Skip to main content Accessibility help

Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries

  • Bin Liu (a1), Da Deng, Jim Yang Lee (a2) and Eray S. Aydil (a1)


A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200–250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Che, G.L., Lakshmi, B.B., Fisher, E.R., Martin, C.R.Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346 (1998)
2.Che, G.L., Jirage, K.B., Fisher, E.R., Martin, C.R.Chemical-vapor deposition based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc. 144, 4296 (1997)
3.Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C.R., Yoneyama, H.Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923 (1997)
4.Sides, C.R., Martin, C.R.Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv. Mater. 17, 125 (2005)
5.Nam, K.T., Kim, D.W., Yoo, P.J., Chiang, C.Y., Meethong, N., Hammond, P.T., Chang, Y.M., Belcher, A.M.Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885 (2006)
6.Armstrong, R., Armstrong, G., Canales, J., Bruce, P.G.TiO2-B nanowires. Angew. Chem. Int. Ed. 43, 2286 (2004)
7.Armstrong, R., Armstrong, G., Canales, J., García, R., Bruce, P.G.Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005)
8.Bruce, P.G., Scrosati, B., Tarascon, J-M.Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930 (2008)
9.Kavan, L., Kalbáč, M., Zukalová, M., Exnar, I., Lorenzen, V., Nesper, R., Graetzel, M.Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 16, 477 (2004)
10.Zukalová, M., Kalbáč, M., Kavan, L., Exnar, I., Graetzel, M.Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005)
11.Wang, Y., Lee, J.Y., Zeng, H.C.Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899 (2005)
12.Wang, Y., Zeng, H.C., Lee, J.Y.Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18, 645 (2006)
13.Cheng, F., Tao, Z., Liang, J., Chen, J.Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 20, 667 (2008)
14.Park, M-S., Wang, G-X., Kang, Y-M., Wexler, D., Dou, S-X., Liu, H-K.Preparation and electrochemical properties of SnO2nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750 (2007)
15.Park, M-S., Kang, Y-M., Wang, G-X., Dou, S-X., Liu, H-K.Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Adv. Funct. Mater. 18, 455 (2008)
16.Meduri, P., Pendyala, C., Kumar, V., Sumanasekera, G.U., Sunkara, M.K.Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 9, 612 (2009)
17.Kim, D-W., Hwang, I-S., Kwon, S.J., Kang, H-Y., Park, K-S., Choi, Y-J., Choi, K-J., Park, J-G.Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7, 3041 (2007)
18.Lou, X.W., Deng, D., Lee, J.Y., Archer, L.A.Self supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258 (2008)
19.Li, Y.G., Tan, B., Wu, Y.Y.Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8, 265 (2008)
20.Chan, C.K., Zhang, X.F., Cui, Y.High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307 (2008)
21.Chan, C.K., Peng, H.L., Liu, G., Mcilwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008)
22.Cui, L-F., Ruffo, R., Chan, C.K., Peng, H.L., Cui, Y.Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491 (2009)
23.Kim, D.K., Muralidharan, P., Lee, H-W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H.L., Huggins, R.A., Cui, Y.Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008)
24.Reddy, L.M., Shaijumon, M.M., Gowda, S.R., Ajayan, P.M.Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9, 1002 (2009)
25.Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H.S.Synthesis of single crystalline spinel LiMn2O4 nanowires for lithium in battery with high power density. Nano Lett. 9, 1045 (2009)
26.Hu, Y-S., Liu, X., Müller, J-O., Schlögl, R., Maier, J., Su, D.S.Synthesis and electrode performance of nanostructured V2O5 by using carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem. Int. Ed. 48, 210 (2009)
27.Hu, Y-S., Kienle, L., Guo, Y-G., Maier, J.High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421 (2006)
28.Zhou, H.S., Li, D.L., Hibino, M., Honma, I.A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew. Chem. Int. Ed. 44, 797 (2005)
29.Jiang, C.H., Wei, M.D., Qi, Z.M., Kudo, T., Honma, I., Zhou, H.S.Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 166, 239 (2007)
30.Lan, Y., Gao, X.P., Zhu, H.Y., Zheng, Z.F., Yan, T.Y., Wu, F., Ringer, S.P., Song, D.Y.Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 15, 1310 (2005)
31.Li, J., Tang, S.B., Lu, L., Zeng, H.C.Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 129, 9401 (2007)
32.Wang, K.X., Wei, M.D., Morris, M.A., Zhou, H.S., Holmes, J.D.Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Adv. Mater. 19, 3016 (2007)
33.Lou, X.W., Archer, L.A.A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv. Mater. 20, 1853 (2008)
34.Wagemaker, M., Borghols, W.J.H., Mulder, F.M.Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4323 (2007)
35.Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., Mulder, F.M.Impact of nanosizing on lithiated rutile TiO2. Chem. Mater. 20, 2949 (2008)
36.Ortiz, G.F., Hanzu, I., Djenizian, T., Lavela, P., Tirado, J.L., Knauth, P.Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63 (2009)
37.Liu, B., Boercker, J.E., Aydil, E.S.Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19, 505604 (2008)
38.Boercker, J.E., Enache Pommer, E., Aydil, E.S.Growth mechanism of titanium dioxide nanowires for dye sensitized solar cells. Nanotechnology 19, 095604 (2008)
39.Kavan, L., Grätzel, M., Rathouský, J., Zukal, A.Nanocrystalline TiO2 (anatase) electrodes: Surface morphology, adsorption, and electrochemical properties. J. Electrochem. Soc. 143, 394 (1996)
40.Kavan, L., Rathouský, J., Grätzel, M., Shklover, V., Zukal, A.Surfactant-templated TiO2 (anatase): Characteristic features of lithium insertion electrochemistry in organized nanostructures. J. Phys. Chem. B 104, 12012 (2000)
41.Wagemaker, M., van de Krol, R., Kentgens, A.P.M., van Well, A.A., Mulder, F.M.Two phase morphology limits lithium diffusion in TiO2 (anatase): A Li-7 MAS NMR study. J. Am. Chem. Soc. 123, 111454 (2001)
42.Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid-State Lett. 9, A139 (2006)
43.Li, Q.J., Zhang, J.W., Liu, B.B., Li, M., Liu, R., Li, X.L., Ma, H.L., Yu, S.D., Wang, L., Zou, Y.G., Li, Z.P., Zou, B., Cui, T., Zou, G.T.Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47, 9870 (2008)
44.Ohzuku, T., Kodama, T., Hirai, T.Electrochemistry of anatase titanium-dioxie in lithum noaqueous cells. J. Power Sources 14, 153 (1985)


Related content

Powered by UNSILO

Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries

  • Bin Liu (a1), Da Deng, Jim Yang Lee (a2) and Eray S. Aydil (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.