Skip to main content Accessibility help
×
Home

Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR

  • B. Albertazzi (a1), E. Falize (a2) (a3), A. Pelka (a4), F. Brack (a4), F. Kroll (a4), R. Yurchak (a1), E. Brambrink (a1), P. Mabey (a1), N. Ozaki (a5), S. Pikuz (a6) (a7), L. Van Box Som (a2) (a3), J. M. Bonnet-Bidaud (a3), J. E. Cross (a8), E. Filippov (a6) (a7), G. Gregori (a8), R. Kodama (a9), M. Mouchet (a10), T. Morita (a11), Y. Sakawa (a9), R. P. Drake (a12), C. C. Kuranz (a12), M. J.-E. Manuel (a13), C. Li (a14), P. Tzeferacos (a15), D. Lamb (a15), U. Schramm (a4) and M. Koenig (a1) (a5)...

Abstract

The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation ( $I\sim 2\times 10^{14}~\text{W}\cdot \text{cm}^{-2}$ ) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 $\pm$ 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: B. Albertazzi, LULI – CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités – F-91128 Palaiseau cedex, France. Email: b.albertazzi@hotmail.fr

References

Hide All
1. Albertazzi, B. Ciardi, A. Nakatsutsumi, M. Vinci, T. Béard, J. Bonito, R. Billette, J. Borghesi, M. Burkley, Z. Chen, S. N. Cowan, T. E. Herrmannsdörfer, T. Higginson, D. P. Kroll, F. Pikuz, S. A. Naughton, K. Romagnani, L. Riconda, C. Revet, G. Riquier, R. Schlenvoigt, H.-P. Yu Skobelev, I. Ya Faenov, A. Soloviev, A. Huarte-Espinosa, M. Frank, A. Portugall, O. Pépin, H. and Fuchs, J. Science 346, 325 (2014).
2. Manuel, M. J. E. Kuranz, C. C. Rasmus, A. M. Klein, S. R. MacDonald, M. J. Trantham, M. R. Fein, J. R. Belancourt, P. X. Young, R. P. Keiter, P. A. Drake, R. P. Pollock, B. B. Park, J. Hazi, A. U. Williams, G. J. and Chen, H. High Energy Density Phys. 17, 52 (2015).
3. Revet, G. Chen, S. N. Bonito, R. Khiar, B. Filippov, E. Argiroffi, C. Higginson, D. P. Orlando, S. Béard, J. Blecher, M. Borghesi, M. Burdonov, K. Khaghani, D. Naughton, K. Pépin, H. Portugall, O. Riquier, R. Rodriguez, R. Ryazantsev, S. N. Skobelev, I. Yu. Soloviev, A. Willi, O. Pikuz, S. Ciardi, A. and Fuchs, J. Sci. Adv. 3, e1700982 (2017).
4. Ryutov, D. D. Drake, R. P. and Remington, B. A. Astrophys. J. Suppl. 127, 465 (2000).
5. Remington, B. A. Drake, R. P. and Ryutov, D. D. Rev. Mod. Phys. 78, 755 (2006).
6. Warner, B. Cataclysmic Variables (Cambridge University Press, 1995).
7. Falize, E. Michaut, C. and Bouquet, S. Astrophys. J. 730, 96 (2011).
8. Cross, J. E. Reville, B. and Gregori, G. Astrophys. J. 795, 59 (2014).
9. Wu, K. Space Sci. Rev. 93, 611 (2000).
10.Larsson, 1995, in Proceedings of the Cape Workshop (Astronomical Society of the Pacific, 1995), p. 311.
11. Bonnet-Bidaud, J. M. Mouchet, M. Busschaert, C. Falize, E. and Michaut, C. Astron. Astrophys. 579, A24 (2015).
12. Mouchet, M. Bonnet-Bidaud, J.-M. Van Box Som, L. Falize, E. Buckley, D. A. H. Breytenbach, H. Ashley, R. P. Marsh, T. R. and Dhillon, V. S. Astron. Astrophys. 600, A53 (2017).
13. Chevalier, R. A. and Imamura, J. N. Astrophys. J. 261, 543 (1982).
14. Falize, É. Ravasio, A. Loupias, B. Dizière, A. Gregory, C. D. Michaut, C. Busschaert, C. Cavet, C. and Koenig, M. High Energ. Dens. Phys. 8, 1 (2012).
