We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the first Southern-Hemisphere all-sky imager and radio-transient monitoring system implemented on two prototype stations of the low-frequency component of the Square Kilometre Array (SKA-Low). Since its deployment, the system has been used for real-time monitoring of the recorded commissioning data. Additionally, a transient searching algorithm has been executed on the resulting all-sky images. It uses a difference imaging technique to enable identification of a wide variety of transient classes, ranging from human-made radio-frequency interference to genuine astrophysical events. Observations at the frequency 159.375 MHz and higher in a single coarse channel (
$\approx$
0.926 MHz) were made with 2 s time resolution, and multiple nights were analysed generating thousands of images. Despite having modest sensitivity (
$\sim$
few Jy beam–1), using a single coarse channel and 2-s imaging, the system was able to detect multiple bright transients from PSR B0950+08, proving that it can be used to detect bright transients of an astrophysical origin. The unusual, extreme activity of the pulsar PSR B0950+08 (maximum flux density
$\sim$
155 Jy beam–1) was initially detected in a ‘blind’ search in the 2020 April 10/11 data and later assigned to this specific pulsar. The limitations of our data, however, prevent us from making firm conclusions of the effect being due to a combination of refractive and diffractive scintillation or intrinsic emission mechanisms. The system can routinely collect data over many days without interruptions; the large amount of recorded data at 159.375 and 229.6875 MHz allowed us to determine a preliminary transient surface density upper limit of
$1.32 \times 10^{-9} \text{deg}^{-2}$
for a timescale and limiting flux density of 2 s and 42 Jy, respectively. In the future, we plan to extend the observing bandwidth to tens of MHz and improve time resolution to tens of milliseconds in order to increase the sensitivity and enable detections of fast radio bursts below 300 MHz.
Predictors of new-onset bipolar disorder (BD) or psychotic disorder (PD) have been proposed on the basis of retrospective or prospective studies of ‘at-risk’ cohorts. Few studies have compared concurrently or longitudinally factors associated with the onset of BD or PDs in youth presenting to early intervention services. We aimed to identify clinical predictors of the onset of full-threshold (FT) BD or PD in this population.
Method
Multi-state Markov modelling was used to assess the relationships between baseline characteristics and the likelihood of the onset of FT BD or PD in youth (aged 12–30) presenting to mental health services.
Results
Of 2330 individuals assessed longitudinally, 4.3% (n = 100) met criteria for new-onset FT BD and 2.2% (n = 51) met criteria for a new-onset FT PD. The emergence of FT BD was associated with older age, lower social and occupational functioning, mania-like experiences (MLE), suicide attempts, reduced incidence of physical illness, childhood-onset depression, and childhood-onset anxiety. The emergence of a PD was associated with older age, male sex, psychosis-like experiences (PLE), suicide attempts, stimulant use, and childhood-onset depression.
Conclusions
Identifying risk factors for the onset of either BD or PDs in young people presenting to early intervention services is assisted not only by the increased focus on MLE and PLE, but also by recognising the predictive significance of poorer social function, childhood-onset anxiety and mood disorders, and suicide attempts prior to the time of entry to services. Secondary prevention may be enhanced by greater attention to those risk factors that are modifiable or shared by both illness trajectories.
A new high time resolution observing mode for the Murchison Widefield Array (MWA) is described, enabling full polarimetric observations with up to
$30.72\,$
MHz of bandwidth and a time resolution of
${\sim}$
$0.8\,\upmu$
s. This mode makes use of a polyphase synthesis filter to ‘undo’ the polyphase analysis filter stage of the standard MWA’s Voltage Capture System observing mode. Sources of potential error in the reconstruction of the high time resolution data are identified and quantified, with the
$S/N$
loss induced by the back-to-back system not exceeding
$-0.65\,$
dB for typical noise-dominated samples. The system is further verified by observing three pulsars with known structure on microsecond timescales.
The measurement of thin film mechanical properties free from substrate influence remains one of the outstanding challenges in nanomechanics. Here, a technique based on indentation of a supported film with a flat punch whose diameter is many times the initial film thickness is introduced. This geometry generates a state of confined uniaxial strain for material beneath the punch, allowing direct access to intrinsic stress versus strain response. For simple elastic–plastic materials, this enables material parameters such as elastic modulus, bulk modulus, Poisson's ratio, and yield stress to be simultaneously determined from a single loading curve. The phenomenon of confined plastic yield has not been previously observed in thin films or homogeneous materials, which we demonstrate here for 170 -470 nm thick polystyrene (PS), polymethyl-methacrylate (PMMA) and amorphous Selenium films on silicon. As well as performing full elastic -plastic parameter extraction for these materials at room temperature, we used the technique to study the variation of yield stress in PS to temperatures above the nominal glass transition of 100 °C.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.
For over a decade a transdiagnostic clinical staging framework for youth with anxiety, mood and psychotic disorders (linked with measurement of multidimensional outcomes), has been utilised in over 8,000 young people presenting to the enhanced primary (headspace) and secondary care clinics of the Brain and Mind Centre of the University of Sydney. This framework has been evaluated alongside a broad range of other clinical, neurobiological, neuropsychological, brain imaging, circadian, metabolic, longitudinal cohort and controlled intervention studies. This has led to specific tests of its concurrent, discriminant and predictive validity. These extensive data provide strong preliminary evidence that: i) varying stages of illness are associated with predicted differences in a range of independent and objectively measured neuropsychological and other biomarkers (both cross-sectionally and longitudinally); and, ii) that earlier stages of illness progress at variable rates to later and more severe or persistent disorders. Importantly, approximately 15-20% of those young people classed as stage 1b or ‘attenuated’ syndromes at presentation progress to more severe or persistent disorders. Consequently, this cohort should be the focus of active secondary prevention trials. In clinical practice, we are moving to combine the staging framework with likely pathophysiological paths (e.g. neurodevelopmental-psychotic, anxiety-depression, circadian-bipolar) to underpin enhanced treatment selection.
Although mental health issues are the key health concern for young people, contributing 45% of the total burden of disease for those aged 10-24 years, young people have the poorest access to mental health care. Current service approaches are insufficient, poorly designed and not well supported. Transformational reform of mental health care is needed, based on principles of evidence-informed care, early intervention, and a focus on the developmental period of greatest need and capacity to benefit from investment: emerging adulthood. The most appropriate care models for this period place emphasis on offering care that is appropriate to early stages of illness, pre-emptive in nature, and with a strong preventive focus. This sits best with a clinical staging approach, which distinguishes earlier and milder clinical phenomena from those that accompany illness progression and chronicity. This provides a clinically useful framework that is sensitive to risk/benefit considerations and facilitates the selection of earlier, safer interventions, and favours a preventive or pre-emptive treatment approach. In this chapter, rapidly emerging examples of modern, stigma-free cultures of care designed and operated with young people themselves are described. This includes headspace and technologically enhanced service delivery models. Future directions for youth services are also described.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.
Two species, torpedograss and Southern watergrass, are very difficult to selectively control when they invade desirable turfgrass stands. The purpose of this study was to evaluate selective control of torpedograss and Southern watergrass in ‘Tifway’ bermudagrass turf. Greater than 86% control of torpedograss was observed 4 wk after sequential treatment (WAST) with quinclorac, trifloxysulfuron-sodium, quinclorac and trifloxysulfuron-sodium, sulfentrazone + imazethapyr and quinclorac and trifloxysulfuron-sodium, and quinclorac and trifloxysulfuron-sodium followed by (fb) glyphosate. However, by 8 WAST, control was reduced to <36% for all treatments. Greatest Southern watergrass control was achieved 4 WAST with trifloxysulfuron-sodium (83%), and thiencarbazone-methyl + foramsulfuron + halosulfuron-methyl (75%). Limited control (<30%) was observed with other treatments. By 8 WAST, Southern watergrass control was <12% for all treatments. This study suggests that short-term control/suppression of these two species is possible; however, long-term control is limited with single-year programs. These weeds will probably require multiple applications in successive years to reduce infestations. Future research should continue to screen other herbicides, combinations, and timings for control of these and other perennial grass weeds.
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089 (2000); Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017)].
We provide the first in situ measurements of antenna element beam shapes of the Murchison Widefield Array. Most current processing pipelines use an assumed beam shape, which can cause absolute and relative flux density errors and polarisation ‘leakage’. Understanding the primary beam is then of paramount importance, especially for sensitive experiments such as a measurement of the 21-cm line from the epoch of reionisation, where the calibration requirements are so extreme that tile to tile beam variations may affect our ability to make a detection. Measuring the primary beam shape from visibilities is challenging, as multiple instrumental, atmospheric, and astrophysical factors contribute to uncertainties in the data. Building on the methods of Neben et al. [Radio Sci., 50, 614], we tap directly into the receiving elements of the telescope before any digitisation or correlation of the signal. Using ORBCOMM satellite passes we are able to produce all-sky maps for four separate tiles in the XX polarisation. We find good agreement with the beam model of Sokolowski et al. [2017, PASA, 34, e062], and clearly observe the effects of a missing dipole from a tile in one of our beam maps. We end by motivating and outlining additional on-site experiments.
