Skip to main content Accessibility help

A Second Amorphous Layer Underneath Surface Oxide

  • Bin Zhang (a1), Kunlin Peng (a2), Xuechao Sha (a1), Ang Li (a1), Xiaoyuan Zhou (a2), Yanhui Chen (a1), QingSong Deng (a1), Dingfeng Yang (a1) (a2), Evan Ma (a3) and Xiaodong Han (a1)...


Formation of a nanometer-scale oxide surface layer is common when a material is exposed to oxygen-containing environment. Employing aberration-corrected analytical transmission electron microscopy and using single crystal SnSe as an example, we show that for an alloy, a second thin amorphous layer can appear underneath the outmost oxide layer. This inner amorphous layer is not oxide based, but instead originates from solid-state amorphization of the base alloy when its free energy rises to above that of the metastable amorphous state; which is a result of the composition shift due to the preferential depletion of the oxidizing species, in our case, the outgoing Sn reacting with the oxygen atmosphere.


Corresponding author

* Corresponding authors.;;


Hide All
Allen, L.J., D’Alfonso, A.J., Freitag, B. & Klenov, D.O. (2012). Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy. MRS Bull 37, 4752.
Badrinarayanan, S., Mandale, A.B., Gunjikar, V.G. & Sinham, A.P.B. (1986). Mechanism of high-temperature oxidation of tin selenide. J Mater Sci 21, 33333338.
Baumgardner, W.J., Choi, J.J., Lim, Y.F. & Hanrath, T. (2010). SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J Am Chem Soc 132, 95199521.
Cabrera, N. & Mott, N. (1949). Theory of the oxidation of metals. Rep Prog Phys 12, 163184.
Chu, M.W. & Chen, C.H. (2013). Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy. ACS Nano 7, 47004707.
Chung, K.M., Wamwangi, D., Woda, M., Wuttig, M. & Bensch, W. (2008). Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. J Appl Phys 103, 083523.
de Kergommeaux, A., Faure-Vincent, J., Pron, A., de Bettignies, R., Malaman, B. & Reiss, P. (2012). Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn–Mössbauer spectroscopy. J Am Chem Soc 134, 1165911666.
Franzman, M.A., Schlenker, C.W., Thompson, M.E. & Brutchey, R.L. (2010). Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J Am Chem Soc 132, 40604061.
Huh, M.Y., Kim, S.H., Ahn, J.P., Park, J.K. & Kim, B.K. (1999). Oxidation of nanophase tin particles. Nanostruct Mater 11, 211220.
Jiang, Y., Wang, Y., Sagendorf, J., West, D., Kou, X., Wei, X., He, L., Wang, K.L., Zhang, S. & Zhang, Z. (2013). Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett 13, 28512856.
Johnson, W.L. (1986). Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog Mater Sci 30, 81134.
Johnson, W.L. (1988). Crystal-to-glass transformation in metallic materials. Mater Sci Eng 97, 113.
Lavut, E.G., Timofeyev, B.I., Yuldasheva, V.M., Lavut, E.A. & Galchenko, G.L. (1981). Enthalpies of formation of tin (IV) and tin (II) oxides from combustion calorimetry. J Chem Thermodyn 13, 635646.
Li, C.W., Hong, J., May, A.F., Bansal, D., Chi, S., Hong, T., Ehlers, G. & Delaire, O. (2015). Orbitally driven giant phonon anharmonicity in SnSe. Nat Phys 11, 10631069.
Li, Y., He, B., Heremans, J.P. & Zhao, J.C. (2016). High-temperature oxidation behavior of thermoelectric SnSe. J Alloys Compd 669, 224231.
Ma, E., Meng, W.J., Johnson, W.L., Nicolet, M.A. & Nathan, M. (1988). Simultaneous planar growth of amorphous and crystalline Ni silicides. Appl Phys Lett 53, 20332035.
Mallika, C., Edwin Suresh Raj, A.M., Nagaraja, K.S. & Sreedharan, O.M. (2001). Use of SnO for the determination of standard Gibbs energy of formation of SnO2 by oxide electrolyte e.m.f. measurements. Thermochim Acta 371, 95101.
Olin, Å., Noläng, B., Öhman, L.O., Osadchii, E. & Rosén, E. (2005). Chemical Thermodynamics of Selenium. Amsterdam: Elsevier.
Over, H. & Seitsonen, A. (2002). Oxidation of metal surfaces. Science 297, 20032005.
Peng, K.L., Lu, X., Zhan, H., Hui, S., Tang, X., Wang, G., Dai, J., Uher, C., Wang, G. & Zhou, X.Y. (2016). Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci 9, 454460.
Pennycook, S.J. & Nellist, P.D. (2011). Scanning transmission electron microscopy: Imaging and analysis. New York: Springer Science & Business Media.
Sharma, R.C. & Chang, Y.A. (1986). The Se−Sn (selenium-tin) system. Bull Alloy Phase Diagr 7, 6872.
Vasil’ev, L., Makeeva, K., Kryl’nikov, Y.V. & Seregina, L. (1977). Study of oxidation and thermal decomposition of tin chalcogenides by nuclear gamma resonance spectroscopy. Izv Akad Nauk SSSR Neorg Mater 13, 17521756.
Wang, L.H., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Chen, M.W. & Han, X.D. (2014). Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Comm 5, 4402.
Watanabe, M & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new ζ-factor methods. J Microsc 221, 89109.
Zhang, B., Peng, K.L., Li, A., Zhou, X.Y., Chen, Y.J., Deng, Q.S. & Han, X.D. (2016a). The chemistry and structural thermal stability of hole-doped single crystalline SnSe. J Alloys Compd 688, 10881094.
Zhang, B., Zhang, W., Shen, Z.J., Chen, Y.J., Li, J.X., Zhang, S.B., Zhang, Z., Wuttig, M., Mazzarello, R., Ma, E. & Han, X.D. (2016 b). Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl Phys Lett 108, 191902.
Zhao, L.D., Lo, S.H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P. & Kanatzidis, M.G. (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373377.
Zhao, S., Wang, H., Zhou, Y., Liao, L., Jiang, Y., Yang, X., Chen, G., Lin, M., Wang, Y., Peng, H. & Liu, Z. (2015). Controlled synthesis of single-crystal SnSe nanoplates. Nano Res 8, 288295.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed