Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T09:43:13.730Z Has data issue: false hasContentIssue false

31 - Diatoms as markers of atmospheric transport

from Part V - Other applications

Published online by Cambridge University Press:  05 June 2012

Margaret A. Harper
Affiliation:
Victoria University of Wellington
Robert M. McKay
Affiliation:
Victoria University of Wellington
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

“The dustiest place on earth” is the Bodélé depression in Chad which contains an extensive diatomite formed by the paleolake MegaChad (Giles, 2005). It is the source of an estimated 61,000 cubic kilometres of diatoms transported by wind from the area during the past thousand years (Bristow et al., 2008). Satellite imaging of dust plumes reveals it to be the largest source of global airborne dust today (Goudie, 2008). Most natural eolian dust comes from drainage depressions in deserts (Middleton and Goudie, 2001). Many of these once held large water bodies such as MegaChad, West Africa; Owens Lake, North America; Lake Eyre, Australia; and the Aral Sea, Eurasia (Warren et al., 2007).

Scientists trap eolian material for various objectives: atmospheric scientists interested in particles and aerosols, aerobiologists in disease spores and allergens, biologists in dispersal, and forensic workers interested in airborne contaminants (diatoms: Geissler and Gerloff, 1966). Collection techniques involve either passive or active traps; the first exposes funnels or adhesive surfaces and the second pumps air through filters (Lacey and West, 2006). Diatom remains are rare in most traps, and, when present, are not always recognized.

Sometimes living diatoms are aerially dispersed. They rarely grow on exposed agar plates or culture media (Kristiansen, 1996; Broady, 1996); few airborne diatoms are intact (Elster et al., 2007); and motile diatoms normally avoid drying surfaces (Marshall and Chalmers, 1997).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 552 - 559
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrantes, F., Lopes, C., Mix, A., & Pisias, N. (2007). Diatoms in southeast Pacific surface sediments reflect environmental properties. Quaternary Science Reviews, 26, 155–69.CrossRefGoogle Scholar
Balsam, W., Arimoto, R., Ji, J., Shen, Z., & Chen, J. (2007). Aeolian dust in sediment: a re-examination of methods for identification and dispersal assessed by diffuse reflectance spectrophotometry. International Journal of Environment and Health, 1, 374–402.CrossRefGoogle Scholar
Barrett, P. J., Bleakley, N. L., Dickinson, W. W., Hannah, M. J., & Harper, M. A. (1997). Distrbution of siliceous microfossils on Mount Feather, Antarctica, and the age of the Sirius Group. In The Antarctic Region, Geological Evolution and Processes, Proceedings of the 7th Symposium on Antarctic Geological Sciences, Siena, Sept 10–15, 1995, ed. Ricci, C. A., Siena: Terra Antartica Publication, pp. 763–70.Google Scholar
Bristow, C. S., Drake, N., & Armitage, S. (2008). Deflation in the dustiest place on Earth: the Bodélé Depression, Chad. Geomorphology, 105, 50–8.CrossRefGoogle Scholar
Brittlebank, C., Barnard, F. G. A., Strickland, C., & Shepherd, J. (1897). Red rain: diatoms in Australian dust fallen Dec. 27, 1896. The Victorian Naturalist, 13, 125–6.Google Scholar
Broady, P. A. (1996). Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation, 5, 1307–35.CrossRefGoogle Scholar
Broady, P. A. & Weinstein, R. (1998). Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarctic Science, 10, 376–85.CrossRefGoogle Scholar
Bullard, J. E. & White, K. (2005). Dust production and release of iron oxides resulting from the aeolian abrasion of natural dune sands. Earth Surface Processes and Landforms, 30, 95–106.CrossRefGoogle Scholar
Burckle, L. H., Gayley, R. I., Ram, M., & Petit, J.-R. (1988). Diatoms in Antarctic ice cores: some implications for the glacial history of Antarctica. Geology, 16, 326–9.2.3.CO;2>CrossRefGoogle Scholar
Burckle, L. H., Kellogg, D. E., Kellogg, T. B., & Fastook, J. L. (1997). A mechanism for the emplacement and concentration of diatoms in glaciogenic deposits. Boreas, 26, 55–60.CrossRefGoogle Scholar
Burckle, L. H. & Potter, J. R. (1996). Pliocene-Pleistocene diatoms in Paleozoic and Mesozoic sedimentary and igneous rocks from Antarctica: a Sirius problem solved. Geology, 24, 235–8.2.3.CO;2>CrossRefGoogle Scholar
Chalmers, M. O., Harper, M. A., & Marshall, W. A. (1996). An Illustrated Catalogue of Airborne Microbiota from the Maritime Antarctic. Cambridge: British Antarctic Survey.Google Scholar
Chu, G., Sun, Q., Zhaoyan, G., et al. (2009). Dust records from varved lacustrine sediments of two neighbouring lakes in northeastern China over the last 1400 years. Quaternary International, 194, 108–18.CrossRefGoogle Scholar
Darby, D. A., Burckle, L. H., & Clark, D. L. (1974). Airborne dust on Arctic pack ice, its composition and fallout rate. Earth and Planetary Science Letters, 24, 166–72.CrossRefGoogle Scholar
Darwin, C. E. (1846). An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society, London, 2, 26–30.CrossRefGoogle Scholar
Delany, A. C., Delany, A. C., Parkin, , et al. (1967). Airborne dust collected at Barbados. Geochimica et Cosmochimica Acta, 31, 885–909.CrossRefGoogle Scholar
DeMenocal, P. B., Ruddiman, W. F., & Pokras, E. M. (1993). Influences of high- and low-latitude processes on Aftrican terrestrial climate: Pleistocene eolian records from equatorial Atlantic Ocean Drilling Program Site 633. Paleoceanography, 8, 209–42.CrossRefGoogle Scholar
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L., & Wilch, T. I. (1993). East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valleys perspective. Geografiska Annaler, Series A, Physical Geography, 75, 155–204.CrossRefGoogle Scholar
Donarummo, J. Jr., Ram, M., & Stoermer, E. F. (2003). Possible deposit of soil dust from the 1930's U.S. Dust Bowl identified in Greenland ice. Geophysical Research Letters, 30 (6), 1269.CrossRefGoogle Scholar
Elster, J., Delmas, R. J., Petit, J.-R., & Rehakova, K. (2007). Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes). Biogeosciences Discussions, 4, 1779–813.CrossRefGoogle Scholar
Fenner, J. & Mikhelsen, N. (1990). Eocene–Oligocene diatoms in the western Indian Ocean: taxonomy, stratigraphy and paleoecology. Proceedings of the Ocean Drilling Programme, 115, 433–63.Google Scholar
Finlay, B. J., Monaghan, E. B., & Maberly, S. C. (2002). Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist, 153, 261–73.CrossRefGoogle ScholarPubMed
Gasse, F. (2002). Diatom-inferred salinity and carbonate oxygen isotopes in the Holocene waterbodies of the western Sahara and Sahel. Quaternary Science Reviews, 21, 737–67.CrossRefGoogle Scholar
Gasse, F., Stabell, B., Fourtanier, E., & Iperen, Y. (1989). Freshwater diatom influx in intertropical Atlantic: relationships with continental records from Africa. Quaternary Research, 32, 229–43.CrossRefGoogle Scholar
Gayley, R. I., Ram, M., & Stoermer, E. F. (1989). Seasonal variations in diatom abundance and provenance in Greenland ice. Journal of Glaciology, 35, 290–2.CrossRefGoogle Scholar
Geissler, U. & Gerloff, J. (1966). Das Vorkommen von Diatomeen in menschlichen Organen und in der Luft. Nova Hedwigia, Zeitschrift für Kryptogamenkunde, 10, 565–77.Google Scholar
Giles, J. (2005). Climate science: the dustiest place on Earth. Nature, 434, 816–19.CrossRefGoogle ScholarPubMed
Goudie, A. S. (2008). The history and nature of wind erosion in deserts. Annual Review of Earth and Planetary Sciences, 36, 97–119.CrossRefGoogle Scholar
Grousset, F. E. & Biscaye, P. E. (2005). Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chemical Geology, 222, 149–67.CrossRefGoogle Scholar
Grousset, F. E., Biscaye, P. E., Revel, M., et al. (1992). Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: isotopic constraints on origins. Earth and Planetary Science Letters, 111, 175–82.CrossRefGoogle Scholar
Håkansson, H. & Nihlén, T. (1990). Diatoms of eolian deposits in the Mediterranean. Archiv für Protistenkunde, 138, 313–22.CrossRefGoogle Scholar
Harwood, D. M. & Webb, P. N. (1998). Glacial transport of diatoms in the Antarctic Sirius Group: Pliocene refrigerator. GSA Today, 8 (4), 1, 4–8.Google Scholar
Hostetter, H. P. & Hoshaw, R. W. (1970). Environmental factors affecting resistance to desiccation in the diatom Stauroneis anceps. American Journal of Botany, 57, 512–8.CrossRefGoogle Scholar
Iordanidis, A., Buckman, J., Triantafyllou, A. G., & Asvesta, A. (2008). ESEM-EDX characterisation of airborne particles from an industrialised area of northern Greece. Environmental Geochemical Health, 30, 391–405.CrossRefGoogle ScholarPubMed
Kellogg, D. E. & Kellogg, T. B. (1996). Diatoms in South Pole ice: implications for eolian contamination of Sirius Group deposits. Geology, 24, 115–18.2.3.CO;2>CrossRefGoogle Scholar
Koren, I., Kaufman, Y. J., Washington, R., et al. (2006). The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters, 1, 014005.CrossRefGoogle Scholar
Kristiansen, J. (1996). Dispersal of freshwater algae – a review. Hydrobiologia, 336, 151–7.CrossRefGoogle Scholar
Lacey, M. E. & West, J. S. (2006). The Air Spora: a Manual for Catching and Identifying Airborne Biological Particles. Dordrecht: Springer.CrossRefGoogle Scholar
Larrasoaña, , J. C., Roberts, A. P., Rohling, E. J. Winklhofer, M., & Wehausen, R. (2003). Three million years of monsoon variability over the northern Sahara. Climate Dynamics, 21, 689–98.CrossRef
Leblanc, M. J., Leduc, C., Stagnitti, F., et al. (2006). Evidence for Megalake Chad, north-central Africa, during the late Quaternary from satellite data. Palaeogeography, Palaeoclimatology, Palaeoecology, 230, 230–42.CrossRefGoogle Scholar
Lee, T. F. & Eggleston, P. M. (1989). Airborne algae and cyanobacteria. Grana, 28, 63–6.CrossRefGoogle Scholar
Lichti-Federovich, S. (1984). Investigation of diatoms found in surface snow from the Sydkap ice cap, Ellesmere Island, Northwest Territories. Current Research, Geological Survey of Canada, 84–01A, 287–301.Google Scholar
Lichti-Federovich, S. (1985). Diatom dispersal phenomena: diatoms in rime frost samples from Cape Herschel, central Ellesmere Island, Northwest Territories. Current Research, Geological Survey of Canada, 85–01B, 391–9.Google Scholar
Liu, X., Penner, J. E. & Herzog, M. (2005). Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols. Journal of Geophysical Research, 110, DOI: D18206.1-D18206.37.CrossRefGoogle Scholar
Marino, F., Castellano, E., Ceccato, D., et al. (2008). Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial–interglacial cycle. Geochemistry Geophysics Geosystems, 9, Q10018, 1–11.CrossRefGoogle Scholar
Marshall, W. A. & Chalmers, M. O. (1997). Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography, 20, 585–94.CrossRefGoogle Scholar
Maynard, N. G. (1968). Significance of airborne algae. Zeitschrift für Allgemeine Mikrobiologie, 8, 225–6.CrossRefGoogle Scholar
McConnell, J. R., Aristarain, A. J., Banta, R., Edwards, P. R., & Simões, J. C. (2007). 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proceedings of the National Academy of Sciences of the USA, 104, 5743–8.CrossRefGoogle Scholar
McGowan, H. A. & Clark, A. (2008). Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmospheric Environment, 42, 6915–25.CrossRefGoogle Scholar
McGowan, H., Kamber, B., McTainsh, G.H., & Marx, S.K. (2005). High resolution provenancing of long travelled dust deposited on the Southern Alps, New Zealand. Geomorphology, 69, 208–21.CrossRefGoogle Scholar
McKay, R. M., Barrett, P. J., Harper, M. A., & Hannah, M. J. (2008). Atmospheric transport and concentration of diatoms in surficial and glacial sediments in the Allan Hills, Transantarctic Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 168–83.CrossRefGoogle Scholar
Middleton, N. J. & Goudie, A. S. (2001). Saharan dust: sources and trajectories. Transactions of the Institute of British Geographers, 26 (2), 165–181.CrossRefGoogle Scholar
Milankovitch, M. (1920). Theorie Mathematique des Phenomenes Thermiques produits par la Radiation Solaire. Paris: Gauthier-Villars.Google Scholar
Moreno, T., Querol, X., Castillo, S., et al. (2006). Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere, 65, 261–70.CrossRefGoogle ScholarPubMed
Naish, T., Powell, R., Levy, R., et al. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458, 322–8.CrossRefGoogle ScholarPubMed
Nave, S., Freitas, P., & Abranthes, F. (2001). Coastal upwelling in the Canary Island region: spatial variability reflected by the surface sediment diatom record. Marine Micropaleontology, 42, 1–23.CrossRefGoogle Scholar
Nguetsop, V.F., Servant-Vilary, S., & Servant, M. (2004). Late Holocene climatic changes in West Africa, a high resolution diatom record from equatorial Cameroon. Quaternary Science Reviews, 23, 591–609.CrossRefGoogle Scholar
Page, L. R. & Chapman, R. W. (1934). The dust fall of December 15–16, 1933. American Journal of Science, 5th Series, 28, 288–97.CrossRefGoogle Scholar
Patterson, D. B., Farley, K. A., & Norman, M. D. (1999). 4He as a tracer of continental dust: a 1.9 million year record of aeolian flux to the west equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 63, 615–25.CrossRefGoogle Scholar
Pokras, E. M. (1991). Source areas and transport mechanisms for freshwater and brackish-water diatoms deposited in pelagic sediments of the equatorial Atlantic. Quaternary Research, 35, 144–56.CrossRefGoogle Scholar
Pokras, E. M. & Mix, A. C. (1985). Eolian evidence for spatial variability of late Quaternary climates in tropical Africa. Quaternary Research, 24, 137–49.CrossRefGoogle Scholar
Robock, A., Oman, L. & Stenchikov, G.L. (2007). Nuclear winter revisited with a modern climate model and current nuclear arsenals: still catastrophic consequences. Journal of Geophysical Research, 112, D13107, 1–14.CrossRefGoogle Scholar
Romero, O. E., Dupont, L., Wyputta, U., Jahns, S., & Wefer, G. (2003). Temporal variability in fluxes of eolian-transported freshwater diatoms, phytoliths and pollen grains off Cape Blanc as reflection of land–atmosphere–ocean interactions in northwest Africa. Journal of Geophysical Research, 108 (C5), 3153–65.CrossRefGoogle Scholar
Romero, O. E., Lange, C. B., Swap, R., & Wefer, G. (1999). Eolian-transported freshwater diatoms and phytoliths across the equatorial Atlantic record: temporal changes in Saharan dust transport patterns. Journal of Geophysical Research, 104 (C2), 3211–22.CrossRefGoogle Scholar
Sancetta, C., Lyle, M., Heusser, L., Zahn, R., & Bradbury, J. P. (1992). Late-glacial to Holocene changes in winds, upwelling and seasonal production of the northern Californian current system. Quaternary Research, 38, 359–70.CrossRefGoogle Scholar
Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., & Pflaumann, U. (1981). Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature, 293, 193–6.CrossRefGoogle Scholar
Scherer, R. P. (1991). Quaternary and Tertiary microfossils from beneath the Ice Stream B: evidence for a dynamic West Antarctic ice sheet history. Palaeogeography, Palaeoclimatology, Palaeoecology, Global and Planetary Change Section, 90, 395–412.CrossRefGoogle Scholar
Scherer, R. P., Aldahan, A., Tulaczyk, S., et al. (1998). Pleistocene collapse of the West Antarctic Ice Sheet. Science, 281 (5373), 82–5.CrossRefGoogle ScholarPubMed
Scherer, R., Hannah, M., Maffioli, P., et al. (2007). Palaeontologic characterisation and analysis of the AND-1B Core, ANDRILL McMurdo Ice Shelf Project, Antarctica. Terra Antartica, 14, 223–54.Google Scholar
Seyve, C. & Fourtanier, E. (1985). Contenu microfloristique d'un sédiment éolien actuel. Bulletin – Centres pour Recherche et Exploration-Production Elf-Aquitaine, 9, 137–54.Google Scholar
Sharma, N.K., Singh, S., & Rai, A. K. (2006). Diversity and seasonal variation of visible algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102, 252–9.CrossRefGoogle Scholar
Stroeven, A. P., Prentice, M. L., & Klemen, J. (1996). On marine microfossil transport and pathways in Antarctica during the late Neogene: evidence from the Sirius Group at Mount Fleming. Geology, 24, 727–30.2.3.CO;2>CrossRefGoogle Scholar
Thompson, L. G. & Moseley-Thompson, E. (1981). Microparticle concentration variations linked with climatic change: evidence from polar ice cores. Science, 212, 812–4.CrossRefGoogle ScholarPubMed
Tormo, R., Recio, D., Silva, I., & Muñoz, A. F. (2001). A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. European Journal of Phycology, 36, 385–90.CrossRefGoogle Scholar
Tynni, R. (1970). Piilevät v. 1969 sataneessa punertavassa lumessa (Diatoms from dust-stained snowfall in 1969; Finnish, with English summary). Geologi, 22, 79–81.Google Scholar
Vanormelingen, P., Verleyen, E., & Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation, 17, 393–405.CrossRefGoogle Scholar
Warren, A., Chappell, A., Todd, M. C., et al. (2007). Dust-raising in the dustiest place on earth. Geomorphology, 92, 25–37.CrossRefGoogle Scholar
Washington, R., Todd, M. C., Lizcano, G., et al. (2006). Links between topography, wind, deflation, lakes and dust: the case of the Bodélé depression, Chad. Geophysical Research Letters, 33, L09401, 1–4.CrossRefGoogle Scholar
Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H., & Stott, L. D. (1984). Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton. Geology, 12, 287–91.2.0.CO;2>CrossRefGoogle Scholar
Whitehead, J. M., Harwood, D. M., McKelvey, B. C., Hambrey, M. J., & McMinn, A. (2004). Diatom biostratigraphy of the Cenozoic glaciomarine Pagodroma Group, northern Prince Charles Mountains, East Antarctica. Australian Journal of Earth Sciences, 51, 521–47.CrossRefGoogle Scholar
Wilson, G. S., Barron, J. A., Ashworth, A. C., et al. (2002). The Mount Feather Diamicton of the Sirius Group: an accumulation of indicators of Neogene Antarctic glacial and climate history. Palaeogeography, Palaeoclimatology, Palaeoecology, 182, 117–31.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×