We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous studies have confirmed that miR-146a-5p overexpression suppresses neurogenesis, thereby enhancing depression-like behaviors. However, it remains unclear how miR-146a-5p dysregulation produces in vivo brain structural abnormalities in patients with major depressive disorder (MDD).
Methods
In this case–control study, we combined cortical morphology analysis of magnetic resonance imaging (MRI) and miR-146a-5p quantification to investigate the neuropathological effect of miR-146a-5p on cortical thickness in MDD patients. Serum-derived exosomes that were considered to readily cross the blood-brain barrier and contain miR-146a-5p were isolated for miRNA quantification. Moreover, follow-up MRI scans were performed in the MDD patients after 6 weeks of antidepressant treatment to further validate the clinical relevance of the relationship between miR-146a-5p and brain structural abnormalities.
Results
In total, 113 medication-free MDD patients and 107 matched healthy controls were included. Vertex-vise general linear model revealed miR-146a-5p-dependent cortical thinning in MDD patients compared with healthy individuals, i.e., overexpression of miR-146a-5p was associated with reduced cortical thickness in the left orbitofrontal cortex (OFC), anterior cingulate cortex, bilateral lateral occipital cortices (LOCs), etc. Moreover, this relationship between baseline miR-146a-5p and cortical thinning was nonsignificant for all regions in the patients who had received antidepressant treatment, and higher baseline miR-146a-5p expression was found to be related to greater longitudinal cortical thickening in the left OFC and right LOC.
Conclusions
The findings of this study reveal a relationship between miR-146a-5p overexpression and cortical atrophy and thus may help specify the in vivo mediating effect of miR-146a-5p dysregulation on brain structural abnormalities in patients with MDD.
Risk perception among nurses after the COVID-19 pandemic is a crucial factor affecting their attitudes and willingness to work in clinics. Those with poor psychological status could perceive risks sensitively as fears or threats that are discouraging. This article aimed to determine whether psychological outcomes, including post-traumatic stress disorder (PTSD), depression, anxiety, and insomnia, following the COVID-19 pandemic were differentially related to the risk perceptions of nurses working in clinics and increased perceived risk.
Method
The participants were 668 nurse clinicians from five local hospitals. Risk perceptions and psychological outcomes were measured by adapted questionnaires via the Internet. Latent profile analysis (LPA) identified subgroups of individuals who showed similar profiles regarding the perceived risks in nursing. Multinomial regression and probit regression were used to examine the extent to which sociodemographic and psychological outcomes predicted class membership.
Results
LPA revealed four classes: groups with low-, mild-, moderate-, and high-level risk perceptions. Membership of the high-level risk perception class was predicted by the severity of psychological outcomes. Anxiety significantly accounted for a moderate increase in risk perceptions, while the symptoms of insomnia, depression, and PTSD accelerated the increase to the high level of risk perception class.
Conclusions
By classifying groups of nurse clinicians sharing similar profiles regarding risk perceptions and then exploring associated predictors, this study shows the psychological outcomes after COVID-19 significantly impacted pandemic-associated risk perceptions and suggests intervening in nurses' psychological outcomes while simultaneously focusing on work-related worries is important following the outbreak of COVID-19.
Previous studies have reported inverse associations between certain healthy lifestyle factors and non-alcoholic fatty liver disease (NAFLD), but limited evidence showed the synergistic effect of those lifestyles. This study examined the relationship of a combination of lifestyles, expressed as Healthy Lifestyle Score (HLS), with NAFLD.
Design:
A community-based cross-sectional study. Questionnaires and body assessments were used to collect data on the six-item HLS (ranging from 0 to 6, where higher scores indicate better health). The HLS consists of non-smoking (no active or passive smoking), normal BMI (18·5–23·9 kg/m2), physical activity (moderate or vigorous physical activity ≥ 150 min/week), healthy diet pattern, good sleep (no insomnia or <6 months) and no anxiety (Self-rating Anxiety Scale < 50), one point each. NAFLD was diagnosed by ultrasonography.
Setting:
Guangzhou, China.
Participants:
Two thousand nine hundred and eighty-one participants aged 40–75 years.
Results:
The overall prevalence of NAFLD was 50·8 %. After adjusting for potential covariates, HLS was associated with lower presence of NAFLD. The OR of NAFLD for subjects with higher HLS (3, 4, 5–6 v. 0–1 points) were 0·68 (95 % CI 0·51, 0·91), 0·58 (95 % CI 0·43, 0·78) and 0·35 (95 % CI 0·25, 0·51), respectively (P-values < 0·05). Among the six items, BMI and physical activity were the strongest contributors. Sensitivity analyses showed that the association was more significant after weighting the HLS. The beneficial association remained after excluding any one of the six components or replacing BMI with waist circumference.
Conclusions:
Higher HLS was associated with lower presence of NAFLD, suggesting that a healthy lifestyle pattern might be beneficial to liver health.
We report on the generation of a mid-infrared (mid-IR) frequency comb with a maximum average output power of 250 mW and tunability in the 2.7–4.0 μm region. The approach is based on a single-stage difference frequency generation (DFG) starting from a compact Yb-doped fiber laser system. The repetition rate of the near-infrared (NIR) comb is locked at 75 MHz. The phase noise of the repetition rate in the offset-free mid-IR comb system is measured and analyzed. Except for the intrinsic of NIR comb, environmental noise at low frequency and quantum noise at high frequency from the amplifier chain and nonlinear spectral broadening are the main noise sources of broadening the linewidth of comb teeth, which limits the precision of mid-IR dual-comb spectroscopy.
This paper reviews previous studies on metamaterials and its application to wireless power transfer (WPT) technologies, as well as discussing about development opportunities and technical challenges for the contactless charging of electric vehicles (EVs). The EV establishes a bridge between sustainable energies and our daily transportation, especially the park-and-charge and move-and-charge for EVs have attracted increasing attentions from the academia and the industry. However, the metamaterials-based WPT has been nearly unexplored specifically for EVs by now. Accordingly, this paper gives an overview for the metamaterial-based WPT technologies, with emphasizes on enhancing efficiency, increasing distance, improving misalignment tolerance, and compacting size. From the perspective of EV wireless charging, this paper discusses about the breakthrough to current WPT technique bottlenecks and prospective EV charging scenarios by utilizing the left-handed material. Meanwhile, the technical issues to be addressed are also summarized in this paper, which aims to arouse emerging research topics for the future development of EV wireless charging systems.
Formation of a nanometer-scale oxide surface layer is common when a material is exposed to oxygen-containing environment. Employing aberration-corrected analytical transmission electron microscopy and using single crystal SnSe as an example, we show that for an alloy, a second thin amorphous layer can appear underneath the outmost oxide layer. This inner amorphous layer is not oxide based, but instead originates from solid-state amorphization of the base alloy when its free energy rises to above that of the metastable amorphous state; which is a result of the composition shift due to the preferential depletion of the oxidizing species, in our case, the outgoing Sn reacting with the oxygen atmosphere.
Although the brittle material in analogue models is characterized by a linear Navier-Coulomb behaviour and rate-independent deformation, the geometry and style of deformation in accretionary wedges is sensitive to shortening velocity. In this study we have constructed a series of analogue models with various shortening velocities in order to study the influence of shortening velocity on the geometry and kinematics of accretionary wedges. Model results illustrate how shortening velocity has an important influence on the geometry and kinematics of the resulting wedge. In general, for models having similar bulk shortening, the accretionary wedges with higher velocities of shortening are roughly steeper, higher and longer, as well as having larger critical wedge angles and height. It accommodates a number of foreland-vergent thrusts, larger fault spacing and displacement rates than those of low- to medium-velocity shortening, which indicates a weak velocity-dependence in geometry of the wedge. Moreover, models with a high velocity of shortening undergo larger amounts of volumetric strain and total layer-parallel shortening than models with low- to medium-velocity shortening. The former accommodate a greater development of back thrusts and asymmetric structures; a backwards-to-forwards style of wedge growth therefore occurs in the frontal zone under high-velocity shortening.
SG-III laser facility is now the largest laser driver for inertial confinement fusion research in China. The whole laser facility can deliver 180 kJ energy and 60 TW power ultraviolet laser onto target, with power balance better than 10%. We review the laser system and introduce the SG-III laser performance here.
Most species of the genus Eulecanium Cockerell (Hemiptera: Coccidae) are important economic pests for ornamental plants and fruit trees. Two morphologically similar species, Eulecanium giganteum Shinji and E. kuwanai Kanda, are distributed mainly in China and are quite difficult to identify because of the paucity of distinguishing characteristics, which can only be observed in slide-mounted young, adult females. Furthermore, we demonstrate here that the species occur in sympatry and on many of the same host plants. Mitochondrial cytochrome c oxidase I (COI) and the D2–D3 expansion segments of 28S rDNA were used for accurate identification of these two Eulecanium species from 19 different locations in China. The average K2P distances of COI sequences were 0.47% in E. kuwanai and 0.32% in E. giganteum, and the interspecific divergences varied from 7.23% to 8.34%. Neighbour-joining (NJ) trees of COI and 28S rDNA revealed two distinct non-overlapping clusters, respectively. Meanwhile, “best close match” analysis also showed that 100% of individuals were classified successfully using COI and 28 S sequences. Differentiating between E. giganteum and E. kuwanai is challenging when using ecological and morphological traits. In contrast, identification using DNA diagnostics appears to be very effective, especially when slide-mounted specimens are difficult to obtain.