We describe the motivation and design details of the ‘Phase II’ upgrade of the Murchison Widefield Array radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the Murchison Widefield Array in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing array core. These new tiles enhance the surface brightness sensitivity of the array and will improve the ability of the Murchison Widefield Array to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ∼3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u, v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of Murchison Widefield Array continuum images. The upgrade retains all of the features that have underpinned the Murchison Widefield Array’s success (large field of view, snapshot image quality, and pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies.
The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation ($I\sim 2\times 10^{14}~\text{W}\cdot \text{cm}^{-2}$) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 $\pm$ 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.
Transition from at-risk state to full syndromal mental disorders is
underexplored for unipolar and bipolar disorders compared with
psychosis.
Aims
Prospective, trans-diagnostic study of rates and predictors of early
transition from sub-threshold to full syndromal mental disorder.
Method
One-year outcome of 243 consenting youth aged 15–25 years with a
sub-syndromal presentation of a potentially severe mental disorder.
Survival analysis and odds ratio (OR) for predictors of transition
identified from baseline clinical and demographic ratings.
Results
About 17% (n=36) experienced transition to a major
mental disorder. Independent of syndromal diagnosis, transition was
significantly more likely in individuals who were NEET (not in education,
employment or training), in females and in those with more negative
psychological symptoms (e.g. social withdrawal).
Conclusions
NEET status and negative symptoms are modifiable predictors of illness
trajectory across diagnostic categories and are not specific to
transition to psychosis.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
Introduction: Burnout is well documented in residents and emergency physicians. Wellness initiatives are becoming increasingly prevalent, but there is a lack of data supporting their efficacy. In some populations, a relationship between sleep, exercise and wellness has been documented, but this relationship has not been established in emergency medicine (EM) residents or physicians. We aim to determine whether exercise and sleep quality and quantity as measured by a Fitbit are associated with greater perceived wellness in EM residents. Methods: Fifteen EM residents from two training sites wore a Fitbit during a 4-week EM rotation. The Fitbit recorded data on sleep quantity (minutes sleeping)/quality (sleep disruptions) and exercise quantity (daily step count)/quality (daily active minutes performing activity of 3-6 and >6 metabolic equivalents). Participants completed an end-of-rotation Perceived Wellness Survey (PWS) which provided information on six domains of personal wellness (psychological, emotional, social, physical, spiritual and intellectual). Associations between PWS scores and the Fitbit markers were evaluated using a Mann-Whitney-U statistical analysis. Results: Preliminary results indicate that residents who scored ≥50th percentile for sleep quantity had significantly higher PWS scores than those who scored ≤50th percentile (median PWS 17.0 vs 13.0 respectively, p=0.04). There was no significant correlation between PWS scores, sleep interruptions, daily step count and average daily active minutes. Postgraduate Year PGY1 and PGY2-5 report median PWS scores of 13.9 and 17.2 respectively. Conclusion: To our knowledge, this is the first study to objectively measure the quality and quantity of sleep as well as exercise habits of EM residents using a Fitbit device. Our data indicates a significant relationship between better sleep quantity and higher wellness scores in this population. We aim to enroll 30 residents in order to obtain a more robust data set. A larger sample size will increase statistical power and allow us to more extensively evaluate the use of exercise and sleep monitoring devices in the efficacy assessment of wellness initiatives.
Tropical signalgrass (TSG) has become a serious weed problem in tropical and subtropical regions such as Florida in recent years in association with the ban of organic arsenical herbicide use in turf. The purpose of this research was to identify alternative POST herbicides that control TSG. Two field experiments were conducted in bermudagrass golf course fairways in south and central Florida in 2014 and 2015. Several nonorganic arsenical herbicide treatments controlled TSG. In the first experiment, treatments containing amicarbazone alone and in combination with other herbicides provided > 97% TSG control 12 wk after initial treatment (WAIT) in 2014 and 2015. These included a single application of amicarbazone at 0.49 kg ai ha−1, or sequential applications of amicarbazone at 0.25 kg ha−1 in combination with foramsulfuron at 0.04 kg ai ha−1, sulfentrazone + imazethapyr at 0.25 kg ai ha−1, thiencarbazone + foramsulfuron + halosulfuron at 0.14 kg ai ha−1, and thiencarbazone + iodosulfuron + dicamba at 0.18 kg ai/ae ha−1. In the second experiment, sequential applications of thiencarbazone + foramsulfuron + halosulfuron at 0.14 kg ha−1 in combination with either quinclorac at 0.84 kg ai ha−1 or metribuzin at 0.28 kg ai ha−1 provided ≥ 85% TSG control 12 WAIT in both years.