Zr66.7Ni33.3 amorphous alloy and Zr60Al15Ni25 metallic glass. Intermetallics 15, 211 (2007).
45.Fu, E., Carter, J., Martin, M., Xie, G., Zhang, X., Wang, Y., Littleton, R., and Shao, L.: Electron irradiation-induced structural transformation in metallic glasses. Scr. Mater. 61, 40 (2009).
46.Xie, G., Zhang, Q., Louzguine-Luzgin, D.V., Zhang, W., and Inoue, A.: Nanocrystallization of Cu50Zr45Ti5 metallic glass induced by electron irradiation. Mater. Trans. 47, 1930 (2006).
47.Tarumi, R., Takashima, K., and Higo, Y.: Formation of oriented nanocrystals in an amorphous alloy by focused-ion-beam irradiation. Appl. Phys. Lett. 81, 4610 (2002).
48.Brimhall, J.: Effect of irradiation particle mass on crystallization of amorphous alloys. J. Mater. Sci. 19, 1818 (1984).
49.Luo, W., Yang, B., and Chen, G.: Effect of Ar+ ion irradiation on the microstructure and properties of Zr–Cu–Fe–Al bulk metallic glass. Scr. Mater. 64, 625 (2011).
50.Carter, J., Fu, E., Martin, M., Xie, G., Zhang, X., Wang, Y., Wijesundera, D., Wang, X., Chu, W-K., and Shao, L.: Effects of Cu ion irradiation in Cu50Zr45Ti5 metallic glass. Scr. Mater. 61, 265 (2009).
51.Myers, M., Charnvanichborikarn, S., Wei, C., Luo, Z., Xie, G., Kucheyev, S., Lucca, D., and Shao, L.: Phase transition, segregation and nanopore formation in high-energy heavy-ion-irradiated metallic glass. Scr. Mater. 67, 887 (2012).
52.Xie, G., Shao, L., Louzguine-Luzgin, D.V., and Inoue, A.: He ion irradiation induced nanocrystallization in Cu50Zr45Ti5 glassy alloy. Surf. Coat. Technol. 206, 829 (2011).
53.Carter, J., Fu, E., Bassiri, G., Dvorak, B., Theodore, N.D., Xie, G., Lucca, D., Martin, M., Hollander, M., and Zhang, X.: Effects of ion irradiation in metallic glasses. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1518 (2009).
54.Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).
55.Courty, A., Henry, A-I., Goubet, N., and Pileni, M-P.: Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals. Nat. Mater. 6, 900 (2007).
56.Yu, K., Chen, Y., Li, J., Liu, Y., Wang, H., Kirk, M., Li, M., and Zhang, X.: Measurement of heavy ion irradiation induced in-plane strain in patterned face-centered-cubic metal films: An in situ study. Nano Lett. 16, 7481 (2016).
57.Sun, C., Song, M., Yu, K.Y., Chen, Y., Kirk, M., Li, M., Wang, H., and Zhang, X.: In situ evidence of defect cluster absorption by grain boundaries in Kr ion irradiated nanocrystalline Ni. Metall. Mater. Trans. A 44, 1966 (2013).
58.Bai, X-M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).
59.El-Atwani, O., Nathaniel, J.E., Leff, A.C., Hattar, K., and Taheri, M.L.: Direct observation of sink-dependent defect evolution in nanocrystalline iron under irradiation. Sci. Rep. 7, 1836 (2017).
60.Tschopp, M.A., Solanki, K.N., Gao, F., Sun, X., Khaleel, M.A., and Horstemeyer, M.F.: Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe. Phys. Rev. B 85, 064108 (2012).
61.Chen, D., Wang, J., Chen, T., and Shao, L.: Defect annihilation at grain boundaries in alpha-Fe. Sci. Rep. 3, 1450 (2013).
62.Voorhees, P.W.: The theory of Ostwald ripening. J. Stat. Phys. 38, 231 (1985).
63.Rhines, F.N., Craig, K.R., and DeHoff, R.T.: Mechanism of steady-state grain growth in aluminum. Metall. Trans. 5, 413 (1974).
64.Zhang, J.Y., Liu, G., and Sun, J.: Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: Deformation-induced devitrification. Acta Mater. 66, 22 (2014).
65.Zhang, J.Y., Liu, G., and Sun, J.: Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars. Sci. Rep. 3, 2324 (2013).
66.Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).


Type Description Title
Supplementary materials

Fan et al. supplementary material
Fan et al. supplementary material 1

 Video (25.4 MB)
25.4 MB
Supplementary materials

Fan et al. supplementary material
Fan et al. supplementary material 2

 Video (13.5 MB)
13.5 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed