Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T07:21:10.332Z Has data issue: false hasContentIssue false

35 - Diatoms and nanotechnology: early history and imagined future as seen through patents

from Part V - Other applications

Published online by Cambridge University Press:  05 June 2012

Richard Gordon
Affiliation:
University of Manitoba
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

History of diatom nanotechnology

As to form, the Diatoms present an infinite variety of size and outline. Mathematical curves of the most exquisite perfection, combinations which the designer would grasp with eagerness on the planning of his models, surfaces adorned with the most unlimited profusion of style and ornamentation, are everywhere presented

(Bailey, 1867).

The origin of individual organization is one of those stubborn problems to which each generation of biologists has addressed itself anew

(Hall, 1969).

Diatom nanotechnology started in 1863, when Max Schultze (Figure 35.1) noted that structures manufactured from silica vapor precipitating “in the form of minute spherules or lenticular particles” resembled diatoms (Schultze, 1863a, b) (Figure 35.2). He further showed “that neither in the artificial siliceous pellicles nor in the diatom valves are the peculiar forms due to a crystalline structure,” i.e. both consisted of amorphous silica. Schultze's controlled assembly at microscopic levels pre-dated the “father” of nanotechnology (Feynman, 1960), by almost 100 years. Schultze also did pioneering work on diatom motility, including discovery of the raphe (Schultze, 1858a, b, 1865; Goodale, 1885), but like most other diatomists until recently (Gordon et al., 2009), made his living in other fields, such as cytology, anatomy, histology, microscopy and vision, and is noted for clarifying the cell theory (Nordenskiöld, 1928; Hall, 1969; Werner et al., 1987; Nyhart, 1995; Brewer, 2006).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 590 - 608
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczel, A. D. (2002). Entanglement: The Greatest Mystery in Physics, Vancouver: Raincoast Books.Google Scholar
Allison, D. P., Dufrêne, Y. F., Doktycz, M. J., & Hildebrand, M. (2008). Biomineralization at the nanoscale: learning from diatoms. Methods in Cell Biology, 90, 61–86.CrossRefGoogle ScholarPubMed
Antonelli, P. L. (1985). Mathematical Essays on Growth and the Emergence of Form, Edmonton: University of Alberta Press.Google Scholar
Axtell, E. A., III, Sakoske, G. E., Swiler, D. R., et al. (2006). Structured self-cleaning surfaces and method of forming same. United States Patent Application Publication US 2006/0246277 A1.
Bach, K. & Burkhardt, B. (1984). Diatomeen I, Schalen in Natur und Technik/Diatoms I, Shells in Nature and Technics, Stuttgart: Cramer Verlag.Google Scholar
Bailey, L. W. (1867). Desmids and diatoms. The American Naturalist, 1, 505–517.CrossRefGoogle Scholar
Ball, P. (2009a). Branches: Nature's Patterns: a Tapestry in Three Parts, Oxford: Oxford University Press.Google Scholar
Ball, P. (2009b). Flow: Nature's Patterns: a Tapestry in Three Parts, Oxford: Oxford University Press.Google Scholar
Ball, P. (2009c). Shapes: Nature's Patterns: a Tapestry in Three Parts, Oxford: Oxford University Press.Google Scholar
Bao, Z., Weatherspoon, M. R., Shian, S., et al. (2007). Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 446, 172–5.CrossRefGoogle ScholarPubMed
Batterman, R. W. (2001). The Devil in the Details – Asymptotic Reasoning in Explanation, Reduction, and Emergence, Oxford: Oxford University Press.CrossRefGoogle Scholar
Bäuerlein, E. (2000). Biomineralization of Nano- and Micro-Structures, Weinheim: Wiley-VCH.Google Scholar
Beams, H. W. & Kessel, R. G. (1987). Development of centrifuges and their use in the study of living cells. International Review of Cytolology, 100, 15–48.CrossRefGoogle Scholar
Bedau, M. A. & Humphreys, P. (eds.) (2008). Emergence: Contemporary Readings in Philosophy and Science, Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Bejan, A. (2000). Shape and Structure, from Engineering to Nature, Cambridge: Cambridge University Press.Google Scholar
Ben-Jacob, E. (2008). Social behavior of bacteria: from physics to complex organization. European Physical Journal B, 65, 315–22.CrossRefGoogle Scholar
Bess, M. (1993). Realism, Utopia, and the Mushroom Cloud: Four Activist Intellectuals and Their Strategies for Peace, 1945–1989 – Louise Weiss (France) Leo Szilard (USA) E.P. Thompson (England) and Danilo Dolci (Italy), Chicago, IL: University of Chicago Press.Google Scholar
Bismuto, A., Setaro, A., Maddalena, P., De Stefano, L., & Stefano, M. (2008). Marine diatoms as optical chemical sensors: a time-resolved study. Sensors and Actuators B – Chemical, 130, 396–9.CrossRefGoogle Scholar
Blossfeldt, K. (1929). Urformen der Kunst, Photographische Pflanzenbilder, Berlin: Verlag Ernst Wasmuth AG.Google Scholar
Borowitzka, M. A. & Volcani, B. E. (1978). The polymorphic diatom Phaeodactylum tricornatum: ultrastructure of its morphotypes. Journal of Phycology, 14, 10–21.CrossRefGoogle Scholar
Bourke, P. (2006). Constrained diffusion-limited aggregation in 3 dimensions. Computers & Graphics-UK, 30, 646–9.CrossRefGoogle Scholar
Bowler, C., Allen, A. E., Badger, J. H., et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456, 239–44.CrossRefGoogle ScholarPubMed
Bregar, G. W. (1955). Diatomaceous earth product and method for its manufacture. United States Patent 2,701,240.
Brener, E., Levine, H., & Tu, Y. H. (1991). Mean-field theory for diffusion-limited aggregation in low dimensions. Physical Review Letters, 66, 1978–1981.CrossRefGoogle ScholarPubMed
Brewer, D. B. (2006). Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. British Journal of Haematology, 133, 251–8.CrossRefGoogle Scholar
Brodie, I. & Murray, J. J. (1992). The Physics of Micro/Nanofabrication, New York, NY: Plenum Publishing.Google Scholar
Brott, L. L., Naik, R. R., Pikas, D. J., et al. (2001). Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature, 413, 291–3.CrossRefGoogle ScholarPubMed
Brott, L. L., Naik, R. R., Stone, M. O., & Carter, D. C. (2007). Method and apparatus for use of thermally switching proteins in sensing and detecting devices. United States Patent Application US 2007/0037133 A1.
Brouhard, G. J., Schek, H. T., III, & Hunt, A. J. (2003). Advanced optical tweezers for the study of cellular and molecular biomechanics. IEEE Transactions on Biomedical Engineering, 50, 121–5.CrossRefGoogle Scholar
Brunner, E., Richthammer, P., Ehrlich, H., et al., (2009). Chitin-based organic networks: an integral part of cell wall biosilica in the diatom. Thalassiosira pseudonana. Angewandte Chemie-International Edition, 48, 9724–7.CrossRefGoogle ScholarPubMed
Bryan, B. J., Gaalema, S., & Murphy, R. B. (2003). Apparatus and method for detecting and identifying infectious agents. United States Patent 6,649,356.
Budrene, E. O. & Berg, H. C. (1991). Complex patterns formed by motile cells of Escherichia coli. Nature, 349, 630–3.CrossRefGoogle ScholarPubMed
Cai, Y., Dickerson, M. B., Haluska, , et al. (2007). Manganese-doped zinc orthosilicate-bearing phosphor microparticles with controlled three-dimensional shapes derived from diatom frustules. Journal of the American Ceramic Society, 90, 1304–8.CrossRefGoogle Scholar
Clough, T. J. (2001). Battery element containing efficiency improving additives. United States Patent Application US 2001/0012585 A1.
Clough, T. J. (2005). Metal oxide coated polymer substrates. United States Patent 6,919,035 B1.
Clough, T. J. (2006). Metal non-oxide coated substrates. United States Patent 7,041,370.
Cohen, I., Golding, I., Ron, I. G., & Ben-Jacob, E. (2001). Biofluiddynamics of lubricating bacteria. Mathematical Methods in the Applied Sciences, 24, 1429–68.CrossRefGoogle Scholar
Cox, E. J. (2006). Raphe loss and spine formation in Diadesmis gallica (Bacillariophyta) – an intriguing example of phenotypic polymorphism in a diatom. Nova Hedwigia, Beiheft, 130, 163–75.Google Scholar
Crawford, S., Chiovitti, T., Pickett-Heaps, J., & Wetherbee, R. (2009). Micromorphogenesis during diatom wall formation produces siliceous nanostructures with different properties. Journal of Phycology, 45, 1353–62.CrossRefGoogle ScholarPubMed
Crommelinck, M., Feltz, B., & Goujon, P. (eds.) (2006). Self-Organization and Emergence in Life Sciences, Dordrecht: Springer.Google Scholar
Crutchfield, J. P. (1994). Is anything ever new? Considering emergence. In Complexity: Metaphors, Models, and Reality, ed. Cowan, G., Pines, D., & Melzner, D., Reading, MA: Addison-Wesley.Google Scholar
Davies, P. C. W. (2004a). Emergent biological principles and the computational properties of the universe. Complexity, 10, 11–15.CrossRefGoogle Scholar
Davies, P. C. W. (2004b). Emergent complexity, teleology, and the arrow of time. In Debating Design: From Darwin to DNA, W. A. Dembski & M. Ruse, Cambridge: Cambridge University Press, pp. 191–209.CrossRefGoogle Scholar
Stefano, L., Maddalena, P., Moretti, L., et al. (2009). Nano-biosilica from marine diatoms: a brand new material for photonic applications. Superlattices and Microstructures, 46, 84–9.CrossRefGoogle Scholar
Vries, A. H., Krenn, B. E., Driel, R., & Kanger, J. S. (2005). Micro magnetic tweezers for nanomanipulation inside live cells. Biophysics Journal, 88, 2137–44.CrossRefGoogle ScholarPubMed
Deravi, L. F., Sumerel, J. L., Sewell, S. L., & Wright, D. W. (2008). Piezoelectric inkjet printing of biomimetic inks for reactive surfaces. Small, 4, 2127–30.CrossRefGoogle ScholarPubMed
Dickerson, M. B., Sandhage, K. H., & Naik, R. R. (2008). Protein- and peptide-directed syntheses of inorganic materials. Chemical Reviews, 108, 4935–78.CrossRefGoogle ScholarPubMed
Dickerson, M. B., Sandhage, K. H., Nalik, R., & Stone, M. O. (2007). Methods for fabricating micro-to-nanoscale devices via biologically-induced solid formation on biologically-derived templates, and micro-to-nanoscale structures and micro-to-nanoscale devices made thereby. United States Patent Application Publication US 2007/0112548 A1.
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E., & Kessler, J. O. (2004). Self-concentration and large-scale coherence in bacterial dynamics. Physical Review Letters, 93 (9), 098103.CrossRefGoogle ScholarPubMed
Drack, M., Ector, L., Gebeshuber, I. C., & Gordon, R. (2011). A review of the proposed mechanisms for diatom gliding motility: early history to nanofluidics. In The Diatom World, ed. Seckbach, J. & Kociolek, J. P., Dordrecht: Springer.Google Scholar
Drexler, K. E. (1992). Nanosystems: Molecular Machinery, Manufacturing, and Computation, New York: John Wiley & Sons.Google Scholar
Drexler, K. E. & Peterson, C. (1991). Unbounding the Future: the Nanotechnology Revolution, New York, NY: Morrow.Google Scholar
Drum, R. W. & Gordon, R. (2003). Star Trek replicators and diatom nanotechnology. TibTech (Trends in Biotechnology), 21, 325–8.CrossRefGoogle ScholarPubMed
Dupas, C., Houdy, P., & Lahmani, M. (2007). Nanoscience: Nanotechnologies and Nanophysics, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Edwards, A. M. (1875). Different diatoms on the same stipes. Journal of Cell Science, 15 (new series), 63–64.Google Scholar
Ehrlich, H. (2010). Chitin and collagen as universal and alternative templates in biomineralization. International Geology Review, 52, 661–99.
El Rassy, H., Belamie, E., Livage, J., & Coradin, T. (2005). Onion phases as biomimetic confined media for silica nanoparticle growth. Langmuir, 21, 8584–7.CrossRefGoogle ScholarPubMed
Estes, A. & Dute, R. R. (1994). Valve abnormalities in diatom clones maintained in long-term culture. Diatom Resarch, 9, 249–58.CrossRefGoogle Scholar
Feynman, R. P. (1960). There's plenty of room at the bottom: an invitation to enter a new field of physics. Engineering and Science, February. See http://www.zyvex.com/nanotech/feynman.html.Google Scholar
Flake, G. W. (1998). The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation, Cambridge, MA: MIT Press.Google Scholar
Foged, N. (1986). Diatoms in Gambia; diatoms in the Volo Bay, Greece. Bibliotheca Diatomologica, 12, 1–152.Google Scholar
Forbes, N. (2004). Imitation of Life: How Biology is Inspiring Computing, Cambridge, MA: MIT Press.Google Scholar
Freitas, R. A. Jr. (1999). Nanomedicine, Georgetown, TX: Landes Bioscience.Google Scholar
Fryxell, G. A. & Hasle, G. R. (1977). The genus Thalassiosira: some species with a modified ring of central strutted processes. Nova Hedwigia, 54, 67–98.Google Scholar
Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., & Sumper, M. (2004). Diatoms as living photonic crystals. Applied Physics B – Lasers and Optics, 78, 257–60.CrossRefGoogle Scholar
Gaul, U., Geissler, U., Henderson, M., Mahoney, R., & Reimer, C. W. (1993). Bibliography on the fine-structure of diatom frustules (Bacillariophyceae). Proceedings of the Academy of Natural Sciences of Philadelphia, 144, 69–238.Google Scholar
Gautier, C., Abdoul-Aribi, N., Roux, C., et al. (2008). Biomimetic dual templating of silica by polysaccharide/protein assemblies. Colloids and Surfaces B-Biointerfaces, 65, 140–5.CrossRefGoogle ScholarPubMed
Gazit, E. (2007). Plenty of Room for Biology at the Bottom: an Introduction to Bionanotechnology, Singapore: World Scientific.CrossRefGoogle Scholar
Gebeshuber, I. C., Drack, M., & Scherge, M. (2008). Tribology in biology. Tribology – Materials, Surfaces & Interfaces, 2, 200–12.Google Scholar
Gebeshuber, I. C., Gruber, P., & Drack, M. (2009a). A gaze into the crystal ball – biomimetics in the year 2059. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223, 2899–918.Google Scholar
Gebeshuber, I. C., Kindt, J. H., Thompson, J. B., et al. (2003). Atomic force microscopy study of living diatoms in ambient conditions. Journal of Microscroscopy, 212, 292–9.CrossRefGoogle ScholarPubMed
Gebeshuber, I. C., Stachelberger, H., & Drack, M. (2005). Diatom bionanotribology – biological surfaces in relative motion: their design, friction, wear and lubrication. Journal of Nanoscience and Nanotechnology, 5, 79–87.CrossRefGoogle ScholarPubMed
Gebeshuber, I. C., Stachelberger, H., Ganji, B. A., et al. (2009b). Exploring the innovational potential of biomimetics for novel 3D MEMS. Journal of Advanced Materials Research, 74, 265–8.CrossRefGoogle Scholar
Gebeshuber, I. C., Thompson, J. B., Del Amo, Y., Stachelberger, H., & Kindt, J. H. (2002). In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Materials Science and Technology, 18, 763–6.CrossRefGoogle Scholar
Gebeshuber, L. C. (2007). Biotribology inspires new technologies. Nano Today, 2, 30–37.CrossRefGoogle Scholar
Goldberg, A. J., Mather, P. T., & Wood, T. K. (2007). Dental materials, methods of making and using the same, and articles formed thereform. United States Patent Application Publication US 2007/0238808 A1.
Golovin, A. A. & Nepomnyashchy, A. A. (2006). Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems, Dordrecht: Springer.Google Scholar
Goodale, G. L. (1885). Physiological Botany. I. Outlines of the Histology of Phaenogamous Plants. II. Vegetable Physiology, New York, NY: Ivison, Blakeman, Taylor, and Co.Google Scholar
Goodsell, D. S. (2004). Bionanotechnology, Lessons from Nature, Hoboken, NJ: Wiley-Liss.CrossRefGoogle Scholar
Goold, N. R., Somfai, E., & Ball, R. C. (2005). Anisotropic diffusion limited aggregation in three dimensions: universality and nonuniversality. Physical Review E, 72, 031403 (10 pages).CrossRefGoogle ScholarPubMed
Gordon, R. (1996). Computer controlled evolution of diatoms: design for a compustat. Nova Hedwigia, 112, 213–16.Google Scholar
Gordon, R. (1999). The Hierarchical Genome and Differentiation Waves: Novel Unification of Development, Genetics and Evolution, Singapore & London: World Scientific & Imperial College Press.CrossRefGoogle Scholar
Gordon, R. (2000). The emergence of emergence: a critique of “Design, observation, surprise!”. Rivista di Biologia/Biology Forum, 93, 349–56.Google Scholar
Gordon, R. & Aguda, B. D. (1988). Diatom morphogenesis: natural fractal fabrication of a complex microstructure. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Part 1/4: Cardiology and Imaging, 4–7 Nov. 1988, New Orleans, LA, USA, ed. Harris, G. & Walker, C., New York, NY: Institute of Electrical and Electronics Engineers, pp. 273–4.CrossRefGoogle Scholar
Gordon, R. & Brodland, G. W. (1990). On square holes in pennate diatoms. Diatom Resarch, 5, 409–13.CrossRefGoogle Scholar
Gordon, R. & Chen, Y. (1987). From statistical mechanics to molecular biology: a Festschrift for Terrell L. Hill. Cell Biophysics, 11, i–iii.CrossRefGoogle ScholarPubMed
Gordon, R. & Drum, R. W. (1994). The chemical basis for diatom morphogenesis. International Review of Cytolology, 150, 243–72, 421–2.CrossRefGoogle Scholar
Gordon, R., Drum, R. W., & Thurlbeck, A. (1980). The chemical basis for diatom morphogenesis: instabilities in diffusion-limited amorphous precipitation generate space filling branching patterns. Abstracts, The 39th Annual Symposium of The Society for Developmental Biology, Levels of Genetic Control in Development. Storrs, University of Connecticut, p. 5.