15. Falize, É. Loupias, B. Ravasio, A. Gregory, C. D. Dizière, A. Koenig, M. Michaut, C. Cavet, C. Barroso, P. Leidinger, J.-P. Ribeyre, X. Breil, J. Takabe, H. Sakawa, Y. Kuramitsu, Y. Morita, T. Woolsey, N. C. Nazarov, W. and Pikuz, S. Astrophys. Space Sci. 336, 81 (2011).
16. Krauland, C. M. Drake, R. P. Kuranz, C. C. Loupias, B. Plewa, T. Huntington, C. M. Kaczala, D. N. Klein, S. Sweeney, R. Young, R. P. Falize, E. Villette, B. and Keiter, P. A. Astrophys. J. Lett. 762, L2 (2013).
17. Krauland, C. M. Drake, R. P. Kuranz, C. C. Sweeney, R. Grosskopf, M. Klein, S. Gillespie, R. Keiter, P. A. Loupias, B. and Falize, E. Phys. Plasmas 20, 056502 (2013).
18. Cross, J. E. Gregori, G. Foster, J. M. Graham, P. Bonnet-Bidaud, J.-M. Busschaert, C. Charpentier, N. Danson, C. N. Doyle, H. W. Drake, R. P. Fyrth, J. Gumbrell, E. T. Koenig, M. Krauland, C. Kuranz, C. C. Loupias, B. Michaut, C. Mouchet, M. Patankar, S. Skidmore, J. Spindloe, C. Tubman, E. R. Woolsey, N. Yurchak, R. and Falize, É. Nat. Commun. 7, 11899 (2016).
19. Busschaert, C. Falize, É. Loupias, B. Michaut, C. Ravasio, A. Pelka, A. Yurchak, R. and Koenig, M. New. J. Phys. 15, 035020 (2013).
20. Matsakos, T. Chièze, J.-P. Stehlé, C. González, M. Ibgui, L. de Sá, L. Lanz, T. Orlando, S. Bonito, R. Argiroffi, C. Reale, F. and Peres, G. Astron. Astrophys. 557, A69 (2013).
21. Albertazzi, B. Béard, J. Ciardi, A. Vinci, T. Albrecht, J. Billette, J. Burris-Mog, T. Chen, S. N. Da Silva, D. Dittrich, S. Herrmannsdörfer, T. Hirardin, B. Kroll, F. Nakatsutsumi, M. Nitsche, S. Riconda, C. Romagnagni, L. Schlenvoigt, H.-P. Simond, S. Veuillot, E. Cowan, T. E. Portugall, O. Pépin, H. and Fuchs, J. Rev. Sci. Instrum. 84, 043505 (2013).
22. Busschaert, C. Falize, É. Michaut, C. Bonnet-Bidaud, J.-M. and Mouchet, M. Astron. Astrophys. 579, A25 (2015).
23. Toth, G. and Draine, B. T. Astrophys. J. 413, 176 (1993).
24. Van Box Som, L. Falize, E. Koenig, M. Sakawa, Y. Albertazzi, B. Barroso, P. Bonnet-Bidaud, J.-M. Busschaert, C. Ciardi, A. Hara, Y. Katsuki, N. Kumar, R. Lefevre, F. Michaut, C. Michel, Th. Miura, T. Morita, T. Mouchet, M. Rigon, G. Sano, T. Shiiba, S. Shimogawara, H. and Tomiya, S. High Power Laser Sci. Eng. 6, e35 (2018).
25. Brambrink, E. Baton, S. Koenig, M. Yurchak, R. Bidaut, N. Albertazzi, B. Cross, J. E. Gregori, G. Rigby, A. Falize, E. Pelka, A. Kroll, F. Pikuz, S. Sakawa, Y. Ozaki, N. Kuranz, C. Manuel, M. Li, C. Tzeferacos, P. and Lamb, D. High Power Laser Sci. Eng. 4, e30 (2016).
26. Zeldovich, Y. B. and Raizer, Y. P. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, 1967).
27.F. C. for Computational Science, FLASH User Guide (University of Chicago, 2015).
28. Bouquet, S. Stéhlé, C. Koenig, M. Chièze, J.-P. Benuzzi-Mounaix, A. Batani, D. Leygnac, S. Fleury, X. Merdji, H. Michaut, C. Thais, F. Grandjouan, N. Hall, T. Henry, E. Malka, V. and Lafon, J.-P. J. Phys. Rev. Lett. 92, 225001 (2004).
29. Michaut, C. Falize, E. Cavet, C. Bouquet, S. Koenig, M. Vinci, T. Reighard, A. and Drake, R. P. Astrophys. Space Sci. 322, 77 (2009).
30. Lee, Y. H. and More, R. M. Phys. Fluids 27, 1273 (1984).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed