Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T06:51:43.334Z Has data issue: false hasContentIssue false

30 - Toxic marine diatoms

from Part V - Other applications

Published online by Cambridge University Press:  05 June 2012

Maria Célia Villac
Affiliation:
Mount Allison University
Gregory J. Doucette
Affiliation:
NOAA/National Ocean Service
Irena Kaczmarska
Affiliation:
Mount Allison University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Diatoms are major contributors to total primary production as well as many important biogeochemical processes in aquatic environments (Falkowski et al., 1998; Smetacek, 1999). Nonetheless, a small number of species (<30) have been recognized as harmful to fisheries, wildlife, or people, through production of either a toxin or various exudates, or via mechanical damage due to cell morphology and/or high biomass accumulation. Fryxell & Villac (1999), and more recently Fryxell & Hasle (2003), have identified several of these harmful taxa and outlined their often devastating impacts on other organisms, ecosystems, and economies. Examples include: oily surface films associated with bird mortalities (Coscinodiscus centralis Ehrenb., Coscinodiscus concinnus W. Smith); surface accumulations on beach surf-zones affecting tourism/recreation (Asterionellopsis glacialis [Castracane] Round, Anaulus australis Drebes & D. Schulz; in Villac & Noronha, 2008); mucilage production causing a condition known as “mare sporco” (or dirty sea) (Ceratoneis closterium Ehrenb., Pseudo-nitzschia pseudodelicatissima [Hasle] Hasle) as well as clogging of bivalve gills (Thalassiosira mala Takano) and fishing nets (Guinardia striata [Stolterfoth] Hasle, Coscinodiscus wailesii Gran & Angst); high biomass accumulations resulting in shading and depletion of oxygen/nutrients (C. wailesii) as well as clogging gills of benthic shellfish and bony fish (Cerataulina pelagica [Cleve] Hendey); and spines/setae inflicting physical damage to fish gills leading to major financial losses for aquaculture operations (Chaetoceros convolutus Castracane and Chaetoceros concavicornis Mangin).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 540 - 551
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, N. G., MacFadyen, A., Hickey, B. M., & Trainer, V. L. (2006). The nearshore advection of a toxigenic Pseudo-nitzschia bloom and subsequent domoic acid contamination of intertidal bivalves. African Journal of Marine Science, 28, 271–6.CrossRefGoogle Scholar
Alverson, A. J. (2008). Molecular systematics and the diatom species. Protist, 159, 339–53.CrossRefGoogle ScholarPubMed
Amato, A., Kooistra, W. H. C. F., Ghiron, J. H. L., et al. (2007). Reproductive isolation among sympatric cryptic species in marine diatoms. Protist, 158, 193–207.CrossRefGoogle ScholarPubMed
Amato, A. & Montresor, M. (2008). Morphology, phylogeny, and sexual cycle of Pseudo-nitzschia mannii sp. nov. (Bacillariophyceae): a pseudo-cryptic species within the P. pseudodelicatissima complex. Phycologia, 47, 487–97.CrossRefGoogle Scholar
Andersen, P. (1996). Design and Implementation of Some Harmful Algal Monitoring Systems. Intergovernmental Oceanographic Commission Technical Series, 44. Paris: UNESCO.Google Scholar
Anderson, D. M., Andersen, P., Bricelj, V. M., Cullen, J. J., & Rensel, J. E. (2001). Monitoring and Management Strategies for Harmful Algal Blooms in Coastal Waters. APEC #201-MR-01.1, Asia Pacific Economic Program, Singapore, and Intergovernmental Oceanographic Commission Technical Series, 59. Paris: UNESCO.Google Scholar
Armbrust, E. V., Chisholm, S. W., & Olson, R. J. (1990). Role of light and the cell cycle on the induction of spermatogenesis in a centric diatom. Journal of Phycology, 26, 470–8.CrossRefGoogle Scholar
Bargu, S., Powell, C. L., Wang, Z., Doucette, G. J., & Silver, M. W. (2008). Note on the occurrence of Pseudo-nitzschia australis and domoic acid in squid from Monterey Bay, California (USA). Harmful Algae, 7, 45–51.CrossRefGoogle Scholar
Bates, S. S. (1998). Ecophysiology and metabolism of ASP toxin production. In Physiological Ecology of Harmful Algal Blooms, ed. Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M., Heidelberg: Springer-Verlag, pp. 405–26.Google Scholar
Bates, S. S., Douglas, D. J., Doucette, G. J., & Léger, C. (1995). Enhancement of domoic acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-nitzschia multiseries. Natural Toxins, 3, 428–35.CrossRefGoogle ScholarPubMed
Bates, S. S., Garrison, D. L., & Horner, R. A. (1998). Bloom dynamics and physiology of domoic acid-producing Pseudo-nitzschia species. In Physiological Ecology of Harmful Algal Blooms, ed. Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M., Heidelberg: Springer-Verlag, pp. 267–92.Google Scholar
Bates, S. S. & Trainer, V. L. (2006). The ecology of harmful diatoms. In Ecology of Harmful Algae, ed. Granéli, E. & Turner, J., Heidelberg: Springer-Verlag, pp. 81–93.CrossRefGoogle Scholar
Bauer, M. (2006). Harmful Algal Research and Response: A Human Dimensions Strategy. Woods Hole, MA: National Office for Marine Biotoxins and Harmful Algal Blooms, Woods Hole Oceanographic Institution.Google Scholar
Bejarano, A. C., Dolah, F. M., Gulland, F. M., Rowles, T. K., & Schwacke, L. H. (2008). Production and toxicity of the marine biotoxin domoic acid and its effects on wildlife: a review. Human and Ecological Risk Assessment, 14, 544–67.CrossRefGoogle Scholar
Bejarano, A. C., Dolah, F. M., Gulland, F. M., & Schwacke, L. (2007). Exposure assessment of the biotoxin domoic acid in California sea lions: application of a probabilistic bioenergetic model. Marine Ecology Progress Series, 345, 293–304.CrossRefGoogle Scholar
Buck, K. R. & Chavez, F. P. (1994). Diatom aggregates from the open ocean. Journal of Plankton Research, 16, 1449–57.CrossRefGoogle Scholar
Buck, K. R., Uttal-Cooke, L., Pilskaln, C. H., et al. (1992). Autecology of the diatom Pseudonitzschia australis Frenguelli, a domoic acid producer from Monterey Bay, California. Marine Ecology Progress Series, 84, 293–302.CrossRefGoogle Scholar
Casteleyn, G., Adams, N. G., Vanormelingen, P., et al. (2009). Natural hybrids in the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae): genetic and morphological evidence. Protist, 160, 343–54.CrossRefGoogle ScholarPubMed
Casteleyn, G., Chepurnov, V. A., Leliaert, F., et al. (2008). Pseudo-nitzschia pungens (Bacillariophyceae): a cosmopolitan diatom species?Harmful Algae, 7, 241–57.CrossRefGoogle Scholar
Cerino, F., Orsini, L., Sarno, D., et al. (2005). The alternation of different morphotypes in the seasonal cycle of the toxic diatom Pseudo-nitzschia galaxiae. Harmful Algae, 4, 33–48.CrossRefGoogle Scholar
Churro, C. I., Carreira, C. C., Rodrigues, F. J., et al. (2009). Diversity and abundance of potentially toxic Pseudo-nitzschia Peragallo in Aveiro coastal lagoon, Portugal and description of a new variety, P. pungens var. aveirensis var. nov. Diatom Research, 24, 35–62.CrossRefGoogle Scholar
D'Alelio, D., Amato, A., Luedeking, A., & Montresor, M. (2010a). Sexual and vegetative phases in the planktonic diatom Pseudo-nitzschia multistriata. Harmful Algae, 8, 225–32.CrossRefGoogle Scholar
D'Alelio, D., d'Alcalà, M. R., Dubroca, L.et al. (2010b). The time for sex: a biennial life cycle in a marine planktonic diatom. Limnology and Oceanography, 55, 106–14.CrossRefGoogle Scholar
Davidovich, N. A. & Bates, S. S. (1998). Sexual reproduction in the pennate diatoms Pseudo-nitzschia multiseries and P. pseudodelicatissima (Bacillariophyceae). Journal of Phycology, 34, 126–37.CrossRefGoogle Scholar
Dortch, Q., Robichaux, R., Pool, S., et al. (1997). Abundance and vertical flux of Pseudo-nitzschia in the northern Gulf of Mexico. Marine Ecology Progress Series, 146, 249–64.CrossRefGoogle Scholar
Doucette, G. J., Maneiro, I., Riveiro, I., & Svensen, C. (2006). Phycotoxin pathways in aquatic food webs: transfer, accumulation and degradation. In Ecology of Harmful Algae, ed. Granéli, E. & Turner, J., Heidelberg: Springer-Verlag, pp. 283–95.CrossRefGoogle Scholar
Doucette, G. J., Scholin, C. A., Ryan, J. P., et al. (2002). Possible influence of Pseudo-nitzschia australis population and toxin dynamics on food web impacts in Monterey Bay, CA, USA. 10th International Conference on Harmful Algae, St. Petersburg, FL, October 21–25, p. 76 (abstract).
Edlund, M. B. & Stoermer, E. F. (1997). Ecological, evolutionary and systematic significance of diatom life histories. Journal of Phycology, 33, 897–918.CrossRefGoogle Scholar
Falkowski, P. G., Barber, R. T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–6.CrossRefGoogle ScholarPubMed
Fryxell, G. A., Garza, S. A., & Roelke, D. L. (1991). Auxospore formation in an Antarctic clone of Nitzschia subcurvata Hasle. Diatom Research, 6, 235–45.CrossRefGoogle Scholar
Fryxell, G. A. & Hasle, G. R. (2003). Taxonomy of harmful diatoms. Monographs on Oceanographic Methodology, 11, 465–510.Google Scholar
Fryxell, G. A. & Villac, M. C. (1999). Toxic and harmful marine diatoms. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., Cambridge: Cambridge University Press, pp. 419–28.CrossRefGoogle Scholar
Fryxell, G. A., Villac, M. C., & Shapiro, L. P. (1997). The occurrence of the toxic diatom genus Pseudo-nitzschia (Bacillariophyceae) on the west coast of the U.S.A., 1920–1996: a review. Phycologia, 36, 419–37.CrossRefGoogle Scholar
Hasle, G. R. (1965). Nitzschia and Fragilariopsis species studied in the light and electron microscopes. II. The group Pseudonitzschia. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo. I. Mat.-Naturv. Klasse., 18, 1–45.Google Scholar
Hasle, G. R. (1972). The distribution of Nitzschia seriata Cleve and allied species. Nova Hedwigia, 39, 171–90.Google Scholar
Hasle, G. R. (2002). Are most of the domoic acid producing species of the diatom genus Pseudo-nitzschia cosmopolites?Harmful Algae, 1, 137–146.CrossRefGoogle Scholar
Hasle, G. R. & Lundholm, N. (2005). Pseudo-nitzschia seriata fo. obtusa (Bacillariophyceae) raised in rank based on morphological, phylogenetic and distributional data. Phycologia, 44, 608–19.CrossRefGoogle Scholar
Hernández-Becerril, D. U. & Diaz-Almeyda, E. M. (2006). The Nitzschia bicapitata group, new records of the genus Nitzschia, and further studies on species of Pseudo-nitzschia (Bacillariophyta) from Mexican Pacific coasts. Nova Hedwigia, 130, 293–306.Google Scholar
Hiltz, M. F., Bates, S. S., & Kaczmarska, I. (2000). Effect of light:dark cycles and cell apical length on the sexual reproduction of Pseudo-nitzschia multiseries (Bacillariophyceae) in culture. Phycologia, 39, 59–66.CrossRefGoogle Scholar
Holtermann, K. E., Bates, S. S., Trainer, V. L., Odell, A., & Armbrust, E. V. (2010). Mass sexual reproduction in the toxigenic diatoms Pseudo-nitzschia australis and P. pungens (Bacillariophyceae) on the Washington coast, USA. Journal of Phycology, 46, 41–52.CrossRefGoogle Scholar
Jester, R., Lefebvre, K., Langlois, G., et al. (2009). A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs. Harmful Algae, 8, 291–8.CrossRefGoogle Scholar
Kaczmarska, I. & Fryxell, G. A. (1994). The genus Nitzschia: three new species from the equatorial Pacific Ocean. Diatom Research, 9, 87–98.CrossRefGoogle Scholar
Kaczmarska, I., LeGresley, M. M., Martin, J. L., & Ehrman, J. (2005). Diversity of the diatom genus Pseudo-nitzschia Peragallo in the Quoddy region of the Bay of Fundy, Canada. Harmful Algae, 4, 1–19.CrossRefGoogle Scholar
Kaczmarska, I., Martin, J. L., Ehrman, J. M., & LeGresley, M. M. (2007). Pseudo-nitzschia species population dynamics in the Quoddy region, Bay of Fundy. Harmful Algae, 6, 861–74.CrossRefGoogle Scholar
Kaczmarska, I., Reid, C., Martin, J. L., & Moniz, M. B. J. (2008). Morphological, biological and molecular characteristics of Pseudo-nitzschia delicatissima from the Canadian Maritimes. Botany, 86, 763–72.CrossRefGoogle Scholar
Kotaki, Y., Lundholm, N., Onodera, H., et al. (2004). Wide distribution of Nitzschia navis-varingica, a new domoic acid-producing benthic diatom found in Vietnam. Fisheries Science, 70, 28–32.CrossRefGoogle Scholar
Kvitek, R. G., Goldberg, J. D., Smith, G. J., Doucette, G. J., & Silver, M. W. (2008). Domoic acid contamination within eight representative species from the benthic food web of Monterey Bay, California, USA. Marine Ecology Progress Series, 367, 35–47.CrossRefGoogle Scholar
Landsberg, J. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10, 113–390.CrossRefGoogle Scholar
Landsberg, J., Dolah, F., & Doucette, G. J. (2006). Marine and estuarine harmful algal blooms: impacts on human and animal health. In Oceans and Health: Pathogens in the Marine Environment, ed. Belkin, S. & Colwell, R. R., New York: Springer, pp. 165–215.Google Scholar
Leandro, L. F., Rolland, R. M., Roth, P. B., et al. (2010a). Exposure of the North Atlantic right whale Eubalaena glacialis to the marine algal biotoxin, domoic acid. Marine Ecology Progress Series, 398, 287–303.CrossRefGoogle Scholar
Leandro, L. F., Teegarden, G. J., Roth, P. B., & Doucette, G. J. (2010b). The copepod Calanus finmarchicus: a potential vector for trophic transfer of the marine algal biotoxin, domoic acid. Journal of Experimental Marine Biology and Ecology, 382, 88–95.CrossRefGoogle Scholar
Lefebvre, K. A., Bargu, S., Kieckhefer, T., & Silver, M. W. (2002). From sanddabs to blue whales: the pervasiveness of domoic acid. Toxicon, 40, 971–7.CrossRefGoogle ScholarPubMed
Lundholm, N., Hasle, G. R., Fryxell, G. A., & Hargraves, P. E. (2002). Morphology, phylogeny and taxonomy of species within the Pseudo-nitzschia americana complex (Bacillariophyceae) with descriptions of two new species, Pseudo-nitzschia brasiliana and Pseudo-nitzschia linea. Phycologia, 41, 480–97.CrossRefGoogle Scholar
Lundholm, N. & Moestrup, Ø. (2000). Morphology of the marine diatom Nitzschia navis-varingica sp. nov., another producer of the neurotoxin domoic acid. Journal of Phycology, 36, 1162–74.CrossRefGoogle Scholar
Lundholm, N. & Moestrup, Ø. (2002). The marine diatom Pseudo-nitzschia galaxiae sp. nov. (Bacillariophyceae): morphology and phylogenetic relationships. Phycologia, 41, 594–605.CrossRefGoogle Scholar
Lundholm, N. & Moestrup, Ø. (2006). The biogeography of harmful algae. In Ecology of Harmful Algae, ed. Granéli, E. & Turner, J., Heidelberg: Springer-Verlag, pp. 23–35.CrossRefGoogle Scholar
Lundholm, N., Moestrup, Ø., Hasle, G. R., & Hoef-Emden, K. (2003). A study of the P. pseudodelicatissima/cuspidata complex (Bacillariophyceae): what is P. pseudodelicatissima? Journal of Phycology, 39, 797–813.CrossRefGoogle Scholar
Lundholm, N., Moestrup, Ø., Kotaki, Y., et al. (2006). Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic analyses. Journal of Phycology, 42, 464–81.CrossRefGoogle Scholar
McDonald, S. M., Sarno, D., & Zingone, A. (2007). Identifying Pseudo-nitzschia species in natural samples using genus-specific PCR primers and clone libraries. Harmful Algae, 6, 849–60.CrossRefGoogle Scholar
McManus, M. A., Kudela, R. M., Silver, M. W., et al. (2008). Cryptic blooms: are thin layers the missing connection?Estuaries and Coasts, 31, 396–401.CrossRefGoogle Scholar
Medlin, L. K. (2007). If everything is everywhere, do they share a common gene pool?Gene, 406, 180–3.CrossRefGoogle Scholar
Miller, P. E. & Scholin, C. A. (1998). Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. Journal of Phycology, 34, 371–382.CrossRefGoogle Scholar
Orsini, L., Procaccini, G., Sarno, D., & Montresor, M. (2004). Multiple rDNA ITS-types within the diatom Pseudo-nitzschia delicatissima (Bacillariophyceae) and their relative abundances across a spring bloom in the Gulf of Naples. Marine Ecology Progress Series, 271, 87–98.CrossRefGoogle Scholar
Palma, S., Mouriño, H., Silva, A., Barão, M. I., & Moita, M. T. (2010). Can Pseudo-nitzschia blooms be modeled by coastal upwelling in Lisbon Bay? Harmful Algae, 9, 294–303.CrossRefGoogle Scholar
