We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a self-biased three-stage GaN-based monolithic microwave integrated circuit low-noise amplifier (LNA) operating between 26 and 29 GHz for 5G mobile communications. The self-biasing circuit, common-source topology with inductive source feedback, and RLC negative feedback loops between gate and drain of the third transistor were implemented to achieve low noise, good port match, high stability, high gain, and compact size. Measurement results show that the LNA has a high and flat gain of 30.5 ± 0.4 dB with noise figure (NF) of 1.65–1.8 dB across the band. The three-stage topology also achieves high linearity, providing the 1 dB compression point output power (P1dB) of 21 dBm in the band. To our knowledge, this combination of NF, gain, and linearity performance represents the state of art of self-biased LNA in this frequency band.
Schistosomiasis has been subjected to extensive control efforts in the People's Republic of China (China) which aims to eliminate the disease by 2030. We describe baseline results of a longitudinal cohort study undertaken in the Dongting and Poyang lakes areas of central China designed to determine the prevalence of Schistosoma japonicum in humans, animals (goats and bovines) and Oncomelania snails utilizing molecular diagnostics procedures. Data from the Chinese National Schistosomiasis Control Programme (CNSCP) were compared with the molecular results obtained.
Sixteen villages from Hunan and Jiangxi provinces were surveyed; animals were only found in Hunan. The prevalence of schistosomiasis in humans was 1.8% in Jiangxi and 8.0% in Hunan determined by real-time polymerase chain reaction (PCR), while 18.3% of animals were positive by digital droplet PCR. The CNSCP data indicated that all villages harboured S. japonicum-infected individuals, detected serologically by indirect haemagglutination assay (IHA), but very few, if any, of these were subsequently positive by Kato-Katz (KK).
Based on the outcome of the IHA and KK results, the CNSCP incorporates targeted human praziquantel chemotherapy but this approach can miss some infections as evidenced by the results reported here. Sensitive molecular diagnostics can play a key role in the elimination of schistosomiasis in China and inform control measures allowing for a more systematic approach to treatment.
Celestial navigation is an important means of maritime navigation; it can automatically achieve inertially referenced positioning and orientation after a long period of development. However, the impact of different accuracy of observations and the influence of nonstationary states, such as ship speed change and steering, are not taken into account in existing algorithms. To solve this problem, this paper proposes an adaptively robust maritime celestial navigation algorithm, in which each observation value is given an equivalent weight according to the robust estimation theory, and the dynamic balance between astronomical observation and prediction values of vessel motion is adjusted by applying the adaptive factor. With this system, compared with the frequently used least square method and extended Kalman filter algorithm, not only are the real-time and high-precision navigation parameters, such as position, course, and speed for the vessel, calculated simultaneously, but also the influence of abnormal observation and vessel motion status change could be well suppressed.
The present study aimed to explore the association between dietary patterns in abdominal obesity obtained by reduced-rank regression (RRR) with visceral fat index (VFI) as a dependent variable and dyslipidemia in rural adults in Henan, China. A total of 29538 people aged 18–79 were selected from the Henan Rural Cohort Study. RRR analysis was used to identify dietary patterns; logistic regression analysis and restricted cubic spline regression models were applied to analyze the association between dietary patterns in abdominal obesity and dyslipidemia. VFI was used as a mediator to estimate the mediation effect. The dietary pattern in abdominal obesity was characterized by high carbohydrate and red meat intake and low consumption of fresh fruits, vegetables, milk, etc. After full adjustment, the highest quartile of dietary pattern scores was significantly associated with an increased risk of dyslipidemia (OR: 1·33, 95 % CI 1·23–1·44, Ptrend < 0·001), there was a non-linear dose–response relationship between them (Poverall-association < 0·001, Pnon-lin-association = 0·022). The result was similar in dose-response between the dietary pattern scores and VFI. The indirect effect partially mediated by VFI was significant (OR: 1·07, 95 % CI 1·06–1·08). VIF explained approximately 53·3 % of odds of dyslipidemia related to the dietary pattern. Abdominal obesity dietary pattern scores positively affected VFI and dyslipidemia; there was a dose-response in both relationships. Dyslipidemia progression increased with higher abdominal obesity dietary pattern scores. In addition, VFI played a partial mediating role in relationship between abdominal obesity dietary pattern and dyslipidemia.