A magnetoelectric theoretical model combing piezoelectric and piezomagnetic parts about the longitudinal vibration was proposed for the laminate composite based on equivalent circuit. The model shows that the magnetoelectric voltage is relative to the thickness ratio, total thickness, frequency and loss. A simple laminate magnetoelectric composite was prepared by bonding a nickel plate and a multilayer piezoelectric vibrator together for the experimental research. The multilayer vibrator enjoys high capacitance, large effective area and low thickness, leading to a high magnetic field sensitivity of 1 mOe at the magnetoelectric field coefficient of 2.58 V/cmOe in the simple composite with nickel thickness of 0.2 mm. The model fits the resonance frequency well with the experimental results. Numerical calculation well predicates the magnetoelectric experimental behaviors, presenting a magnetoelectric maximum at about the thickness ratio 0.3 between the nickel plate and multilayer vibrators. This approach provides a method for the magnetoelectric application.
Hsp90 is a widely distributed and highly conserved molecular chaperone that is ubiquitously expressed throughout nature, being one of the most abundant proteins within non-stressed cells. This chaperone is up-regulated following stressful events and has been involved in many cellular processes. In Toxoplasma gondii, Hsp90 could be linked with many essential processes of the parasite such as host cell invasion, replication and tachyzoite-bradyzoite interconversion. A Protein-Protein Interaction (PPI) network approach of TgHsp90 has allowed inferring how these processes may be altered. In addition, data mining of T. gondii phosphoproteome and acetylome has allowed the generation of the phosphorylation and acetylation map of TgHsp90. This review focuses on the potential roles of TgHsp90 in parasite biology and the analysis of experimental data in comparison with its counterparts in yeast and humans.
A 9-week feeding trial was conducted to evaluate the effects of dietary cholesterol supplementation at different levels (0, 0·3, 0·6, 0·9, 1·2 and 1·5 %) on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed soyabean meal (SBM)-based diets. Daily growth coefficient (DGC) steadily increased when the supplemental cholesterol was increased by up to 1·2 %, but declined upon further addition. The total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C) levels in plasma generally increased when the supplemental cholesterol was increased by up to 1·2 %. Thereafter, the TC level reached a plateau, the LDL-C level showed a marked decline, whereas the HDL-C level continued to increase. Dietary cholesterol supplementation generally increased the total lipid and cholesterol levels in liver; the total lipid and TAG levels in muscle; the TC, free cholesterol, cholesteryl ester and total bile acid levels in intestinal contents; and the triiodothyronine and Ca levels in plasma. However, significant differences were mainly observed with high levels of supplemental cholesterol (0·9–1·5 %). Low levels of supplemental cholesterol (0·3–0·9 %) decreased hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase and cholesterol 7α-hydroxylase activities, but high levels of supplemental cholesterol (1·5 %) increased hepatic acyl-CoA:cholesterol acyl transferase and cholesterol 7α-hydroxylase activities. These results suggest that rainbow trout fed SBM-based diets have a certain ‘cholesterol-buffering capacity’, which in turn suggests the possibility of the inhibition of exogenous cholesterol absorption and/or inadequate endogenous production of cholesterol in trout fed SBM-based diets. DGC increased steadily with increasing supplemental cholesterol level up to 1·2 %, and the growth-promoting effects might be related to the alleviation of the negative effects caused by a soyabean diet and/or make up for the deficiency of endogenous cholesterol in rainbow trout.
A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200–250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.
A moderately diverse assemblage of plant microfossils has been recovered from the Johnsons Dock Member of the Miers Bluff Formation, Livingston Island, including spores, pollen, acritarchs, wood fragments and cuticles. Containing a total of c. 45 of miospore taxa, the palynoflora is dominated by non-striate bisaccate pollen, but spores of pteridophytes and pollen of gymnosperms are proportionate in diversity. The palynoflora is similar in composition to those indicative of subzones C + D of the Alisporites Zone of Antarctica, and the upper Craterisporites rotundus Zone and the lower Polycingulatisporites crenulatus Zone of Australia as well as the upper Polycingulatisporites crenulatus Zone and Foveosporites moretonensis Zone of New Zealand, suggesting a Late Triassic (possibly Norian–Rhaetian) age. This determination is supported by the sporadic occurrence of Aratrisporites and Classopollis in the palynoflora as well as by the absence of striate bisaccate grains.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.