Parsons, M. L., Dortch, Q., & Turner, R. E. (2002). Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnology and Oceanography, 47, 551–8.CrossRefGoogle Scholar
Parsons, M. L., Scholin, C. A., Miller, P. E., et al. (1999). Pseudo-nitzschia species (Bacillariophyceae) in Louisiana coastal waters: molecular probe field trials, genetic variability, and domoic acid analyses. Journal of Phycology, 35, 1368–78.CrossRefGoogle Scholar
Priisholm, K., Moestrup, Ø., & Lundholm, N. (2002). Taxonomic notes on the marine diatom genus Pseudo-nitzschia in the Andaman Sea, near the island of Phuket, Thailand, with a description of Pseudo-nitzschia micropora sp. nov. DiatomResearch, 17, 153–75.Google Scholar
Quijano-Scheggia, S., Garcés, E., Andree, K., Fortuño, J. M., & Camp, J. (2009a). Homothallic auxosporulation in Pseudo-nitzschia brasiliana (Bacillariophyta). Journal of Phycology, 45, 100–7.CrossRefGoogle Scholar
Quijano-Scheggia, S., Garcés, E., Lundholm, N., et al. (2009b). Morphology, physiology, molecular phylogeny and sexual compatibility of the cryptic Pseudo-nitzschia delicatissima complex (Bacillariophyta), including the description of P. arenysensis sp. nov. Phycologia, 48, 492–509.CrossRefGoogle Scholar
Ramsdell, J. S. & Zabka, T. S. (2008). In utero domoic acid toxicity: a fetal basis to adult disease in the California sea lion (Zalophus californianus). Marine Drugs, 6, 262–90.CrossRefGoogle Scholar
Rines, J. E. B., Donaghay, P. L., Dekshenieks, M. M., Sullivan, J. M., & Twardowski, M. S. (2002). Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA. Marine Ecology Progress Series, 225, 123–37.CrossRefGoogle Scholar
Sarno, D., Zingone, A., & Montresor, M. (2010). A massive and simultaneous sex event of two Pseudo-nitzschia species. Deep-Sea Research II, 57, 248–55.CrossRefGoogle Scholar
Sazhin, A., Artigas, L., Nejstgaard, J., & Frischer, M. (2007). The colonization of two Phaeocystis species (Prymnesiophyceae) by pennate diatoms and other protists: a significant contribution to colony biomass. Biogeochemistry, 83, 137–45.CrossRefGoogle Scholar
Schnetzer, A., Miller, P. E., Schaffner, R. A., et al. (2007). Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los Angeles harbor areas of the Southern California Bight, 2003–2004. Harmful Algae, 6, 372–87.CrossRefGoogle Scholar
Scholin, C., Doucette, G., Jensen, S., et al. (2009). Remote detection of marine microbes, small invertebrates, harmful algae and biotoxins using the Environmental Sample Processor (ESP). Oceanography, 22, 158–67.CrossRefGoogle Scholar
Scholin, C. A., Gulland, F., Doucette, G. J., et al. (2000). Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature, 403, 80–4.CrossRefGoogle ScholarPubMed
Sekula-Wood, E., Schnetzer, A., Benitez-Nelson, C. R., et al. (2009). Rapid downward transport of the neurotoxin domoic acid in coastal waters. Nature Geoscience, 2, 272–5.CrossRefGoogle Scholar
Smayda, T. (1997). What is a bloom? A commentary. Limnology and Oceanography, 42, 1132–6.CrossRefGoogle Scholar
Smetacek, V. S. (1985). Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84, 239–51.CrossRefGoogle Scholar
Smetacek, V. S. (1999). Diatoms and the ocean carbon cycle. Protist, 150, 25–32.CrossRefGoogle ScholarPubMed
Smith, J. C., Cormier, R., Worms, J., et al. (1990). Toxic blooms of the domoic acid containing diatom Nitzschia pungens in the Cardigan River, Prince Edward Island. In Toxic Marine Phytoplankton, ed. Granéli, E., Sundström, B., Edler, L., & Anderson, D. M., New York: Elsevier, pp. 227–32.Google Scholar
Thompson, S., Bates, S. S., Kaczmarska, I., & Léger, C. (2000). Bacteria and sexual reproduction of the diatom Pseudo-nitzschia multiseries (Hasle) Hasle. Symposium on Harmful Marine Algae in the US, Woods Hole Oceanographic Institution, Woods Hole, MA, December 5–9, p. 184 (abstract).
