Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T08:28:05.236Z Has data issue: false hasContentIssue false

32 - Diatoms as non-native species

from Part V - Other applications

Published online by Cambridge University Press:  05 June 2012

Sarah A. Spaulding
Affiliation:
University of Colorado
Cathy Kilroy
Affiliation:
National Institute of Water and Atmospheric Research New Zealand
Mark B. Edlund
Affiliation:
St. Croix Watershed Research Station
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

The degree to which diatoms move across the Earth by natural processes is debatable (Finlay et al., 2002; Vyverman et al., 2007), but the inadvertent spread of diatoms in a globalized human society is apparent. In this chapter, we examine documentation of diatom introductions and their implications for aquatic ecosystems. For many organisms, especially larger ones, the ecologic, economic, and social impact of species introductions, or invasions, is relatively well known (Pimental et al., 2000). On the other hand, recognition of the microscopic trespasses of diatom species and their impact on ecosystems in new geographic areas is generally far less noticed.

A species is considered to be “non-native” if it is located in a region outside of its native geographic range. Non-native species are also referred to as introduced, non-indigenous, exotic, alien, or invasive. While some non-native species cause little harm, others cause severe ecosystem damage. The use of terminology, particularly the adoption of military words to describe species geographic distributions, elicits emotional reactions that influence scientific and popular responses (Larson et al., 2005). We recognize that much of the current literature employs these military metaphors, but we seek to promote an ecological perspective.

Even among well-known organisms, such as the common reed (Phragmites australis (Cav.) Trin. ex Steud.) growing near Lake Superior, the distinction between native and non-native status may be unclear (Willis and Birks, 2006). The biogeographic distribution of diatoms, and microscopic organisms in general, is currently under debate.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 560 - 569
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baas-Becking, L. G. M. (1934). Geobiologie of Inleiding tot de Milieukunde. The Hague: Van Stockum and Zoon.Google Scholar
Beltrami, M. E., Cappelletti, C., Ciutti, F., Hoffmann, L., & Ector, L. (2008). The diatom Didymosphenia geminata: distribution and mass occurrence in the Province of Trento, (Northern Italy). Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 30, 593–7.Google Scholar
Biggs, B. J. F. & Smith, R. A. (2002). Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnology and Oceanography, 47, 1175–86.CrossRefGoogle Scholar
Bixby, R. J., Edlund, M. B., & Stoermer, E. F. (2005). Hannaea superiorensis sp. nov., an endemic diatom from the Laurentian Great Lakes. Diatom Research, 20, 227–40.CrossRefGoogle Scholar
Blanco, S. & Ector, L. (2009). World distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwigia, 88, 347–422.CrossRefGoogle Scholar
Bothwell, M. L., Lynch, D. R., Wright, H., & Deniseger, J. (2009). On the boots of fishermen. The history of didymo blooms on Vancouver Island, British Columbia. Fisheries, 34, 382–8CrossRefGoogle Scholar
Brunel, J. (1956). Addition du Stephanodiscus binderanus à la flore diatomique de l'Amérique du Nord. Le Naturaliste Canadien (Québec), 83, 91–5.Google Scholar
Campbell, M. L. (2008). Organism impact assessment: risk analysis for post-incursion management. ICES Journal of Marine Science, 65, 795–804.CrossRefGoogle Scholar
Cary, S. C., Hicks, B. J., Gemmill, C. E. G., Rueckert, A., & Coyne, K. J. (2008). A sensitive genetic-based detection and enumeration method for Didymosphenia geminata. Canadian Technical Report of Fisheries and Aquatic Sciences, 2795, 6–9.Google Scholar
Cassie, V. (1984). Checklist of freshwater diatoms of New Zealand. Bibliotheca Diatomologica, 4, 1–129.Google Scholar
Coste, M. & Ector, L. (2000). Diatomées invasives exotiques ou rare en France: principales observations effectuées au cours des dernières décennies. Systematics and Geography of Plants, 70, 373–400.CrossRefGoogle Scholar
Denys, L. (2000). Historical distribution of “Red List diatoms” (Bacillariophyceae) in Flanders (Belgium). Systematics and Geography of Plants, 70, 409–20.CrossRefGoogle Scholar
Dufford, R. G., Zimmerman, H. J., Cline, L. D., & Ward, J. V. (1987). Responses of epilithic algae to regulation of Rocky Mountain streams. In Regulated Streams: Advances in Ecology, ed. Craig, J. F. & Kemper, J. B., New York, NY: Plenum Press, pp. 383–90.CrossRefGoogle Scholar
Edlund, M. B., Taylor, C. M., Schelske, C. L., & Stoermer, E. F. (2000). Thalassiosira baltica (Grunow) Ostenfeld (Bacillariophyta), a new exotic species in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 57, 610–15.CrossRefGoogle Scholar
Ellwood, N. T. W. & Whitton, B. A. (2007). Importance of organic phosphate hydrolyzed in stalks of the lotic diatom Didymosphenia geminata and the possible impact of atmospheric and climatic changes. Hydrobiologia, 592, 121–32.CrossRefGoogle Scholar
Falk-Petersen, J.Bøhn, T., & Sandlund, O. T. (2006). On the numerous concepts in invasion biology. Biological Invasions, 8, 1409–24.CrossRefGoogle Scholar
Finlay, B. J., Monaghan, E. B., & Maberly, S. C. (2002). Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist, 153, 261–73.CrossRefGoogle ScholarPubMed
Getchell, R. G. & Bowser, P. R. (2006). Ecology of type E botulism within dreissenid mussel beds. Aquatic Invaders, 17(2), 1–8.Google Scholar
González, E. M., Hernández, R., & Martínez, J. (2008). El ‘alga chapapote’: una nueva amenaza para nuestros ríos. Guardabosques, 42, 29–32.Google Scholar
Harper, M. A. (1994). Did Europeans introduce Asterionella formosa Hassall to New Zealand? Memoirs of the Californian Academy of Sciences, 17, 479–86.Google Scholar
Hasle, G. R. (1978). Some freshwater and brackish water species of the diatom genus Thalassiosira Cleve. Phycologia, 17, 263–292.CrossRefGoogle Scholar
Hasle, G. R. & Evensen, D. L. (1975). Brackish-water and fresh-water species of the diatom genus Skeletonema. Grev. I. Skeletonema subsalsum (A. Cleve) Bethge. Phycologia, 14, 283–97.CrossRefGoogle Scholar
Herdendorf, C. E. (1982). Large lakes of the world. Journal of Great Lakes Research, 8, 378–412.CrossRefGoogle Scholar
Heuff, H. & Horkan, K. (1984). Caragh. In Ecology of European Rivers, ed. Whitton, B. A., Blackwell Scientific Publications, pp. 364–84.Google Scholar
Hohn, M. H. (1951). A study of the distribution of diatoms (Bacillarieae) in Western New York State. Cornell University Agricultural Experiment Station, Memoir 308.Google Scholar
Hohn, M. H. (1952) Contributions to the diatoms of western New York State. Transactions of the American Microscopical Society, 71, 270–1.CrossRefGoogle Scholar
Hohn, M. H. (1969). Qualitative and quantitative analyses of plankton diatoms, Bass Island area, Lake Erie, 1938–1965. Bulletin of the Ohio Biological Survey, 3, 1–211.Google Scholar
Johnson, P. T. J., Olden, J. D., & Vander Zanden, M. J. (2008). Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and Environment, 6, 357–63.CrossRefGoogle Scholar
Jonssen, G. S., Jonssen, I. R., Bjornsson, M., & Einarsson, S. M. (2000). Using regionalisation in mapping the distribution of the diatom species Didymosphenia geminata (Lyngbye) M. Schmidt in Icelandic rivers. Verhandlunge, Internationale Vereinigung für theoretische und angewandte Limnologie, 27, 340–3.Google Scholar
Jónssen, I. R., Jónssen, G. S., Olafsson, J. S., Einarsson, S. M., & Antonsson, T. (2008). Occurrence and colonization pattern of Didymosphenia geminata in Icelandic streams. Technical Report of Fisheries and Aquatic Sciences, 2795, 41–4.Google Scholar
Jude, D. J. & Leach, J. (1999). Fish management in the Great Lakes (revised). In Fisheries Management in North America, ed. Kohler, C. & Hubert, W., Bethesda, MD: American Fisheries Society, pp. 623–64.Google Scholar
Jude, D. J., Janssen, J., & Stoermer, E. F. (2006). The uncoupling of trophic food webs by invasive species in Lake Michigan. In The State of Lake Michigan, ed. Munawar, M. & Edsall, T., Ecovision World Monograph Series, Amsterdam: S. P. B. Academic Publishing, pp. 311–48.Google Scholar
Kawecka, B. & Sanecki, J. (2003). Didymosphenia geminata in running waters of southern Poland – symptoms of change in water quality? Hydrobiologia, 495, 193–201.CrossRefGoogle Scholar
Kilroy, C. (2004). A new alien diatom Didymosphenia geminata (Lyngbye) Schmidt: its biology, distribution, effects and potential risks for New Zealand fresh waters. NIWA Client Report CHC2004–128.
Kilroy, C. (2008). Didymosphenia geminata in New Zealand: distribution, dispersion and ecology of a non-indigenous invasive species. Canadian Technical Report of Fisheries and Aquatic Sciences, 2795, 15–20.Google Scholar
Kilroy, C., Larned, S., & Biggs, B. J. F. (2009). The non-indigenous diatom Didymosphenia geminata alters benthic communities in New Zealand rivers. Freshwater Biology, 54, 1990–2002.CrossRefGoogle Scholar
Kilroy, C., Snelder, T. H., Floerl, O.Vieglais, C. C., & Dey, K. L. (2008). A rapid technique for assessing the suitability of areas for invasive species applied to New Zealand's rivers. Diversity and Distributions, 14, 262–72.CrossRefGoogle Scholar
Kirkwood, A. E., Shea, T., Jackson, L. J., & McCauley, E. (2007). Didymosphenia geminata in two Alberta headwater rivers: an emerging invasive species that challenges conventional views on algal bloom development. Canadian Journal of Fisheries and Aquatic Science, 64, 1703–9.CrossRefGoogle Scholar
Kiselev, I. A. (1948). To question about quantitative and qualitative composition of the Volga River reservoir phytoplankton. State Research Institute of Zoology, 8, 567–84.Google Scholar
Kociolek, J. P. & Spaulding, S. A. (2000). Freshwater diatom biogeography. Nova Hedwigia, 71, 223–41.Google Scholar
Korneva, L. G. (2007). Recent invasion of planktonic diatom algae in the Volga River Basin and their causes. Biology of Inland Waters, 1, 28–36.Google Scholar
Kumar, S., Spaulding, S. A., Stohlgren, T., et al. (2009). Modelling the bioclimatic profile of the diatom Didymosphenia geminata. Frontiers in Ecology and the Environment, 7, 415–20.CrossRefGoogle Scholar
Lange-Bertalot, H. & Steindorf, A. (1996). Rote Liste der limnischen Kieselalgen (Bacillariophyceae) Deutschlands. Schriftenreihe Vegetationsk, 28, 633–77.Google Scholar
Larson, B. M. H., Nerlich, B., & Wallis, P. (2005). Metaphors and biorisks: the war on infectious diseases and invasive species. Science Communication, 26, 243–68.CrossRefGoogle Scholar
Lindstrøm, E. A. & Skulberg, O. M. 2008. Didymosphenia geminata – a native diatom species of Norwegian rivers coexisting with the Atlantic Salmon. Canadian Technical Report of Fisheries and Aquatic Sciences, 2795, pp. 35–40.Google Scholar
Lougheed, V. L. & Stevenson, R. J. (2004). Exotic marine algae reaches bloom proportions in a coastal lake of Lake Michigan. Journal of Great Lakes Research, 30, 538–44.CrossRefGoogle Scholar
Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., et al. (2006). Microbial biogeography: putting microorganisms on the map. Nature Microbial Reviews, 4, 102–12.CrossRefGoogle Scholar
Mills, E. L., Leach, J. H., Carlton, J. T., & Secor, C. L. (1993). Exotic species in the Great Lakes and anthropogenic introductions. Journal of Great Lakes Research, 19, 1–54.CrossRefGoogle Scholar
Mundie, J. H. & Crabtree, D. G. (1997). Effects on sediments and biota of cleaning a salmonid spawning channel. Fisheries Management and Ecology, 4, 111–26.CrossRefGoogle Scholar
Olli, K., Clarke, A., Danielsson, Å., et al. (2008). Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. Journal of Marine Systems, 73, 284–99.CrossRefGoogle Scholar
Peterson, C. G. (1986). Effects of discharge reduction on diatom colonization below a large hydroelectric dam. Journal of the North American Benthological Society, 5, 278–89.CrossRefGoogle Scholar
Pimental, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and economic costs of nonindigenous species in the United States. BioScience, 50, 53–65.CrossRefGoogle Scholar
Pite, D. P., Lane, K. A., Hermann, A. K., Spaulding, S. A., & Finney, B. P. (2009). Historical abundance and morphology of Didymosphenia species in Naknek Lake, Alaska. Acta Botanica Croatica, 68, 183–97.Google Scholar
Poff, N. L., Olden, J. D., Merritt, D. M., & Pepin, D. M. (2007). Homogenization of regional river dynamics by dams and global diversity implications. Proceedings of the National Academy of Sciences of the USA, 104, 5732–7.CrossRefGoogle Scholar
Rahel, F. (2002). Homogenization of freshwater faunas. Annual Review of Ecology and Systematics, 33, 291–315.CrossRefGoogle Scholar
Ricciardi, A. (2006). Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Diversity and Distributions, 12, 425–33.CrossRefGoogle Scholar
Ricciardi, A. & Rasmussen, J. B. (1998). Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1759–65.CrossRefGoogle Scholar
Sherbot, D. M. J. & Bothwell, M. L. (1993). Didymosphenia geminata (Gomphonemaceae). A review of the ecology of D. geminata and the physiochemical characteristics of endemic catchments on Vancouver Island. Saskatoon, Saskatchewan: National Hydrology Research Institute, Environment Canada, NHRI Contribution No. 93005
Sicko-Goad, L., Stoermer, E. F., & Kociolek, J. P. (1989). Diatom resting cell rejuvenation and formation: Time course, species records and distribution. Journal of Plankton Research, 11, 375–89.CrossRefGoogle Scholar
Simard, I. & Simoneau, M. (2008). Didymo dans les rivières du Québec: état de situation. Canadian Technical Report of Fisheries and Aquatic Sciences, 2795,15–20.Google Scholar
Simberloff, D. & Gibbons, L. (2004). Now you see them, now you don't! – population crashes of established introduced species. Biological Invasions, 6, 161–72.CrossRefGoogle Scholar
Skvortzow, B. W. (1935). Diatomées récoltées par le Père I. Licent au cours de ses voyages dans le Nord de la Chine au bas Tibet, en Mongolie et en Mandjourie. Publications du Musée Hoangho Paiho de Tien Tsin. Tienstsin, 36, 1–43.Google Scholar
Slynko, Y. V., Korneva, L. G., Rivier, I. K., et al. (2002). The Caspian–Volga-Baltic invasion corridor. In Invasive Aquatic Species of Europe: Distribution, Impacts and Management, ed. Leppäkovski, E., Gollasch, S., & Olenin, S., Dordrecht: Kluwer Academic Publishers, pp. 399–411.CrossRefGoogle Scholar
Smith, G. R. & Todd, T. N. (1984). Evolution of species flocks of fishes in north temperate lakes. In Evolution of Fish Species Flocks, ed. Echelle, A. A. & Kornfield, I., Orono: University of Maine at Orono Press, pp. 45–68.Google Scholar
Soininen, J., Paavola, R., & Muotka, T. (2003). Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography, 27, 330–42.CrossRefGoogle Scholar
Spaulding, S. A. & Elwell, L. (2007). Increase in nuisance blooms and geographic expansion of the freshwater diatom Didymosphenia geminata: recommendations for response. USGS Open File Report 2007–1425.Google Scholar
Stoermer, E. F., Emmert, G., Julius, M. L., & Schelske, C. L. (1996). Paleolimnologic evidence of rapid recent change in Lake Erie's trophic status. Canadian Journal of Fisheries and Aquatic Sciences, 53, 1451–8.CrossRefGoogle Scholar
Stoermer, E. F., Kociolek, J. P., Schelske, C. L., & Conley, D. J. (1987). Quantitative analysis of siliceous microfossils in the sediments of Lake Erie's central basin. Diatom Research, 2, 113–34.CrossRefGoogle Scholar
Stoermer, E. F., Wolin, J. A., & Schelske, C. L. (1993). Paleolimnological comparison of the Laurentian Great Lake based on diatoms. Limnology and Oceanography, 38, 1311–16.CrossRefGoogle Scholar
Stoermer, E. F., Wolin, J. A., Schelske, C. L., & Conley, D. J. (1985). An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in sediments. Journal of Phycology, 21, 257–76.CrossRefGoogle Scholar
Stoermer, E. F. & Yang, J. J. (1969). Plankton Diatom Assemblages in Lake Michigan. Great Lakes Research Division Special Report No. 47, Ann Arbor, MI: University of Michigan.CrossRefGoogle Scholar
Telford, R. J., Vandvik, V., & Birks, H. J. B. (2006). Dispersal limitations for microbial morphospecies. Science, 312, 1015.CrossRefGoogle ScholarPubMed
Theriot, E. C. & Stoermer, E. F. (1984). Principal component analysis of Stephanodiscus: observations on two new species from the Stephanodiscus niagarae complex. Bacillaria, 7, 37–58.Google Scholar
Theriot, E. C. & Stoermer, E. F. (1985). Phytoplankton distribution in Saginaw Bay. Journal of Great Lakes Research, 11, 132–42.Google Scholar
Vanderploeg, H. A., Nalepa, T. F., Jude, D. J., et al. (2002). Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1209–28.CrossRefGoogle Scholar
Vanormelingen, P., Verleyen, E., & Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation, 17, 393–405.CrossRefGoogle Scholar
Vaughn, J. C. (1961). Coagulation difficulties of the South District Filtration Plant. Pure Water, 13, 45–9.Google Scholar
Vieglais, C. M. C. (2008). Management approaches to didymo: the New Zealand experience. Canadian Technical Report of Fisheries and Aquatic Sciences, 2795, 54–5.Google Scholar
Vyverman, W., Verleyen, E., Sabbe, K., et al. (2007). Historical processes constrain patterns in global diatom diversity. Ecology, 88, 1924–31.CrossRefGoogle ScholarPubMed
Willis, K. J. & Birks, H. J. B. (2006). What is natural? The need for a long-term perspective in biodiversity conservation. Science, 314, 1261–5.CrossRefGoogle ScholarPubMed
Wolfe, A. P., Gorp, A. C., & Baron, J. S. (2003). Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology, 1, 153–68.CrossRefGoogle Scholar
Wolin, J. A., Stoermer, E. F., Schelske, C. L., & Conley, D. J. (1988). Siliceous microfossil succession in recent Lake Huron sediments. Archiv für Hydrobiologie, 114, 175–98.Google Scholar
Wujek, D. E. (1967). Some plankton diatoms from the Detroit River and the western end of Lake Erie adjacent to the Detroit River. The Ohio Journal of Science, 61(1), 32–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×