Gordon, R., Hoover, R. B., Tuszynski, J. A., et al. (2007). Diatoms in space: testing prospects for reliable diatom nanotechnology in microgravity. Proceedings of SPIE, 6694, V1–V15, DOI:10.1117/12.737051.Google Scholar
Gordon, R., Kling, H. J., & Sterrenburg, F. A. S. (2005a). A guide to the diatom literature for diatom nanotechnologists. Journal of Nanoscience and Nanotechnology, 5, 175–8.CrossRefGoogle ScholarPubMed
Gordon, R., Losic, D., Tiffany, M. A., Nagy, S. S., & Sterrenburg, F. A. S. (2009). The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends in Biotechnology, 27, 116–27.CrossRefGoogle ScholarPubMed
Gordon, R. & Melvin, C. A. (2003). Reverse engineering the embryo: a graduate course in developmental biology for engineering students at the University of Manitoba, Canada. International Journal of Developmental Biology, 47, 183–7.Google ScholarPubMed
Gordon, R. & Parkinson, J. (2005). Potential roles for diatomists in nanotechnology. Journal of Nanoscience and Nanotechnology, 5, 35–40.CrossRefGoogle ScholarPubMed
Gordon, R., Sterrenburg, F. A. S., & Sandhage, K. (2005b). A special issue on diatom nanotechnology. Journal of Nanoscience and Nanotechnology, 5, 1–4.CrossRefGoogle Scholar
Gordon, R., Witkowski, A., Gebeshuber, I. C., & Allen, C. S. (2010). The diatoms of Antarctica and their potential roles in nanotechnology. In Antarctica, ed. Masó, M., Masó, M., & Chillida, A., Barcelona: Editions ACTAR, in press.Google Scholar
Grollier, J. F., Rosenbaum, G., & Cotteret, J. (1991). Transparent cosmetic composition that reflects infrared radiation and its use for protecting the human epidermis against infrared radiation. United States Patent 5,000,937.
Guo, P. X. (2005). A special issue on bionanotechnology – preface. Journal of Nanoscience and Nanotechnology, 5, i–iii.CrossRefGoogle Scholar
Gutu, T., Gale, D. K., Jeffryes, C., et al. (2009). Electron microscopy and optical characterization of cadmium sulphide nanocrystals deposited on the patterned surface of diatom biosilica. Journal of Nanomaterials 2009, 860536 (7 pages).CrossRefGoogle Scholar
Häder, D.-P., Hemmersbach, R., & Lebert, M. (2005). Gravity and the Behavior of Unicellular Organisms, New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Haeckel, E. (1904). Kunstformen der Natur (Art Forms of Nature), Leipzig: Verlag des Bibliographischen Instituts (in German).Google Scholar
Hall, B. K., Pearson, R. D., & Müller, G. (2004). Environment, Development and Evolution: Toward a Synthesis, Cambridge, MA: MIT Press.Google Scholar
Hall, T. S. (1969). Ideas of Life and Matter. Studies in the History of General Physiology, 600 B.C. to A.D. 1900, Volume 2: From the Enlightenment to the End of the Nineteenth Century, Chicago, IL: University of Chicago Press.Google Scholar
Hamm, C. E. (2005). The evolution of advanced mechanical defenses and potential technological applications of diatom shells. Journal of Nanoscience and Nanotechnology, 5, 108–19.CrossRefGoogle ScholarPubMed
Hamm, C. E., Merkel, R., Springer, O., et al. (2003). Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421, 841–3.CrossRefGoogle ScholarPubMed
Hamm-Dubischar, C. (2007). Method of determining structural prototype data for a technical lightweight structure. United States Patent Application US 2007/0112522 A1.
Hanczyc, M. M. (2008). The early history of protocells: the search for the recipe of life. In Protocells: Bridging Nonliving and Living Matter, ed. Rasmussen, S., Bedau, M. A., Chen, L., et al., Cambridge, MA: MIT Press, 3–17.Google Scholar
Harbour, P. J. & Hartley, P. G. (2007). Metal oxide/hydroxide materials. United States Patent Application US 2007/0281854 A1.
Hazelaar, S., Strate, H. J., Gieskes, W. W. C., & Vrieling, E. G. (2005). Monitoring rapid valve formation in the pennate diatom Navicula salinarum (Bacillariophyceae). Journal of Phycology, 41, 354–8.CrossRefGoogle Scholar
Hecky, R. E., Mopper, K., Kilham, P., & Degens, E. T. (1973). The amino acids and sugar composition of diatom cell walls. Marine Biology, 19, 323–31.CrossRefGoogle Scholar
Hildebrand, M. (2008). Diatoms, biomineralization processes, and genomics. Chemical Reviews, 108, 4855–74.CrossRefGoogle ScholarPubMed
Hildebrand, M., Kim, S., Shi, D., Scott, K., & Subramaniam, S. (2009). 3D imaging of diatoms with ion-abrasion scanning electron microscopy. Journal of Structural Biology, 166, 316–28.CrossRefGoogle ScholarPubMed
His, W. (1874). Unsere Körperform und das Problem ihrer Entstehung, Briefe an einen befreundeten Naturforscher (Our Body Form and the Problem of its Emergence, Letters to a Friendly Natural Scientist), Leipzig: F.C.W. Vogel (in German).Google Scholar
Hobbs, W. O., Wolfe, A. P., Inskeep, W. P., Amskold, L., & Konhauser, K. O. (2009). Epipelic diatoms from an extreme acid environment: Beowulf Spring, Yellowstone National Park, USA. Nova Hedwigia, 71–83.Google Scholar
Holland, J. H. (1998). Emergence: From Chaos to Order, Reading, MA: Perseus Books.Google Scholar
Iler, R. K. (1979). The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, New York, NY: John Wiley & Sons.Google Scholar
Indech, R. (2005). Uranium isotope separation through substitution reactions. United States Patent Application 2005/0287059 A1.
Jablonka, E. & Lamb, M. J. (2005). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life, Cambridge, MA: MIT Press.Google Scholar
Jayas, D. S. (2002). The role of biology in shaping the engineering profession. In Canadian Conference on Electrical & Computer Engineering, ed. Kinser, W., Sebak, W., & Ferens, K., Winnipeg: IEEE, 5.6–5.7. See http://www.ieee.ca/ccece02/program/pdocs/c02prog1.pdf.Google Scholar
Jeffryes, C., Gutu, T., Jiao, J., & Rorrer, G. L. (2008). Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano, 2, 2103–12.CrossRefGoogle ScholarPubMed
Jensen, H. J. (1998). Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Johnson, S. (2001). Emergence, The Connected Lives of Ants, Brains, Cities, and Software, New York, NY: Scribner.Google Scholar
Jorgensen, B. B. & Des Marais, D. J. (1990). The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnology and Oceanography, 35, 1343–55.CrossRefGoogle Scholar
Jotterand, F. (ed.) (2008). Emerging Conceptual, Ethical and Policy Issues in Bionanotechnology, Berlin: Springer.Google Scholar
Jung, E. K. Y., Langer, R., & Leuthardt, E. C. (2007). Diatom device. U.S. Patent Application Publication number: US 2007/0184088 A1.
Kaandorp, J. A. (1994). Fractal Modelling: Growth and Form in Biology, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Karthick, B. (2009). Genome sequencing of cells that live inside glass cages reveals their past history. Current Science, 96, 334–7.Google Scholar
Kassner, K. (1996). Pattern Formation in Diffusion-limited Crystal Growth: Beyond the Single Dendrite, Singapore: World Scientific.CrossRefGoogle Scholar
Keller, E. F. (1994). Rethinking the meaning of genetic determinism. Tanner Lectures on Human Values, 15, 113–39.Google Scholar
Kociolek, J. P. & Spaulding, S. A. (2002). Morphological variation, species concepts, and classification of an unusual fossil centric diatom (Bacillariophyta) from western North America. Journal of Phycology, 38, 821–33.CrossRefGoogle Scholar
Kociolek, J. P. & Sullivan, M. J. (1995). A Century of Diatom Research in North America. A Tribute to the Distinguished Careers of Charles W. Reimer & Ruth Patrick, Champaign, IL: Koeltz Scientific Books USA.Google Scholar
Krummenacker, M. & Lewis, J. (1995). Prospects in Nanotechnology: Toward Molecular Manufacturing, New York: Wiley.Google Scholar
Krzhizhanovskaya, V. V. & Sun, S. (2007). Simulation of multiphysics multiscale systems: introduction to the ICCS'2007 workshop. In ICCS 2007, Part I, LNCS 4487, ed. Shi, Y., Albada, G. D., Dongarra, J., Sloot, P. M.A., Berlin: Springer-Verlag.Google Scholar
Kusumoto, M., Nishiya, Y., Kishimoto, M., & Umebayashi, N. (2006). Device for separation of biological components, and method of separation of biological components using the device. United States Patent Application US 2006/0186055 A1.
Lam, R. C., Chen, Y.-F., & Maruo, K. (2007). Friction material with nanoparticles of friction modifying layer. United States Patent 7,294,388 B2.
Léger, C., Servant, L., Bruneel, J. L., & Argoul, F. (1999). Growth patterns in electrodeposition, Physica A, 263, 305–14.CrossRefGoogle Scholar
Lenoci, L. & Camp, P. J. (2008). Diatom structures templated by phase-separated fluids. Langmuir, 24, 217–23.CrossRefGoogle ScholarPubMed
Lettieri, S., Setaro, A., Stefano, L., Stefano, M., & Maddalena, P. (2008). The gas-detection properties of light-emitting diatoms. Advanced Functional Materials, 18, 1257–64.CrossRefGoogle Scholar
Lindberg, D. C. (2007). The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, Prehistory to A.D. 1450, Chicago, IL: University of Chicago Press.Google Scholar
Liu, J.-Q. & Shimohara, K. (2006). Biomolecular Computation for Bionanotechnology, Norwood, MA: Artech House Publishers.Google Scholar
Locke, M. (1968). The Emergence of Order in Developing Systems, New York, NY: Academic Press.Google Scholar
Lu, G. Q. & Zhao, X. S. (2004). Nanoporous Materials: Science and Engineering, Singapore: World Scientific.CrossRefGoogle Scholar
Luckarift, H. R., Spain, J. C., Naik, R. R., & Stone, M. O. (2004). Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 22, 211–3.CrossRefGoogle Scholar
Mandelbrot, B. B., Kol, B., & Aharony, A. (2002). Angular gaps in radial diffusion-limited aggregation: two fractal dimensions and nontransient deviations from linear self-similarity. Physical Review Letters, 88, 055501.CrossRefGoogle ScholarPubMed
Mansur, J. C., Silva, A. G., Carvalho, A. T. G., & Martins, M. L. (2005). Electrocrystallization under magnetic fields: experiment and model. Physica A – Statistical Mechanics and Its Applications, 350, 393–406.CrossRefGoogle Scholar
Masayoshi, E., Keizo, I., Noriaki, O., et al. (2006). Future Medical Engineering Based on Bionanotechnology: Proceedings of the Final Symposium of the Tohoku University 21st Century Center of Excellence Program, London: Imperial College Press.Google Scholar
Meakin, P. (1998). Fractals, Scaling and Growth Far From Equilibrium, Cambridge: Cambridge University Press.Google Scholar
Mendoza, C. I. & Ramìrez-Santiago, G. (2005). Annealing two-dimensional diffusion-limited aggregates. European Physical Journal B, 48, 75–80.CrossRefGoogle Scholar
Merks, R. M. H., Hoekstra, A. G., Kaandorp, J. A., & Sloot, P. M. A. (2003). Diffusion-limited aggregation in laminar flows. International Journal of Modern Physics C, 14, 1171–82.CrossRefGoogle Scholar
Mills, F. W. & Deby, J. (1893). An Introduction to the Study of the Diatomacea, London: Iliffe & Son.Google Scholar
Milsum, J. H. (ed.) (1968). Positive Feedback, A General Systems Approach to Positive/Negative Feedback and Mutual Causality, Oxford: Pergamon Press.Google Scholar
Mizuno, M. (1982). Change in striation density and systematics of Cocconeis scutellum var. ornata (Bacillariophyceae). Botanical Magazine Tokyo, 95, 349–57.CrossRefGoogle Scholar
Molino, P. J. & Wetherbee, R. (2008). The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling, 24, 365–379.CrossRefGoogle ScholarPubMed
Møller, A. P. & Swaddle, J. P. (1997). Asymmetry, Developmental Stability, and Evolution, Oxford: Oxford University Press.Google Scholar
Morehouse, G. W. (1876). Silica films and the structure of diatoms. Monthly Microscopical Journal, 15, 38–40.Google Scholar
Morowitz, H. J. (2002). The Emergence of Everything, How the World Became Complex, Oxford: Oxford University Press.Google Scholar
Morse, D. E., Stucky, G. D., & Gaul, J. H. (2003). Method and compositions for binding histidine-containing proteins to substrates. United States Patent Application US 2003/0003223 A1.
Mulhall, D. (2002). Our Molecular Future: How Nanotechnology, Robotics, Genetics, and Artificial Intelligence will Transform our World, Amherst, NY: Prometheus Books.Google Scholar
Müller, W. E. G., Schröder, H. C., Lorenz, B., & Krasko, A. (2007). Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. United States Patent 7,169,589 B2.
Mullins, W. W. & Sekerka, R. F. (1963). Morphological stability of a particle growing by diffusion or heat flow. Journal of Applied Physics, 34, 323–9.CrossRefGoogle Scholar
Naik, R. R., Stone, M. O., Spain, J. C., & Luckarift, H. R. (2005). Entrapment of biomolecules and inorganic nanoparticles by biosilification. United States Patent Application US 2005/0095690 A1.
Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., & Stone, M. O. (2002). Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 1, 169–72.CrossRefGoogle ScholarPubMed
Neethirajan, S., Gordon, R., & Wang, L. (2009). Potential of silica bodies (phytoliths) for nanotechnology. Trends in Biotechnology, 27, 461–7.CrossRefGoogle ScholarPubMed
Nicolis, G. P. I. (1977). Self-Organization in Nonequilibrium Systems, From Dissipative Structures to Order through Fluctuations, New York, NY: Wiley.Google Scholar
Nordenskiöld, E. (1928). The History of Biology, a Survey, New York, NY: Tudor Publishing Co.Google Scholar
Nyhart, L. K. (1995). Biology Takes Form: Animal Morphology and the German Universities, 1800–1900, Chicago, IL: University of Chicago Press.Google Scholar
Ohgiwari, M., Matsushita, M., & Matsuyama, T. (1992). Morphological changes in growth phenomena of bacterial colony patterns. Journal of the Physical Society of Japan, 61, 816–22.CrossRefGoogle Scholar
Oliver, S., Kuperman, A., Coombs, N., Lough, A., & Ozin, G. A. (1995). Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature, 378, 47–50.CrossRefGoogle Scholar
Ozin, G. A. A. (2005). Nanochemistry: a Chemical Approach to Nanomaterials, Cambridge: Royal Society of Chemistry Publishing.Google Scholar
Palmer, A. R. & Strobeck, C. (1986). Fluctuating asymmetry: measurement, analysis, patterns. Annual Reviews of Ecology and Systematics., 17, 391–421.CrossRefGoogle Scholar
Papazoglou, E. S. & Parthasarathy, A. (2007). BioNanotechnology, San Rafael, CA: Morgan and Claypool Publishers.Google Scholar
Parkinson, J., Brechet, Y., & Gordon, R. (1999). Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochimica et Biophysica Acta – Molecular Cell Research, 1452, 89–102.CrossRefGoogle ScholarPubMed
Parkinson, J. & Gordon, R. (1999). Beyond micromachining: the potential of diatoms. Trends in Biotechnology (Tibtech), 17, 190–6.CrossRefGoogle ScholarPubMed
Patrick, R. & Reimer, C. W. (1966). The Diatoms of the United States, Exclusive of Alaska and Hawaii, Volume 1, Philadelphia, PA: Academy of Natural Sciences.Google Scholar
Pickett-Heaps, J. D., Tippit, D. H., & Andreozzi, J. A. (1979a). Cell division in the pennate diatom Pinnularia. III – the valve and associated cytoplasmic organelles. Biologie Cellulaire, 35, 195–8.Google Scholar
Pickett-Heaps, J. D., Tippit, D. H., & Andreozzi, J. A. (1979b). Cell division in the pennate diatom Pinnularia. IV – valve morphogenesis. Biologie Cellulaire, 35, 199–203.Google Scholar
Pinnavala, T. J., Kim, S.-S., & Zhang, W. (2006). Ultra-stable lamellar mesoporous silica compositions and process for the preparation thereof. United States Patent 7,132,165 B2.
Portet, S., Tuszynski, J. A., Dixon, J. M., & Sataric, M. V. (2003). Models of spatial and orientational self-organization of microtubules under the influence of gravitational fields. Physical Review E, 68, 021903.CrossRefGoogle ScholarPubMed
Potapova, M. (2008). Charles W. Reimer (1923–2008). See http://www.ansp.org/research/biodiv/diatoms/charles_reimer.php.
Ramachandra, T. V., Mahapatra, D. M., Karthick, B., & Gordon, R. (2009). Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Industrial & Engineering Chemistry Research, 48, 8769–88.CrossRefGoogle Scholar
Rayleigh, L. (1892). On the instability of a cylinder of viscous liquid under capillary force. Philosophical Magazine, 34, 145–54.Google Scholar
Redfern, P. (1853). Mode of isolating Naviculae and other test objects. Quarterly Journal of Microscopical Science, 1, 235–6.Google Scholar
Rehm, B. H. A. (2006). Microbial Bionanotechnology: Biological Self-Assembly Systems and Biopolymer-Based Nanostructures, Abingdon: Taylor & Francis.Google Scholar
Reimann, B. E. F. (1960). Bildung, Bau und Zusammenhang der Bacillariophyceenschalen (elektronenmikroskopische Untersuchungen). Nova Hedwigia, 2, 349–73.Google Scholar
Reisner, D. E. (ed.) (2008). Bionanotechnology: Global Prospects, Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Renugopalakrishnan, V. & Lewis, R. V. (eds.) (2006). Bionanotechnology: Proteins to Nanodevices, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Robinson, D. H. & Sullivan, C. W. (1987). How do diatoms make silicon biominerals. Trends in Biochemical Sciences, 12, 151–4.Google Scholar
Rosenhead, L. (ed.) (1963). Laminar Boundary Layers, New York, NY: Dover Publications.Google Scholar
Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The Diatoms, Biology & Morphology of the Genera, Cambridge: Cambridge University Press.Google Scholar
Saliterman, S. (2006). Fundamentals of BioMEMS and Medical Microdevices, Bellingham, Washington: SPIE Press.Google Scholar
Sander, L. M., Cheng, Z. M., & Richter, R. (1983). Diffusion-limited aggregation in three dimensions. Physical Review B, 28, 6394–6.CrossRefGoogle Scholar
Sandhage, K. H. (2007). Shaped microcomponent via reactive conversion of biologically-derived microtemplates. United States Patent 7,204,971 B2.
Sandhage, K. H., Allan, S. M., Dickerson, M. B., et al. (2005). Merging biological self-assembly with synthetic chemical tailoring: the potential for 3-D genetically engineered micro/nano-devices (3-D GEMS). International Journal of Applied Ceramic Technology, 2, 317–26.CrossRefGoogle Scholar
Sandhage, K. H. & Bao, Z. (2008). Methods of fabricating nanoscale-to-microscale structures. United States Patent Application US 2008/0038170 A1.
Sandhage, K. H., Dickerson, M. B., Huseman, P. M., et al. (2002). Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Advanced Materials, 14, 429–33.3.0.CO;2-C>CrossRefGoogle Scholar
Sargent, E. H. (2005). The Dance of Molecules: How Nanotechnology is Changing Our Lives, Toronto: Viking Canada.Google Scholar
Saxe, J. G. (1873). Blind Men and the Elephant. A Hindoo Fable. The Poems of John Godfrey Saxe, Boston, MA: James R. Osgood and Co.Google Scholar
Scherge, M. & Gorb, S. N. (2001). Biological Micro- and Nanotribology: Nature's Solutions, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. (2000). Boundary Layer Theory, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schultze, M. J. S. (1858a). Innere Bewegungserscheinungen bei Diatomeen der Nordsee as den Gattungen Coscinodiscus, Denticella, Rhizosolenia. Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin, 330–342 + Table XIII.
Schultze, M. J. S. (1858b). Phenomena of internal movements in Diatomaceae of the North Sea, belonging to the genera Coscinodiscus, Denticella, and Rhizosolenia. With a Plate. Quarterly Journal of Microscopical Science, 7, 13–21 + Plate II.CrossRefGoogle Scholar
Schultze, M. J. S. (1863a). Die Structur der Diatomeenschale, verglichen mit gewissen aus Fluorkiesel künstlich darstellbaren Kieselhäuten. Naturhistorischer Verein der Rheinlande und Westfalens Verhandlungen, 20, 1–42 + Table I.Google Scholar
Schultze, M. J. S. (1863b). On the structure of the valve in the Diatomacea, as compared with certain siliceous pellicles produced artificially by the decomposition in moist air of fluo-silicic acid gas (fluoride of silicium). Quarterly Journal of Microscopical Science, New Series, 3, 120–134 + Plate VIII.Google Scholar
Schultze, M. J. S. (1865). Die Bewegung der Diatomeen/The movement of diatoms. Schultze's Archiv für Mikroskopische Anatomie, 1, 376–402 + Table XXIII.CrossRefGoogle Scholar
Schwarzer, S., Havlin, S., Ossadnik, P., & Stanley, H. E. (1996). Number of branches in diffusion-limited aggregates: the skeleton. Physical Review E, 53, 1795–804.CrossRefGoogle ScholarPubMed
Seckbach, J. & Gordon, R. (eds.) (2008). Divine Action and Natural Selection: Science, Faith and Evolution, Singapore: World Scientific.CrossRefGoogle Scholar
Shapiro, J. A. & Dworkin, M. (eds.) (1997). Bacteria as Multicellular Organisms, New York, NY: Oxford University Press.Google Scholar
Slack, H. J. (1870). The patterns of artificial diatoms. Monthly Microscopical Journal, 4, 181–3.CrossRefGoogle Scholar
Slack, H. J. (1871). The silicious deposit in Pinnulariae. Monthly Microscopical Journal, 6, 71–4.CrossRefGoogle Scholar
Slack, H. J. (1874). On certain beaded silica films artificially formed. Monthly Microscopical Journal, 11, 237–41.CrossRefGoogle Scholar
Smith, C. S. (1981). A Search for Structure: Selected Essays on Science, Art, and History, Cambridge, MA: MIT Press.Google Scholar
Stanley, H. E. & Ostrosky, N. (1986). On Growth and Form – Fractal and Non-fractal Patterns in Physics, Boston, MA: Martinus Nijhoff Publishers.Google Scholar
Stanley, M. S. & Callow, J. A. (2007). Whole cell adhesion strength of morphotypes and isolates of Phaeodactylum tricornutum (Bacillariophyceae). European Journal of Phycology, 42, 191–7.CrossRefGoogle Scholar
Steinman, A. D. & Sheath, R. G. (1984). Morphological variability of Eunotia pectinalis (Bacillariophyceae) in a softwater Rhode Island stream and in culture. Journal of Phycology, 20, 266–76.CrossRefGoogle Scholar
Sterrenburg, F. A. S. (2005). Crystal palaces – diatoms for engineers. Journal of Nanoscience and Nanotechnology, 5, 100–7.CrossRefGoogle ScholarPubMed
Sterrenburg, F. A. S., Gordon, R., Tiffany, M. A., & Nagy, S. S. (2007). Diatoms: living in a constructal environment. In Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, Volume 11, ed. Seckback, J., Dordrecht: Springer, pp. 141–72.Google Scholar
Stoermer, E. F. (1967). Polymorphism in Mastogloia. Journal of Phycolology, 3, 73–7.CrossRefGoogle ScholarPubMed
Stucky, G. D., Chmelka, B. F., Zhao, D., et al. (2007). Block copolymer processing for mesostructured inorganic oxide materials. United States Patent US 7,176,245 B2.