Todd, E. C. D. (1993). Amnesic shellfish poisoning – a review. Journal of Food Protection, 56, 69–83.CrossRefGoogle Scholar
Trainer, V. L., Adams, N. G., Bill, B. D., et al. (2000). Domoic acid production near California coastal upwelling zones, June 1998. Limnology and Oceanography, 45, 1818–33.CrossRefGoogle Scholar
Trainer, V. L., Cochlan, W. P., Erickson, A., et al. (2007). Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways. Harmful Algae, 6, 449–59.CrossRefGoogle Scholar
Trainer, V. L., Hickey, B. M., & Horner, R. A. (2002). Biological and physical dynamics of domoic acid production off the Washington coast. Limnology and Oceanography, 47, 1438–46.CrossRefGoogle Scholar
Turrell, E., Bresnan, E., Collins, C., et al. (2008). Detection of Pseudo-nitzschia (Bacillariophyceae) species and amnesic shellfish toxins in Scottish coastal waters using oligonucleotide probes and the Jellet Rapid TestTM. Harmful Algae, 7, 443–58.CrossRefGoogle Scholar
Villac, M. C. (1996). Synecology of Pseudo-nitzschia H. Peragallo from Monterey Bay, California, USA. Unpublished Ph.D. thesis, Texas A&M University.
Villac, M. C. & Fryxell, G. A. (1998). Pseudo-nitzschia pungens var. cingulata var. nov. (Bacillariophyceae) based on field and culture observations. Phycologia, 37, 269–74.CrossRefGoogle Scholar
Villac, M. C., Matos, M. G., Santos, V. S., Rodrigues, A. W., & Viana, S. C. (2004). Composition and distribution of Pseudo-nitzschia from Guanabara Bay, Brazil: the role of salinity, based on field and culture observations. In Harmful Algae 2002, ed. Steidinger, K. A., Landsberg, J. H., Tomas, C. R., & Vargo, G. A., Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp. 56–58.Google Scholar
Villac, M. C. & Noronha, V. A. P. C. (2008). The surf-zone phytoplankton of the State of São Paulo, Brazil. I. Trends in space–time distribution with emphasis on Asterionellopsis glacialis and Anaulus australis (Bacillariophyceae). Nova Hedwigia, 133, 115–29.Google Scholar
Villac, M. C., Roelke, D. L., Chavez, F. P., Cifuentes, L. A., & Fryxell, G. A. (1993). Pseudonitzschia australis and related species from the west coast of the U.S.A.: occurrence and domoic acid production. Journal of Shellfish Research, 12, 457–65.Google Scholar
Walz, P. M., Garrison, D. L., Graham, W. M., et al. (1994). Domoic acid-producing diatom blooms in the Monterey Bay, California: 1991–1993. Natural Toxins, 2, 271–9.CrossRefGoogle ScholarPubMed
Zingone, A., Siano, R., D'Alelio, D., & Sarno, D. (2006). Potentially toxic and harmful microalgae from coastal waters of the Campania region (Tyrrhenian Sea, Mediterranean Sea). Harmful Algae, 5, 321–37.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×