Epidemiological studies have shown that higher intake of flavonoid is inversely associated with CHD risk. However, which flavonoid subclass could reduce CHD risk has remained controversial. The present meta-analysis of prospective cohort studies aimed to quantitatively assess the associations between flavonoid subclasses and CHD risk. A systematic literature search was implemented from PubMed and Web of Science databases up to March 2021, and eligible studies were identified. Multivariate-adjust relative risks (RR) with corresponding 95 % CI were pooled by using a random-effects model. A restricted cubic spline regression model was performed for non-linear dose–response analysis. A total of 19 independent prospective cohort studies with 894 471 participants and 34 707 events were included. The results showed that dietary intakes of anthocyanins (RR = 0·90; 95 % CI: 0·83, 0·98), proanthocyanidins (RR = 0·78; 95 % CI: 0·65, 0·94), flavonols (RR = 0·88; 95 % CI: 0·79, 0·98), flavones (RR = 0·94; 95 % CI: 0·89, 0·99) and isoflavones (RR = 0·90; 95 % CI: 0·83, 0·98) were negatively associated with CHD risk. Dose–response analysis showed that increment of 50 mg/d anthocyanins, 100 mg/d proanthocyanidins, 25 mg/d flavonols, 5 mg/d flavones and 0·5 mg/d isoflavones were associated with 5 % reduction in CHD risk, respectively. Sensitivity and subgroup analyses were used to further support these associations. The present results indicate that dietary intakes of fruits and vegetables abundant five flavonoid subclasses, namely anthocyanins, proanthocyanidins, flavonols, flavones and isoflavones, are associated with a lower risk of CHD.
Embryos undergo chaotic division and decrease in quality on day 3 with a reduction in the rates of subsequent blastocyst formation. Disordered cleavage causes a deterioration in embryonic quality, here we assessed the relationship between an cleavage model in first mitosis and the chromosomal status of human embryos, and discuss the potential biological and clinical implications for the cleavage model as a single parameter that can be used to assess embryonic quality. Thirty-two infertile couples, with normal karyotypes and who underwent their first IVF cycle were recruited to donate one normal two-cell-stage embryo each for this study between 2019 and 2020. Twenty-eight two-cell embryos underwent preimplantation genetic testing of each blastomere, and four chaotic-division embryos were stained with Hoechst and cultured in a confocal laser-scanning microscopy incubator system. This system showed high specificity and PPV but low sensitivity and NPV using the CM in the prediction of euploidy, indicating that CM could be considered a screening method for embryo selection; additional observational studies using the CM to select transferable embryos are needed before it can be used in clinical practice.
The relationship between dietary nut intake and hyperuricemia risk remains unclear. The aim of this study was to investigate the relationship between different nut intake and hyperuricemia risk with a cross-sectional study.
Design:
A semi-quantitative FFQ was adopted to collect dietary information. Biochemical and anthropometric parameters were measured by standard methods. Multivariate-adjusted logistic regression models were implemented to analyse the relationship between individual nut intake and hyperuricemia risk.
Setting:
Qingdao University in Shandong Province, China.
Participants:
During 2018–2019, a total of 14 056 undergraduates (6862 males and 7194 females) aged 15–25 years participated in the study.
Results:
After adjusting for multiple confounding factors, compared with the lowest quartile, the highest quartile intakes of pine nut (95 % CI (0·51, 0·98)) was significantly associated with 29 % reduction in hyperuricemia risk, the highest quartile intake of walnut (OR = 0·78; 95 % CI (0·58, 1·05)) was marginally negatively associated with hyperuricemia risk.
Conclusions:
The present study showed that the relationships between intakes of different nuts and hyperuricemia risk were different. Increased dietary intakes of walnut and pine nut are negatively associated with the hyperuricemia.