Sugimoto, T. (1978a). General kinetics of Ostwald ripening of precipitates. Journal of Colloid and Interface Science, 63, 16–26.CrossRefGoogle Scholar
Sugimoto, T. (1978b). Kinetics of reaction controlled Ostwald ripening of precipitates in steady state. Journal of Colloid and Interface Science, 63, 369–77.CrossRefGoogle Scholar
Sumper, M. & Brunner, E. (2006). Learning from diatoms: nature's tools for the production of nanostructured silica. Advanced Functional Materials, 16, 17–26.CrossRefGoogle Scholar
Sumper, M. & Lehmann, G. (2006). Silica pattern formation in diatoms: species-specific polyamine biosynthesis. Chembiochem, 7, 1419–27.CrossRefGoogle ScholarPubMed
Swift, E. (1973). Marine diatom Ethmodiscus rex: its morphology and occurrence in plankton of Sargasso Sea. Journal of Phycology, 9, 456–60.Google Scholar
Tamerler, C. & Sarikaya, M. (2008). Molecular biomimetics: genetic synthesis, assembly, and formation of materials using peptides. Materials Research Society Bulletin, 33, 504–10.CrossRefGoogle Scholar
Tan, W., Wang, K., He, X., et al. (2004). Bionanotechnology based on silica nanoparticles. Medical Research Reviews, 24, 621–38.CrossRefGoogle ScholarPubMed
Tan, Z. J., Zou, X. W., Zhang, W. B., & Jin, Z. Z. (1999). Influence of particle size on diffusion-limited aggregation. Physical Review E, 60, 6202–5.CrossRefGoogle ScholarPubMed
Tartar, V. (1962). Morphogenesis in Stentor. Advances in Morphogenesis, 2, 1–26.CrossRefGoogle Scholar
Tesson, B. & Hildebrand, M. (2010). Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments. Journal of Structural Biology, 169, 62–74.CrossRefGoogle ScholarPubMed
Thalera, M. & Kaczmarska, I. (2009). Gyrosigma orbitum sp. nov. (Bacillariophyta) from a salt marsh in the Bay of Fundy, eastern Canada. Botanica Marina, 52, 60–8.Google Scholar
Theriot, E. (1988). An empirically based model of variation in rotational elements in centric diatoms with comments on ratios in phycology. Journal of Phycology, 24, 400–7.Google Scholar
Tiffany, M. A., Gebeshuber, I. C., & Gordon, R. (2010). Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp. Polish Botanical Journal, submitted.Google Scholar
Tiffany, M. A., Nagy, S. S., & Gordon, R. (2009). The buckling of diatom valves. In North American Diatom Symposium (NADS), September 23–27, 2009, Iowa Lakeside Laboratory near Milford, Iowa, ed. Edlund, M. B. & Spaulding, S. A., Milford, IA: Iowa Lakeside Laboratory, University of Iowa, pp. 37–8.Google Scholar
Tomczak, M. M., Slocik, J. M., Stone, M. O., & Naik, R. R. (2007). Bio-based approaches to inorganic material synthesis. Biochemical Society Transactions, 35, 512–5.CrossRefGoogle ScholarPubMed
Tropper, C. B. (1975). Morphological variation of Achnanthes hauckiana (Bacillariophyceae) in the field. Journal of Phycology, 11, 297–302.Google Scholar
Turner, J. S. (2007). The Tinkerer's Accomplice: How Design Emerges from Life Itself, Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Tuszynski, J. A. (ed.) (2006). The Emerging Physics of Consciousness, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Vijver, B. & Bogaerts, A. (2010). Proceedings of Diatom Taxonomy in the 21st Century: Symposium in Honour of H. Van Heurck. Systematics and Geography of Plants.Google Scholar
Vijver, B. & Lange-Bertalot, H. (2008). Cymbella amelieana sp. nov., a new large Cymbella species from Swedish rivers. Diatom Research, 23, 511–18.CrossRefGoogle Scholar
Vicsek, T. (1992). Fractal Growth Phenomena, Singapore: World Scientific.CrossRefGoogle Scholar
Villareal, T. A., Joseph, L., Brzezinski, M. A., et al. (1999). Biological and chemical characteristics of the giant diatom Ethmodiscus (Bacillariophyceae) in the central North Pacific Gyre. Journal of Phycology, 35, 896–902.CrossRefGoogle Scholar
Visnovsky, S. (2006). Optics in Magnetic Multilayers and Nanosctructures, Boca Raton, FL: CRC Press.Google Scholar
Dassow, P., Petersen, T. W., Chepurnov, V. A., & Armbrust, E. V. (2008). Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). Journal of Phycology, 44, 335–49.CrossRefGoogle Scholar
Weatherspoon, M. R., Haluska, M. S., Cai, Y., et al. (2006). Phosphor microparticles of controlled three-dimensional shape from phytoplankton. Journal of the Electrochemical Society, 153, H34–H37.CrossRefGoogle Scholar
Wee, K. M., Rogers, T. N., Altan, B. S., Hackney, S. A., & Hamm, C. (2005). Engineering and medical applications of diatoms. Journal of Nanoscience and Nanotechnology, 5, 88–91.CrossRefGoogle ScholarPubMed
Werner, J. S., Donnelly, S. K., & Kliegl, R. (1987). Aging and human macular pigment density: appended with translations from the work of Max Schultze and Ewald Hering. Vision Research, 27, 257–68.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (2002). Developmental Plasticity and Evolution, Oxford: Oxford University Press.Google Scholar
Witten, T. A. Jr. & Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic phenomenon. Physical Review Letters, 47, 1400–3.CrossRefGoogle Scholar
Woods, D. F. & Bryant, P. J. (1993). Apical junctions and cell signalling in epithelia. Journal of Cell Science, 171–81.CrossRefGoogle ScholarPubMed
Xu, M. J., Gratson, G. M., Duoss, E. B., Shepherd, R. F., & Lewis, J. A. (2006). Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter, 2, 205–9.CrossRefGoogle Scholar
Xu, X. J., Cai, P. G., Ye, Q. L., Xia, A. G., & Ye, G. X. (2005). Effects of long-range magnetic interactions on DLA aggregation. Physics Letters A, 338, 1–7.CrossRefGoogle Scholar
Xu, X. J., Wu, Y. Q., & Ye, G. X. (2008). Two-dimensional magnetic cluster growth with a power-law interaction. Applied Surface Science, 254, 3249–54.CrossRefGoogle Scholar
Yates, F. E., GarfinkeL, A., Walter, D. O., & Yates, G. B. (1988). Self-Organizing Systems: The Emergence of Order, New York, NY: Plenum Press.Google Scholar
Zhong, W. (2008). Timing cell-fate determination during asymmetric cell divisions. Current Opinion in Neurobiology, 18, 472–8.CrossRefGoogle ScholarPubMed
Zorba, S., Shapir, Y., & Gao, Y. L. (2006). Fractal-mound growth of pentacene thin films. Physical Review B, 74, 245410.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×