Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T12:07:21.504Z Has data issue: false hasContentIssue false

25 - Diatoms as indicators of environmental change in wetlands and peatlands

from Part V - Other applications

Published online by Cambridge University Press:  05 June 2012

Evelyn Gaiser
Affiliation:
Florida International University
Kathleen Rühland
Affiliation:
Queen's University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Wetlands comprise about 6% of the Earth's surface, but their ecological importance may be disproportionately higher (Batzer and Sharitz, 2006). Existing at the interface between terrestrial and aquatic landscapes, wetlands can support more species and greater productivity than adjacent communities because they are at the confluence of species pools and resources (Gopal et al., 2000; Wetzel, 2006). They are, therefore, important contributors to global biodiversity and their highly active biological communities modify nutrient and gas concentrations and soil-forming processes at a variety of scales. Organic wetlands (peatlands) store an estimated 450 gigatonnes of carbon (Gt C), equivalent to ∼20% of carbon in the terrestrial biosphere (Gorham, 1991; Maltby and Immirzi, 1993; Roulet, 2000) and almost equivalent to the entire global atmospheric carbon pool (Charman, 2002). The economic value of services that all wetland types provide to humans are reported to be higher than other ecosystems (Costanza et al., 1997) because they can be harvested for food, regulate availability and quality of fresh water, and protect neighboring landscapes from flooding.

Despite their importance, wetlands are being lost at an alarming rate. Almost half of the wetlands in the United States were drained or filled by 1970 (Tiner, 1984) and globally they are amongst the most threatened ecosystems on the planet. Threats come in the form of land loss and habitat degradation resulting from drainage for agricultural purposes, conversion for urban expansion, and flooding to create reservoirs for water storage or power generation.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 473 - 496
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaby, B. (1986). Palaeoecological studies of mires. In Handbook of Holocene Palaeoecology and Palaeohydrology, ed. Berglund, B. E., Chichester: John Wiley and Sons, pp. 145–64.Google Scholar
,ACIA (Arctic Climate Impact Assessment) (2004). Impacts of a Warming Arctic: Arctic Climate Impact Assessment, Cambridge: Cambridge University Press.Google Scholar
Anderson, N. J. (1990). Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnology and Oceanography, 35, 497–508.CrossRefGoogle Scholar
Bahls, L. L. (1993). Periphyton Bioassessment Methods for Montana Streams. Helena, MT: Montana State Water Quality Bureau.Google Scholar
Barker, P. A., Roberts, N., Lamb, H. F., & Kaars, S. (1994). Interpretation of Holocene lake-level change from diatom assemblages in Lake Sidi Ali, Middle Atlas, Morocco. Journal of Paleolimnology, 12, 223–8.CrossRefGoogle Scholar
Bartlett, K. B. & Harriss, R. C. (1993). Review and assessment of methane emissions from wetlands. Chemosphere, 26, 261–320.CrossRefGoogle Scholar
Battarbee, R. W. (1986). Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology, ed. Berglund, B. E., Toronto: John Wiley and Sons, pp. 527–70.Google Scholar
Batzer, D. P. & Sharitz, R. S. (2006). Ecology of Freshwater and Estuarine Wetlands. Los Angeles: University of California Press.Google Scholar
Bauer, I. E., Gignac, D., & Vitt, D. H. (2003). Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Canadian Journal of Botany, 81, 833–47.CrossRefGoogle Scholar
Bendell-Young, L. (2003). Peatland interstitial water chemistry in relation to that of surface pools along a peatland mineral gradient. Water, Air, and Soil Pollution, 143, 363–75.CrossRefGoogle Scholar
Bennett, P. C., Siegel, D. I., Hill, B. M., & Glaser, P. H. (1991). Fate of silicate minerals in a peat bog. Geology, 19, 328–31.2.3.CO;2>CrossRefGoogle Scholar
Beyens, L. (1985). On the subboreal climate of the Belgian Campine as deduced from diatom and testate amoebae analyses. Review of Palaeobotany and Palynology, 46, 9–31.CrossRefGoogle Scholar
Beyens, L. (1989). Moss dwelling diatom assemblages from Edgeøya (Svalbard). Polar Biology, 9, 423–30.CrossRefGoogle Scholar
Blundell, A. & Barber, K. (2005). A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate reconstructions. Quaternary Science Reviews, 24, 1261–77.CrossRefGoogle Scholar
Brazner, J. C., Danz, M. P., Trebitz, A. S., et al. (2007). Responsiveness of Great Lakes wetland indicators to human disturbances at multiple spatial scales: a multi-assemblage assessment. Journal of Great Lakes Research, 33, 42–66.CrossRefGoogle Scholar
Brown, K. M., Douglas, M. S. V., & Smol, J. P. (1994). Siliceous microfossils in a Holocene, High Arctic peat deposit (Nordvestø, northern Greenland). Canadian Journal of Botany, 72, 208–16.CrossRefGoogle Scholar
Brugam, R. B. (1980). Postglacial diatom stratigraphy of Kirchner Marsh, Minnesota. Quaternary Research, 13, 133–46.CrossRefGoogle Scholar
Brugam, R. B., McKeever, K., & Kolesa, L. (1998). A diatom-inferred water depth reconstruction for an upper peninsula, Michigan, lake. Journal of Paleolimnology, 20, 267–76.CrossRefGoogle Scholar
Brugam, R. B. & Swain, P. (2000). Diatom indicators of peatland development at Pogonia Bog Pond, Minnesota, USA. The Holocene, 10, 453–64.CrossRefGoogle Scholar
Bunting, M. J., Duthie, H. C., Campbell, D. R., Warner, B. G., & Turner, L. J. (1997). A paleoecological record of recent environmental change at Big Creek Marsh, Long Point, Lake Erie. Journal of Great Lakes Research, 23, 349–68.CrossRefGoogle Scholar
Burkholder, J. M. (1996). Interactions of benthic algae with their substrata. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L., & Lowe, R. L.. San Diego, CA: Academic Press, pp. 253–97Google Scholar
Camill, P., Lynch, J. A., Clark, J. S., Adams, J. B., & Jordan, B. (2001). Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems, 4, 461–78.CrossRefGoogle Scholar
Campbell, D. R., Duthie, H. C., & Warner, B. G. (1997). Post-glacial development of a kettle-hole peatland in southern Ontario. Ecoscience, 4, 404–18.CrossRefGoogle Scholar
Charman, D. (2002). Peatlands and Environmental Change, Chichester: John Wiley and Sons.Google Scholar
Chipps, S. R., Hubbard, D. E., Werlin, K. B., et al. (2006). Association between wetland disturbance and biological attributes in floodplain wetlands. Wetlands, 26, 497–508.CrossRefGoogle Scholar
Clymo, R. S. (1984). The limits to bog growth. Philosophical Transactions of the Royal Society of London, B 303, 605–54.CrossRefGoogle Scholar
Clymo, R. S., Oldfield, F., Appleby, P. G., et al. (1990). A record of atmospheric deposition in a rain-dependent peatland. Philosophical Transactions of the Royal Society of London, B 327, 331–8.CrossRefGoogle Scholar
Cochran-Stafira, D. L. & Andersen, R. A. (1984). Diatom flora of a kettle-hole bog in relation to hydrarch succession zones. Hydrobiologia, 109, 265–73.CrossRefGoogle Scholar
Cooper, S. R., Goman, M., & Richardson, C. J. (2008). Historical changes in water quality and vegetation in WCA-2A as determined by paleoecological analyses. In The Everglades Experiment: Lessons for Ecosystem Restoration, ed. Richardson, C. J., New York: Springer, ch. 12, pp. 321–50.Google Scholar
Cooper, S. R., Huvane, J., Vaithiyanathan, P., & Richardson, C. J. (1999). Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area-2A, USA. Journal of Paleolimnology, 22, 413–37.CrossRefGoogle Scholar
Costanza, R., d'Arge, R., deGroot, R., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–60.CrossRefGoogle Scholar
Dean, W. E., Bradbury, J. P., Andersen, R. Y., & Barnosky, C. W. (1984). The variability of Holocene climate change: evidence from varved sediments. Science, 226, 1191–4.CrossRefGoogle Scholar
Della-Bella, V., Puccinelli, C., Marcheggiani, S., & Mancini, L. (2007). Benthic diatom communities and their relationship to water chemistry in wetlands of central Italy. Annals of Limnologie, 43, 89–99.CrossRefGoogle Scholar
Mars, H. & Wassen, M. J. (1999). Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecology, 140, 41–51.CrossRefGoogle Scholar
Douglas, M. S. V. & Smol, J. P. (1987). Siliceous protozoan plates in lake sediments. Hydrobiologia, 154, 13–23.CrossRefGoogle Scholar
Duthie, H. C., Yang, J. R., Edwards, T. W. D., Wolfe, B. B., & Warner, B.G. (1996). Hamilton Harbour, Ontario: 8300 years of limnological and environmental change inferred from microfossil and isotopic analyses. Journal of Paleolimnology, 15, 79–97.CrossRefGoogle Scholar
Dyer, K. R. (1995). Sediment transport processes in estuaries. In Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology 53, ed. Perillo, G. M. E., Amsterdam: Elsevier Science Publishers, pp. 423–49.CrossRefGoogle Scholar
Earle, J. C. & Duthie, H. C. (1986). A multivariate statistical approach for interpreting marshland diatom succession. In Proceedings of the 8th Diatom Symposium, ed. Ricard, M., Königstein: Koeltz Scientific Books, pp. 441–58.Google Scholar
Engle, D. L. & Melack, J. M. (1993). Consequences of riverine flooding for seston and the periphyton of floating meadows in an Amazon floodplain lake. Limnology and Oceanography, 38, 1500–20.CrossRefGoogle Scholar
Ewe, S. M. L., Gaiser, E. E., Childers, D. L., et al. (2006). Spatial and temporal patterns of aboveground net primary productivity (ANPP) in the Florida Coastal Everglades LTER (2001–2004). Hydrobiologia, 569, 459–74.CrossRefGoogle Scholar
Finkelstein, S. A. & Davis, A. M. (2005a). Modern pollen rain and diatom assemblages in a Lake Erie coastal marsh. Wetlands, 25, 551–63.CrossRefGoogle Scholar
Finkelstein, S. A. & Davis, A. M. (2005b). Paleoenvironmental records of water level and climatic changes from the middle to late Holocene at a Lake Erie coastal wetland, Ontario, Canada. Quaternary Research, 65, 33–43.CrossRefGoogle Scholar
Fluin, J., Gell, P., Haynes, D., Tibby, J., & Hancock, G. (2007). Paleolimnological evidence for the independent evolution of neighbouring terminal lakes, the Murray Darling Basin, Australia. Hydrobiologia, 591, 117–34.CrossRefGoogle Scholar
Foged, N. (1951). The diatom flora of some Danish springs. Natura Jutlandica, 4–5, 1–84.Google Scholar
Foster, D. R., King, G. A., Glaser, P. H., & Wright, H. E. (1983). Origin of string patterns in northern peatlands. Nature, 306, 256–7.CrossRefGoogle Scholar
Fritz, S. C., Juggins, S., Battarbee, R. W., & Engstrom, D. R. (1991). Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature, 352, 706–8.CrossRefGoogle Scholar
Fung, I. Y., Lerner, J. J., Matthews, E., et al. (1991). Three-dimensional model synthesis of global methane cycle. Journal of Geophysical Research, 96, 13033–65.CrossRefGoogle Scholar
Gaiser, E. (2009). Periphyton as an indicator of restoration in the Everglades. Ecological Indicators. DOI:10.1016/j.ecolind.2008.08.004.CrossRefGoogle Scholar
Gaiser, E. E., Brooks, M. J., Kenney, W., Schelske, C. L., & Taylor, B. E. (2004b). Interpreting the hydrologic history of a temporary pond using siliceous microfossils. Journal of Paleolimnology, 31, 63–76.CrossRefGoogle Scholar
Gaiser, E. E., Philippi, T. E., & Taylor, B. E. (1998). Distribution of diatoms among intermittent ponds on the Atlantic Coastal Plain: development of a model to predict drought periodicity from surface sediment assemblages. Journal of Paleolimnology, 20, 71–90.CrossRefGoogle Scholar
Gaiser, E. E., Richards, J. H., Trexler, J. C., Jones, R. D., & Childers, D. L. (2006b). Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography, 51, 617–30.CrossRefGoogle Scholar
Gaiser, E. E., Scinto, L. J., Richards, J. H., et al. (2004c). Phosphorus in periphyton mats provides best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research, 38, 507–16.CrossRefGoogle Scholar
Gaiser, E. E., Taylor, B. E., & Brooks, M. J. (2001). Establishment of wetlands on the southeastern Atlantic Coastal Plain: paleolimnological evidence of a mid-Holocene hydrologic threshold from a South Carolina pond. Journal of Paleolimnology, 26, 373–91.CrossRefGoogle Scholar
Gaiser, E. E., Trexler, J. C., Richards, J. H., et al. (2005). Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality, 34, 717–23.CrossRefGoogle ScholarPubMed
Gaiser, E. E., Wachnicka, A., Ruiz, P., Tobias, F. A., & Ross, M. S. (2004a). Diatom indicators of ecosystem change in coastal wetlands. In Estuarine Indicators, ed. Bortone, S., Boca Raton, FL: CRC Press, pp. 127–44.Google Scholar
Gaiser, E. E., Zafiris, A., Ruiz, P. L., Tobias, F. A. C., & Ross, M. S. (2006a). Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal south Florida. Hydrobiologia, 569, 237–57.CrossRefGoogle Scholar
Gasse, F., Barker, P.Gell, P. A., Fritz, S. C., & Chalie, F. (1997). Diatom-inferred salinity in palaeolakes: an indirect tracer of climate change. Quaternary Science Reviews, 16, 547–63.CrossRefGoogle Scholar
Gasse, F., Juggins, S., & BenKhelifa, L. (1995). Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 31–54.CrossRefGoogle Scholar
Gell, P. A. (1997). The development of a diatom database for inferring lake salinity, western Victoria, Australia: towards a quantitative approach for reconstructing past climates. Australian Journal of Botany, 45, 389–423.CrossRefGoogle Scholar
Gell, P. J., Bulpin, S., Wallbrink, P., Bickford, S., & Hancock, G. (2005). Tareena Billabong – a paleolimnological history of an ever changing wetland, Chowilla Floodplain, lower Murray–Darling Basin. Marine and Freshwater Research, 56, 441–56.CrossRefGoogle Scholar
Gell, P. A., Sluiter, I. R., & Fluin, J. (2002). Seasonal and inter-annual variations in diatom assemblages in Murray River-connected wetlands in northwest Victoria, Australia. Marine and Freshwater Research, 53, 981–92.CrossRefGoogle Scholar
Gell, P. A., Sonneman, M., Reid, M., Illman, M., & Sincock, A. (1999). An illustrated key to common diatom genera from Southern Australia. The Murray–Darling Freshwater Research Centre Identification Guide No. 26.
Gell, P., Tibby, J., Little, F., Baldwin, D., & Hancock, G. (2007). The impact of regulation and salinisation on floodplain lakes: the lower River Murray, Australia. Hydrobiologia, 591, 135–46.CrossRefGoogle Scholar
Gignac, L. D., Vitt, D. H., Zoltai, S. C., & Bayley, S. E. (1991). Bryophyte response surfaces along climatic, chemical, and physical gradients in peatlands of western Canada. Nova Hedwigia, 53, 27–71.Google Scholar
Godwin, H. (1940). Pollen analysis and forest history of England and Wales. New Phytologist, 39, 370–400.CrossRefGoogle Scholar
Goldsborough, L. G. & Robinson, G. G. C. (1996). Pattern in wetlands. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L., & Lowe, R. L.. San Diego, CA: Academic Press, ch. 4, pp. 77–117.Google Scholar
Gopal, B., Junk, J. W., & Davis, J. A. (2000). Biodiversity in Wetlands: Assessment, Function and Conservation. Leiden: Backhuys Publishers.Google Scholar
Gordon, L., Dunlop, M., & Foran, B. (2003). Land cover change and water vapour flows: learning from Australia. Philosophical Transactions of the Royal Society of London, B 358, 1973–84.CrossRefGoogle ScholarPubMed
Gorham, E. (1956). The ionic composition of some bog and fen waters in the English Lake District. Journal of Ecology, 44, 142–52.CrossRefGoogle Scholar
Gorham, E. (1991). Northern peatlands: role in the carbon budget and probable responses to global warming. Ecological Applications, 1, 182–95.CrossRefGoogle Scholar
Gorham, E. (1995). The biogeochemistry of northern peatlands and its possible responses to global warming. In Biotic Feedbacks in the Global Climate System. Will the Warming Feed the Warming? ed. Woodwell, G. M. & Mackenzie, F. T., New York: Oxford University Press, pp. 169–87.Google Scholar
Håkanson, L. (1977). The influence of wind, fetch and water depth on the distribution of sediments in Lake Vånern, Sweden. Canadian Journal of Earth Sciences, 14, 397–412.CrossRefGoogle Scholar
Hamilton, S. & Shennan, I. (2005). Late Holocene relative sea-level changes and the earthquake deformation cycle around upper Cook Inlet, Alaska. Quaternary Science Reviews, 24, 1470–98.CrossRefGoogle Scholar
Haynes, D., Gell, P., Tibby, J., Hancock, G., & Goonan, P. (2007). Against the tide: the freshening of naturally saline coastal lakes, southeastern South Australia. Hydrobiologia, 591, 165–83.CrossRefGoogle Scholar
Hemphill-Haley, E. (1996). Diatoms as an aid in identifying late-Holocene tsunami deposits. The Holocene, 6, 439–48.CrossRefGoogle Scholar
Hickman, M. & Vitt, D. H. (1973). The aerial epiphytic diatom flora of moss species from subantarctic Campbell Island. Nova Hedwigia, 24, 443–58.Google Scholar
Hustedt, F. (1927–1966). Die Kieselalgen Deutschlands, Österreichs und der Schweiz unter Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete. In Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Leipzig Akademische Verlagsgesellschaft, Part 1 (1927–1930); Part 2 (1931–1959); Part 3 (1961–1966).
Jackson, C. R. (2006). Wetland hydrology. In Ecology of Freshwater and Estuarine Wetlands, ed. Batzer, D. P. & Sharitz, R. S., Los Angeles, CA: University of California Press, pp. 43–81.Google Scholar
Jasinski, J. P. P., Warner, B. G., Andreev, A. A., et al. (1998). Holocene environmental history of a peatland in the Lena River valley, Siberia. Canadian Journal of Earth Sciences, 35, 637–48.CrossRefGoogle Scholar
Kettles, I. M. & Tarnocai, C. (1999). Development of a model for estimating the sensitivity of Canadian peatlands to climate warming. Geographie physique et Quaternaire 53, 323–38.CrossRefGoogle Scholar
Kienel, U., Sigert, C., & Hahne, J. (1999). Late Quaternary palaeoenvironmental reconstructions from a permafrost sequence (North Siberian Lowland, SE Taymyr Peninsula) – a multidisciplinary case study. Boreas, 28, 181–93.CrossRefGoogle Scholar
Kilroy, C., Biggs, B. J. F., Vyverman, W., & Broady, P. A. (2006). Benthic diatom communities in subalpine pools in New Zealand: relationships to environmental variables. Hydrobiologia, 561, 95–110.CrossRefGoogle Scholar
Kingston, J. C. (1982). Association and distribution of common diatoms in surface samples from northern Minnesota peatlands. Nova Hedwigia, 73, 333–46.Google Scholar
Kingston, J. C. (1984). Palaeolimnology of a lake and adjacent fen in southeastern Labrador: evidence from diatom assemblages. In Proceedings of the 7th International Diatom Symposium, ed. Mann, D. G., Königstein: Koeltz Scientific Books, pp. 443–53.Google Scholar
Klinger, L. F. (1996). The myth of the classic hydrosere model of bog succession. Arctic and Alpine Research, 28, 1–9.CrossRefGoogle Scholar
Korhola, A. (1990). Paleolimnology and hydroseral development of the Kotasuo bog, southern Finland, with special reference to the Cladocera. Annales Academie Scientiarum Fennicae A III 155, 40.Google Scholar
Korhola, A. (1992a). Mire induction, ecosystem dynamics and lateral extension on raised bogs in the southern coastal area of Finland. Fennia, 170, 25–94.Google Scholar
Korhola, A. (1992b). The Early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. Journal of Paleolimnology, 7, 1–22.CrossRefGoogle Scholar
Korhola, A. (1995). The Litorina transgressions in the Helsinki region, southern Finland: new evidence from coastal mire deposits. Boreas, 24, 173–83.CrossRefGoogle Scholar
Krasske, G. (1932). Beiträge zur Kenntnis der Diatomoceenflora der Alpen. Hedwigia, 72, 92–134.Google Scholar
Krasske, G. (1936). Die Diatomeenflora der Moosrasen des Wilhelmshöher Parkes.In Festschrift des Vereins für Naturkunde zu Kassel zum hundertjährigen Bestehen, pp. 151–64.Google Scholar
Krukowski, S. T. (1988). Sodium metatungstate: a new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. Journal of Paleontology, 62, 314–16.CrossRefGoogle Scholar
Kuhry, P. & Turunen, J. (2006). The postglacial development of boreal and subarctic peatlands. In Boreal Peatland Ecosystems, ed. Weider, R. K. & Vitt, D. H., Berlin: Springer, pp. 25–46.CrossRefGoogle Scholar
Lane, C. R. & Brown, M. T. (2006). Energy-based land use predictors of proximal factors and benthic diatom composition in Florida freshwater marshes. Environmental Monitoring and Assessment, 117, 433–50.CrossRefGoogle ScholarPubMed
Lane, C. R. & Brown, M. T. (2007). Diatoms as indicators of isolated herbaceous wetland condition in Florida, USA. Ecological Indicators, 7, 521–40.CrossRefGoogle Scholar
Lange-Bertalot, H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, 64, 285–304.Google Scholar
Last, W.M. & Smol, J. P. (2001). Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Lavoie, M., Paré, D., & Bergeron, Y. (2005). Impact of global change and forest management on carbon sequestration in northern forested peatlands. Environmental Reviews, 13, 199–240.CrossRefGoogle Scholar
Leahy, P. J., Tibby, J., Kershaw, A. P., Heijnis, H., & Kershaw, J. S. (2005). The impact of European settlement on Bolin Billabong, a Yarra River floodplain lake, Melbourne, Australia. River Research and Applications, 21, 131–49.CrossRefGoogle Scholar
Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. F., & Handelsman, J. (2008). Rules of engagement: interspecies interactions that regulate microbial communities. Annual Review of Microbiology, 62, 375–401.CrossRefGoogle ScholarPubMed
Lortie, G. (1983). Les diatomées fossils de deux tourbières ombrotrophies du Bas-Saint-Laurent, Québec. Géographie physique et Quaternaire, 37, 159–77.CrossRefGoogle Scholar
Lougheed, V. L., Parker, C. A., & Stevenson, R. J. (2007). Using non-linear responses of multiple taxonomic groups to establish criteria indicative of wetland biological condition. Wetlands, 27, 96–109.CrossRefGoogle Scholar
Lowe, R. L. (1974). Environmental Requirements and Pollution Tolerance of Freshwater Diatoms. Cincinnati, OH: US Environmental Protection Agency, EPA-670/4–74-005.Google Scholar
MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., et al. (2006). Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science, 314, 285–8.CrossRefGoogle ScholarPubMed
Maltby, E. & Immirzi, P. (1993). Carbon dynamics in peatlands and other wetland soils: regional and global perspectives. Chemosphere, 27, 999–1023.CrossRefGoogle Scholar
Mayer, P. M. & Galatowitsch, S. M. (2001). Assessing ecosystem integrity of restored prairie wetlands from species production–diversity relationships. Hydrobiologia, 443, 177–85.CrossRefGoogle Scholar
McCormick, P. V. & O'Dell, M. B. (1996). Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. Journal of the North American Benthological Society, 15, 450–68.CrossRefGoogle Scholar
McCormick, P. V. & Stevenson, R. J. (1998). Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology, 4, 726–33.CrossRefGoogle Scholar
Metzeltin, D. & Lange-Bertalot, H. (1998). Tropical diatoms of South America. I. Iconographia Diatomologica, 5, 1–695.Google Scholar
Mitsch, W. J. & Gosselink, J. G. (2000). Wetlands, 3rd edition. New York, NY: John Wiley and Sons.Google Scholar
Myers-Smith, I. H., Harden, J. W., Wilmking, M., Fuller, C. C., McGuire, A.D. & Chapin III, F. S. (2008). Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences, 5, 1273–86.CrossRefGoogle Scholar
,NWWG (National Wetlands Working Group). (1988). Wetlands of Canada. Ecological Land Classification Series No. 24, Ottawa: Sustainable Development Branch, Environment Canada, and Montréal: Polyscience Publications, Inc.
Oechel, W. C., Hastings, S. J., Vourlitis, G., Jenkins, M., Riechers, G., & Grulke, N. (1993). Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to source. Nature, 361, 520–3.CrossRefGoogle Scholar
O'Sullivan, P. E., Heathwaite, A. L., Appleby, P. G., et al. (1991). Paleolimnology of Slapton Ley, Devon, UK. Hydrobiologia, 214, 115–24.CrossRefGoogle Scholar
Ovenden, L. (1988). Holocene proxy-climate data from the Canadian Arctic. Geological Survey of Canada Paper, 88–22.Google Scholar
Owen, R. B., Renaut, R. W., Hover, V. C., Ashley, G. M., & Muasya, A. M. (2004). Swamps, springs and diatoms: wetlands of the semi-arid Bogoria–Baringo Rift, Kenya. Hydrobiologia, 581, 59–78.CrossRefGoogle Scholar
Pan, Y. D. & Stevenson, R. J. (1996). Gradient analysis of diatom assemblages in western Kentucky wetlands. Journal of Phycology, 32, 222–32.CrossRefGoogle Scholar
Pan, Y., Stevenson, R. J., Vaithyanathan, P., Slate, J., & Richardson, C. J. (2000). Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshwater Biology, 44, 339–53.CrossRefGoogle Scholar
Parr, J. F., Taffs, K. H., & Lane, C. M. (2004). A microwave digestion technique for the extraction of fossil diatoms from coastal lake and swamp sediments. Journal of Paleolimnology, 31, 383–90.CrossRefGoogle Scholar
Patrick, R. (1954). The diatom flora of Bethany Bog. Journal of Protozoology, 1, 34–7.CrossRefGoogle Scholar
Pienitz, R. (2001). Analyse des microrestes végétaux: diatomées. In Écologie des tourbières du Québec-Labrador, ed. Payette, S. & Rochefort, L.. Québec: Les Presses de l'Université Laval, pp. 311–26.Google Scholar
Poulíčková, A., Hájková, P., Křenková, P., & Hájek, M. (2004). Distribution of diatoms and bryophytes on linear transects through spring fens. Nova Hedwigia, 78, 411–24.CrossRefGoogle Scholar
Punning, J. M. & Puusepp, L. (2007). Diatom assemblages in sediments of Lake Juusa, southern Estonia with an assessment of their habitat. Hydrobiologia, 586, 27–41.CrossRefGoogle Scholar
Racca, M. J., Philibert, A., Racca, R., & Prairie, Y. T. (2001). A comparison between diatom-based pH inference models using artificial neural networks (ANN), weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions. Journal of Paleolimnology, 26, 411–22.CrossRefGoogle Scholar
Reavie, E. D., Douglas, S. V., & Williams, N. E. (2001). Paleoecology of a groundwater outflow using siliceous microfossils. Ecoscience, 8, 239–46.CrossRefGoogle Scholar
Reavie, E. D., Axler, R. P., Sgro, G. V., et al. (2006). Diatom-based weighted-averaging transfer functions for Great Lakes coastal water quality: relationships to watershed characteristics. Journal of Great Lakes Research, 32, 321–47.CrossRefGoogle Scholar
Reiss, K. C. & Brown, M. T. (2007). Evaluation of Florida palustrine wetlands: application of USEPA levels 1, 2 and 3 assessment methods. EcoHealth, 4, 206–18.CrossRefGoogle Scholar
Rejmánková, E. (2001). Effect of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, central America. Plant and Soil, 236, 33–53.CrossRefGoogle Scholar
Rigg, G. B. (1940). The development of Sphagnum bogs in North America. Botanical Review, 6, 666–93.CrossRefGoogle Scholar
Roulet, N. T. (2000). Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada. Wetlands, 20, 605–15.CrossRefGoogle Scholar
Round, F. E. (1981). The Ecology of Algae. Cambridge: Cambridge University Press.Google Scholar
Rühland, K., Phadtare, N. R., Pant, R. K., Sangode, S.J., & Smol, J. P. (2006). Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophysical Research Letters, 33, L15709, DOI:10.1029/2006GL026704.CrossRefGoogle Scholar
Rühland, K., Smol, J. P., Jasinski, J. P. P., & Warner, B. (2000). Response of diatoms and other siliceous indicators to the developmental history of a peatland in the Tiksi Forest, Siberia, Russia. Arctic, Antarctic and Alpine Research, 32, 167–78.CrossRefGoogle Scholar
Sawai, Y., Satake, K., Kamataki, T., et al. (2004). Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science, 306, 1918–20.CrossRefGoogle ScholarPubMed
Sears, P. B. & Couch, G. C. (1932). Microfossils in an Arkansas peat and their significance. The Ohio Journal of Science, 32, 63–68.Google Scholar
Serreze, M. C., Walsh, J. E., Chapin, F. S., et al. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159–207.CrossRefGoogle Scholar
Slate, J. E. & Stevenson, R. J. (2000). Recent and abrupt environmental change in the Florida Everglades indicated from siliceous microfossils. Wetlands, 20, 346–56.CrossRefGoogle Scholar
Slate, J. E. & Stevenson, R. J. (2007). The diatom flora of phosphorus-enriched and unenriched sites in an Everglades marsh. Diatom Research, 22, 355–86.CrossRefGoogle Scholar
Smith, L. C., MacDonald, G. M., Velichko, A. A., et al. (2004). Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science, 303, 353–6.CrossRefGoogle ScholarPubMed
Smol, J. P. (1988). Paleoclimate proxy data from freshwater Arctic diatoms. Verhundlungen der Internationalen Vereinigung von Limnologen, 23, 837–44.Google Scholar
Smol, J. P. (2008). Pollution of Lakes and Rivers: a Paleoenvironmental Perspective, 2nd edition, New York: Oxford University Press.Google Scholar
Sommerville, D. E. & Pruitt, B. A. (2006). United States wetland regulation and policy. In Ecology of Freshwater and Estuarine Wetlands, ed. Batzer, D. P. & Sharitz, R. S., Los Angeles, CA: University of California Press, pp. 313–47.Google Scholar
Sterrenburg, F. A. S., Gordon, R., Tiffany, M.-A. & Nagy, S. S. (2007). Diatoms: living in a constructal environment. In Algae and Cyanobacteria in Extreme Environments, ed. Seckbach, J.. Dordrecht: Springer, pp. 141–72.CrossRefGoogle Scholar
Stevenson, R. J. (1998). Diatom indicators of stream and wetland stressors in a risk management framework. Environmental Monitoring and Assessment, 51, 107–18.CrossRefGoogle Scholar
Stevenson, R. J. & Bahls, L. (1999). Periphyton protocols. In Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd edition, ed. Barbour, M., Gerritsen, J., Snyder, B., & Stribling, J., EPA 841-B-99–002, Washington, DC: United States Environmental Protection Agency, Office of Water, ch. 6.Google Scholar
Stevenson, R., Bothwell, M., & Lowe, R. (1996). Algal Ecology: Freshwater Benthic Ecosystems. Academic Press: San Francisco.Google Scholar
Taffs, K. H. (2001). Diatoms as indicators of wetland salinity in the upper south east of South Australia. The Holocene, 11, 281–90.CrossRefGoogle Scholar
Taffs, K. H., Farago, L. J., Heijnis, H., & Jacobsen, G. (2008). A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp, eastern Australia. Journal of Paleolimnology, 39, 71–82.CrossRefGoogle Scholar
Tarnocai, C. (2006). The effect of climate change on carbon in Canadian peatlands. Global and Planetary Change, 53, 222–32.CrossRefGoogle Scholar
Thompson, T. A., Miller, C. S., Doss, P. K., Thompson, L. D. P., & Baedke, S. J. (1991). Land-based vibracoring and vibracore analysis; tips, tricks and traps. Bloomington, IN: Indiana Geological Survey, Occasional Paper 58.