The present study evaluated whether fat mass assessment using the triceps skinfold (TSF) thickness provides additional prognostic value to the Global Leadership Initiative on Malnutrition (GLIM) framework in patients with lung cancer (LC). We performed an observational cohort study including 2672 LC patients in China. Comprehensive demographic, disease and nutritional characteristics were collected. Malnutrition was retrospectively defined using the GLIM criteria, and optimal stratification was used to determine the best thresholds for the TSF. The associations of malnutrition and TSF categories with survival were estimated independently and jointly by calculating multivariable-adjusted hazard ratios (HR). Malnutrition was identified in 808 (30·2 %) patients, and the best TSF thresholds were 9·5 mm in men and 12 mm in women. Accordingly, 496 (18·6 %) patients were identified as having a low TSF. Patients with concurrent malnutrition and a low TSF had a 54 % (HR = 1·54, 95 % CI = 1·25, 1·88) greater death hazard compared with well-nourished individuals, which was also greater compared with malnourished patients with a normal TSF (HR = 1·23, 95 % CI = 1·06, 1·43) or malnourished patients without TSF assessment (HR = 1·31, 95 % CI = 1·14, 1·50). These associations were concentrated among those patients with adequate muscle mass (as indicated by the calf circumference). Additional fat mass assessment using the TSF enhances the prognostic value of the GLIM criteria. Using the population-derived thresholds for the TSF may provide significant prognostic value when used in combination with the GLIM criteria to guide strategies to optimise the long-term outcomes in patients with LC.
Drilling and sampling are the most direct and effective methods available to study Antarctic subglacial lakes. Based on the Philberth probe, a Recoverable Autonomous Sonde (RECAS) allows for in situ lake water measurement and sampling, through the addition of an upper thermal tip and a cable recoiling mechanism. RECAS-200, a prototype of RECAS, has a drilling depth of 200 m, a surface supply voltage of 800 VAC and a downhole power of ~9.6 kW during drilling. In this study, a heating control system for RECAS-200 was designed. The system avoids the need for high-power step-down converters, by separating heating power from control power, thereby reducing the overall weight of the probe and avoiding the need to increase cable diameter. We also introduce a self-developed, small, solid-state, 800 VAC power regulator and a fuzzy PID temperature control algorithm. Their purpose was to manage the power adjustment of each heating element and to provide closed-loop temperature control of certain heating elements which can easily burn out due to overheating. Test results indicated that the proposed RECAS-200 heating control system met all our design specifications and could be easily assembled into the RECAS-200 probe.
Subglacial lake exploration is of great interest to the science community. RECoverable Autonomous Sonde (RECAS) provides an exploration tool to measure and sample subglacial lake environments while the subglacial lake remains isolated from the glacier surface and atmosphere. This paper presents an electronic control system design of 200 m prototype of RECAS. The proposed electronic control system consists of a surface system, a downhole control system, and a power transfer and communication system. The downhole control system is the core element of RECAS, and is responsible for sonde status monitoring, sonde motion control, subglacial water sampling and in situ analysis. A custom RS485 temperature sensor was developed to cater for the limited size and depth requirements of the system. We adopted a humidity-based measurement to monitor for a housing leak. This condition is because standard leak detection monitoring of water conductivity may be inapplicable to pure ice in Antarctica. A water sampler control board was designed to control the samplers and monitor the on/off state. A high-definition camera system with built-in storage and self-heating ability was designed to perform the video recording in the subglacial lake. The proposed electronic control system is proven effective after a series of tests.
Micro- and nanodroplets have many important applications such as in drug delivery, liquid–liquid extraction, nanomaterial synthesis and cosmetics. A commonly used method to generate a large number of micro- or nanodroplets in one simple step is solvent exchange (also called nanoprecipitation), in which a good solvent of the droplet phase is displaced by a poor one, generating an oversaturation pulse that leads to droplet nucleation. Despite its crucial importance, the droplet growth resulting from the oversaturation pulse in this ternary system is still poorly understood. We experimentally and theoretically study this growth in Hele-Shaw-like channels by measuring the total volume of the oil droplets that nucleate out of it. In order to prevent the oversaturated oil from exiting the channel, we decorated some of the channels with a porous region in the middle. Solvent exchange is performed with various solution compositions, flow rates and channel geometries, and the measured droplets volume is found to increase with the Péclet number, $Pe$, with an approximate effective power law $V\propto Pe^{0.50}$. A theoretical model is developed to account for this finding. With this model we can indeed explain the $V\propto Pe^{1/2}$ scaling, including the prefactor, which can collapse all data of the ‘porous’ channels onto one universal curve, irrespective of channel geometry and composition of the mixtures. Our work provides a macroscopic approach to this bottom-up method of droplet generation and may guide further studies on oversaturation and nucleation in ternary systems.
It is important to understand the temporal trend of the paediatric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load to estimate the transmission potential of children in schools and communities. We determined the differences in SARS-CoV-2 viral load dynamics between nasopharyngeal samples of infected asymptomatic and symptomatic children. Serial cycle threshold values of SARS-CoV-2 from the nasopharynx of a cohort of infected children were collected for analysis. Among 17 infected children, 10 (58.8%) were symptomatic. Symptomatic children, when compared to asymptomatic children, had higher viral loads (mean cycle threshold on day 7 of illness 28.6 vs. 36.7, P = 0.02). Peak SARS-CoV-2 viral loads occurred around day 2 of illness in infected children. Although we were unable to directly demonstrate infectivity, the detection of significant amount of virus in the upper airway of asymptomatic children suggest that they have the potential to shed and transmit SARS-CoV-2. Our study highlights the importance of contact tracing and screening for SARS-CoV-2 in children with epidemiological risk factors regardless of their symptom status, in order to improve containment of the virus in the community, including educational settings.
Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.
Monitoring the tension in cables is significant in some ice drill and deepwater applications. Take our RECoverable Autonomous Sonde (RECAS) for example. It is able to melt a hole to the bottom of ice sheet and is able to move upwards. A winch is installed inside RECAS to release and recover the cable, whose tension needs to be monitored in real time in order to control the behavior of the winch. The high pressure of deep water and limited installation space pose great challenges in sensor development. In this paper, two editions of newly designed deepwater tension sensors are proposed. The first edition is based on a fresh hydraulic load module that operates in high pressure environment and the second edition tension, which aims to improve the accuracy, applies a newly designed watertight load module. Detailed force transmission and characteristic analysis of the sensors are carried out. The sensors have got through a series of experiments, including calibration experiments, pressure experiments and field experiments. The resultant accuracy of the second edition sensor, which has a better performance, is over 2% under the measuring range of 1000 kg and the dimension of the final sensor is as compact as 150 mm × 137 mm × 86 mm.
We numerically investigate both single and multiple droplet dissolution with droplets consisting of less dense liquid dissolving in a denser host liquid. In this situation, buoyancy can lead to convection and thus plays an important role in the dissolution process. The significance of buoyancy is quantified by the Rayleigh number $Ra$, which is the buoyancy force over the viscous damping force. In this study, $Ra$ spans almost four decades from 0.1 to 400. We focus on how the mass flux, characterized by the Sherwood number $Sh$, and the flow morphologies depend on $Ra$. For single droplet dissolution, we first show the transition of the $Sh(Ra)$ scaling from a constant value to $Sh\sim Ra^{1/4}$, which confirms the experimental results by Dietrich et al. (J. Fluid Mech., vol. 794, 2016, pp. 45–67). The two distinct regimes, namely the diffusively and the convectively dominated regimes, exhibit different flow morphologies: when $Ra\geqslant 10$, a buoyant plume is clearly visible, which contrasts sharply with the pure diffusion case at low $Ra$. For multiple droplet dissolution, the well-known shielding effect comes into play at low $Ra$, so that the dissolution rate is slower as compared to the single droplet case. However, at high $Ra$, convection becomes more and more dominant so that a collective plume enhances the mass flux, and remarkably the multiple droplets dissolve faster than a single droplet. This has also been found in the experiments by Laghezza et al. (Soft Matt., vol. 12 (26), 2016, pp. 5787–5796). We explain this enhancement by the formation of a single, larger plume rather than several individual plumes. Moreover, there is an optimal $Ra$ at which the enhancement is maximized, because the single plume is narrower at larger $Ra$, which thus hinders the enhancement. Our findings demonstrate a new mechanism in collective droplet dissolution, which is the merging of the plumes, which leads to non-trivial phenomena, contrasting the shielding effect.
Avoidance of collisions at sea is crucial to navigational safety. In this paper, we use a distributed algorithm to communicate the entire collision avoidance trajectory information for each ship. In each communication, we suggest a new improvement function considering safety and efficiency to identify the avoidance ship in each cycle. Considering the nonlinear collision avoidance trajectory of ships, a new method for calculating the degree of danger using a velocity obstacle algorithm is proposed. Therefore, in each communication, each ship considers the avoidance behaviours of other ships in planning its avoidance trajectory. Additionally, we combine bi-criterion evolution (BCE) and the ant lion optimiser to plan the entire collision avoidance path. Three scenarios are designed to demonstrate the performance of this method. The results show that the proposed method can find a suitable collision-free solution for all ships.
Thermal perception is crucial for the fitness of marine invertebrates in intertidal and shallow waters. TRPA1 is a non-selective cation channel that belongs to the TRP family with pivotal roles in initiating signal transduction of thermal perception. We investigated expression patterns of SiTRPA1 in different tissues (tube feet, coelomocytes, gonads and gut) of the sea urchin Strongylocentrotus intermedius. SiTRPA1 expression patterns under acute and long-term temperature stimuli were investigated in tube feet of sea urchins. In the present study, the highest expression of SiTRPA1 was detected in tube feet of S. intermedius. The SiTRPA1 expression level in tube feet were significantly 235.7-fold, 450.0-fold and 3299.7-fold higher than those in the coelomocytes, gonads and gut (df = 3, F = 47.382, P < 0.001). Expression levels of SiTRPA1 in the other tissues (coelomocytes, gonads and gut) were not significantly different (df = 3, F = 47.382, P = 0.972). There was no significant difference of SiTRPA1 expression among all groups in the acute temperature increase experiment (df = 4, F = 0.25, P = 0.902). In the acute temperature decrease experiment, the expression of SiTRPA1 showed no significant difference among all groups (df = 4, F = 1.802, P = 0.205). With long-term exposure (6 weeks) to different temperatures, SiTRPA1 expression in the low temperature group (10°C) was significantly higher than those in the high temperature (20°C) and the control groups (15°C) (df = 2, F = 9.57, P = 0.014). There was no significant difference of SiTRPA1 expression between the high temperature (20°C) and the control temperature (15°C) groups (df = 2, F = 9.57, P = 0.808). These results indicate that SiTRPA1 expression significantly responds to long-term low temperature but not to acute temperature decrease. The present study provides new insights on the distribution and temporal expression of TRPA1 in marine invertebrates after acute and long-term temperature stimuli.
We present a numerical study of quasistatic magnetoconvection in a cubic Rayleigh–Bénard (RB) convection cell subjected to a vertical external magnetic field. For moderate values of the Hartmann number $Ha$ (characterising the strength of the stabilising Lorentz force), we find an enhancement of heat transport (as characterised by the Nusselt number $Nu$). Furthermore, a maximum heat transport enhancement is observed at certain optimal $Ha_{opt}$. The enhanced heat transport may be understood as a result of the increased coherence of the thermal plumes, which are elementary heat carriers of the system. To our knowledge this is the first time that a heat transfer enhancement by the stabilising Lorentz force in quasistatic magnetoconvection has been observed. We further found that the optimal enhancement may be understood in terms of the crossing of the thermal and the momentum boundary layers (BL) and the fact that temperature fluctuations are maximum near the position where the BLs cross. These findings demonstrate that the heat transport enhancement phenomenon in the quasistatic magnetoconvection system belongs to the same universality class of stabilising–destabilising (S–D) turbulent flows as the systems of confined Rayleigh–Bénard (CRB), rotating Rayleigh–Bénard (RRB) and double-diffusive convection (DDC). This is further supported by the findings that the heat transport, boundary layer ratio and temperature fluctuations in magnetoconvection at the boundary layer crossing point are similar to the other three cases. A second type of boundary layer crossing is also observed in this work. In the limit of $Re\gg Ha$, the (traditionally defined) viscous boundary $\unicode[STIX]{x1D6FF}_{v}$ is found to follow a Prandtl–Blasius-type scaling with the Reynolds number $Re$ and is independent of $Ha$. In the other limit of $Re\ll Ha$, $\unicode[STIX]{x1D6FF}_{v}$ exhibits an approximate ${\sim}Ha^{-1}$ dependence, which has been predicted for a Hartmann boundary layer. Assuming the inertial term in the momentum equation is balanced by both the viscous and Lorentz terms, we derived an expression $\unicode[STIX]{x1D6FF}_{v}=H/\sqrt{c_{1}Re^{0.72}+c_{2}Ha^{2}}$ (where $H$ is the height of the cell) for all values of $Re$ and $Ha$, which fits the obtained viscous boundary layer well.
The main aim of this study was to explore the mediating role of learning engagement on the relationship between social networking site (SNS) addiction and academic achievement among 406 university students. The Social Networking Site Addiction Scale, Utrecht Work Engagement Scale for Students, and Chinese Students Academic Achievement Scale were used to evaluate students’ SNS addiction, learning engagement, and academic achievement. Correlation analysis indicated that SNS addiction, learning engagement, and academic achievement were significantly correlated with each other. The causal steps regression and bootstrap analysis show that learning engagement mediated the relationship between SNS addiction and academic achievement. Implications for research and instructions for how to improve university students’ academic achievement are discussed.