Tibby, J., Gell, P. A., Fluin, J., & Sluiter, I. R. K. (2007). Diatom-salinity relationships in wetlands: assessing the influence of salinity variability on the development of inference models. Hydrobiologia, 591, 207–18.CrossRefGoogle Scholar
Tiner, R. W. (1984). Wetlands of the United States: Current Status and Recent Trends. Washington, DC: United States Department of Interior, Fish and Wildlife Service.Google Scholar
Tinner, W., Bigler, C., Gedye, S., et al. (2008). A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. Ecology, 89, 729–43.CrossRefGoogle ScholarPubMed
Turunen, J. & Tolonen, K. (1996). Rate of carbon accumulation in boreal peatlands and climate change. In Global Peat Resources, ed. Lappalainen, E., Jyska: International Peat Society, pp. 21–28.Google Scholar
Turetsky, M. R., Manning, S. W., & Wieder, R. K. (2004). Dating recent peat deposits. Wetlands, 24, 324–56.CrossRefGoogle Scholar
Dam, H., Suurmond, G., & Braak, C. J. F. (1981). Impact of acidification on diatoms and chemistry of Dutch moorland pools. Hydrobiologia, 83, 425–59.Google Scholar
Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–33.CrossRefGoogle Scholar
Vijver, B. & Beyens, L. (1997). The epiphytic diatom flora of mosses from Strømness Bay area, South Georgia. Polar Biology, 17, 492–501.CrossRefGoogle Scholar
Vijver, B., & Beyens, L. (1999). Moss diatom communities from Ile de la Possession (Crozet, Subantarctica) and their relationship with moisture. Polar Biology, 22, 219–31.CrossRefGoogle Scholar
Vijver, B., Ledeganck, P., & Beyens, L. (2001). Habitat preference in freshwater diatom communities from sub-Antarctic Îles Kerguelen. Antarctic Science, 13, 28–36.CrossRefGoogle Scholar
Vitt, D. H. (1990). Growth and production dynamics of boreal mosses over climatic, chemical and tropographic gradients. Botanical Journal of the Linnean Society, 104, 35–59.CrossRefGoogle Scholar
Vitt, D. H., Achuff, P., & Andrus, R.E. (1975). The vegetation and chemical properties of patterned fens in the Swan Hills, north central Alberta. Canadian Journal of Botany, 53, 2776–95.CrossRefGoogle Scholar
Post, L. (1916). Om Skogstradspollen i sydsvendka torfmosselagerfoljder (foredragsreferat). Geologiska Föreningen i Stockholm Förhandlingar, 38, 384–94.Google Scholar
Vymazal, J. (1995). Algae and Elemental Cycling in Wetlands. Boca Raton, FL: Lewis Publishers.Google Scholar
Walker, I. & Paterson, C. G. (1986). Associations of diatoms in the surficial sediments of lakes and peat pools in Atlantic Canada. Hydrobiologia, 134, 265–72.CrossRefGoogle Scholar
Warner, B. G. (1987). Abundance and diversity of testate amoebae (Rhizopoda, Testacea) in Sphagnum peatlands in southwestern Ontario, Canada. Archiv für Protistenkunde, 133, 173–89.CrossRefGoogle Scholar
Weilhoefer, C. L. & Pan, Y. (2006). Diatom-based bioassessment in wetlands: how many samples do we need to characterize the diatom assemblage in a wetland adequately? Wetlands, 26, 793–802.CrossRefGoogle Scholar
Weilhoefer, C. L. & Pan, Y. (2007). Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA. Wetlands, 27, 668–82.CrossRefGoogle Scholar
Weilhoefer, C. L., Pan, Y., & Eppard, S. (2008). The effects of river floodwaters on floodplain wetland water quality and diatom assemblages. Wetlands, 28, 473–86.CrossRefGoogle Scholar
Wein, R. W., Burzynski, M. P., Sreenivasa, B. A., & Tolonen, K. (1987). Bog profile evidence of fire and vegetation dynamics since 3000 years BP in the Acadian Forest. Canadian Journal of Botany, 65, 1180–6.CrossRefGoogle Scholar
Wetzel, R. G. (2006). Wetland ecosystem processes. In Ecology of Freshwater and Estuarine Wetlands, ed. Batzer, D. P. & Sharitz, R. S., Los Angeles, CA: University of California Press, pp. 285–312.Google Scholar
Yang, J. R. & Duthie, H. C. (1995). Regression and weighted averaging models relating surficial sedimentary diatom assemblages to water depth in Lake Ontario. Journal of Great Lakes Research, 21, 84–94.CrossRefGoogle Scholar
Zedler, J. B. (2006). Wetland restoration. In Ecology of Freshwater and Estuarine Wetlands, ed. Batzer, D. P. & Sharitz, R. S., Los Angeles, CA: University of California Press, pp. 348–406.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×