Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T08:52:38.028Z Has data issue: false hasContentIssue false

Chapter 10 - Brain embolism

from Part II - Stroke syndromes

Published online by Cambridge University Press:  05 August 2016

Louis R. Caplan
Affiliation:
Department of Neurology, Beth Israel Deaconess Medical Center, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Caplan's Stroke
A Clinical Approach
, pp. 312 - 363
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caplan, LR. Embolic particles. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 259275.CrossRefGoogle Scholar
Molina, C, Alexandrov, A. Transcranial Doppler ultrasound. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 113128.Google Scholar
Caplan, LR. Brain embolism, revisited. Neurology 1993;43:12811287.Google Scholar
Caplan, LR. Brain embolism. In Caplan, LR, Hurst, JW, Chimowitz, M (eds), Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 35185.Google Scholar
Markus, HS. Transcranial Doppler detection of circulating cerebral emboli, a review. Stroke 1993;24:12461250.Google Scholar
Sliwka, U, Job, F-P, Wissuwa, D, et al. Occurrence of transcranial Doppler high-intensity transient signals in patients with potential cardiac sources of embolism, a prospective study. Stroke 1995;26:20672070.Google Scholar
Daffertshofer, M, Ries, S, Schminke, U, Hennerici, M. High-intensity transient signals in patients with cerebral ischemia. Stroke 1996;27:18441849.Google Scholar
Sliwka, U, Lingnau, A, Stohlmann, W-D, et al. Prevalence and time course of microembolic signals in patients with acute strokes, a prospective study. Stroke 1997;28:358363.Google Scholar
Babikian, VL, Caplan, LR. Brain embolism is a dynamic process with variable characteristics. Neurology 2000;54:797801.CrossRefGoogle ScholarPubMed
Caplan, LR. Recipient artery. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 3159.Google Scholar
Mohr, JP, Caplan, LR, Melski, JW, et al. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;29:754762.Google Scholar
Caplan, LR, Hier, DB, D’Cruz, I. Cerebral embolism in the Michael Reese Stroke Registry. Stroke 1983;14:530536.CrossRefGoogle ScholarPubMed
Mohr, JP, Gautier, JC, Hier, DB, Stein, RW. Middle cerebral artery. In Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, FM (eds), Stroke, Pathophysiology, Diagnosis, and Management, Vol 1. New York: Churchill Livingstone, 1986, pp 377450.Google Scholar
Minematsu, K, Yamaguchi, T, Omae, T. “Spectacular shrinking deficit”: Rapid recovery from a major hemispheric syndrome by migration of an embolus. Neurology 1992;42:157162.CrossRefGoogle Scholar
Bogousslavsky, J, van Melle, G, Regli, F. The Lausanne Stroke Registry: Analysis of 1000 consecutive patients with first stroke. Stroke 1988;19:10831092.Google Scholar
Gacs, G, Merer, FT, Bodosi, M. Balloon catheter as a model of cerebral emboli in humans. Stroke 1982;13:3942.Google Scholar
Helgason, C. Cardioembolic stroke topography and pathogenesis. Cerebrovasc Brain Metab Rev 1992;4:2858.Google Scholar
Caplan, LR. Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis, and Management of Posterior Circulation Disease. Cambridge: Cambridge University Press, 2015.Google Scholar
Caplan, LR. Top of the basilar syndrome: Selected clinical aspects. Neurology 1980;30:7279.Google Scholar
Mehler, MF. The rostral basilar artery syndrome: Diagnosis, etiology, prognosis. Neurology 1989;39:916.CrossRefGoogle ScholarPubMed
Caplan, LR. Cerebellar infarcts: Key features. Rev Neurol Dis 2005;2:5160.Google Scholar
Lodder, J, Krijne-Kubat, B, Broekman, J. Cerebral hemorrhagic infarction at autopsy: Cardiac embolic cause and the relationship to the cause of death. Stroke 1986;17:626629.CrossRefGoogle ScholarPubMed
Hart, RG, Easton, JD. Hemorrhagic infarcts. Stroke 1986;17:586589.CrossRefGoogle ScholarPubMed
Timsit, SG, Sacco, RL, Mohr, JP, et al. Brain infarction severity differs according to cardiac or arterial embolic source. Neurology 1993;43:728733.Google Scholar
Bladin, CF. Seizures After Stroke. Melbourne: University of Melbourne, 1997. Thesis.Google Scholar
Kittner, SJ, Sharkness, CM, Price, TR, et al. Infarcts with a cardiac source of embolism in the NINCDS Stroke Data Bank: Historical features. Neurology 1990;40:281284.Google Scholar
Hinton, RC, Kistler, JP, Fallon, JR, Friedlich, AL, Fisher, CM. Influence of etiology of atrial fibrillation on incidence of systemic embolism. Am J Card 1977;40:509513.Google Scholar
Abboud, H, Labreuche, J, Gongora-Riverra, F, et al. Prevalence and determinants of subdiaphragmatic visceral infarction in patients with fatal stroke. Stroke 2007;38:14421446.Google Scholar
Ringelstein, EB, Koschorke, S, Holling, A, et al. Computed tomographic patterns of proven embolic brain infarctions. Ann Neurol 1989;26:759765.Google Scholar
Viehman, JA, Saver, JL, Liebeskind, DS, et al. Utility of urinalysis in discriminating cardioembolic stroke mechanism. Arch Neurol 2007;64:667670.Google Scholar
Slaoui, T, Klein, IF, Guidoux, C, et al. Prevalence of subdiaphragmatic visceral infarction in cardioembolic stroke. Neurology 2010;74:10301032.Google Scholar
Ringelstein, EB, Koschorke, S, Holling, A, et al. Computed tomographic patterns of proven embolic brain infarctions. Ann Neurol 1989;26:759765.CrossRefGoogle ScholarPubMed
Fisher, CM, Adams, R. Observations on brain embolism with special reference to the mechanism of hemorrhagic infarction. J Neuropathol Exp Neurol 1951;10:9293.Google Scholar
Fisher, CM, Adams, RD. Observations on brain embolism with special reference to hemorrhagic infarction. In Furlan, AJ (ed), The Heart and Stroke. London: Springer, 1987 pp 1736.Google Scholar
Yamaguchi, T, Minematsu, K, Choki, JI, Ikeda, M. Clinical and neuroradiological analysis of thrombotic and embolic cerebral infarction. Jpn Circ J 1984;48:5058.CrossRefGoogle ScholarPubMed
Okada, Y, Yamaguchi, T, Minematsu, K, et al. Hemorrhagic transformation in cerebral embolism. Stroke 1989;20:598603.Google Scholar
Pessin, MS, Estol, C, Lafranchise, F, Caplan, LR. Safety of anticoagulation after hemorrhagic infarction. Neurology 1993;43:12981303.Google Scholar
Chaves, CJ, Pessin, MS, Caplan, LR, et al. Cerebellar hemorrhagic infarction. Neurology 1996;46:346349.Google Scholar
Garcia, J, Ho, K-L, Caccamo, DV. Intracerebral hemorrhage: Pathology of selected topics. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 4572.Google Scholar
Fieschi, C, Argentino, C, Lenzi, G, et al. Clinical and instrumental evaluation of patients with ischemic stroke within the first six hours. J Neurol Sci 1989;91:311322.Google Scholar
del Zoppo, GJ, Poeck, K, Pessin, MS, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 1992;32:7886.Google Scholar
Wolpert, SM, Bruckmann, H, Greenlee, R, Wechsler, L, Pessin, MS, del Zoppo, GJ. Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. AJNR Am J Neuroradiol 1993;14:313.Google Scholar
Dalal, P, Shah, P, Sheth, S, et al. Cerebral embolism: Angiographic observations on spontaneous clot lysis. Lancet 1965;1:6164.CrossRefGoogle ScholarPubMed
Liebeskind, A, Chinichian, A, Schechter, M. The moving embolus seen during cerebral angiography. Stroke 1971;2:440443.Google Scholar
Caplan, LR, Allam, GJ, Teal, PA. The moving embolus. J Neurimag 1993;3:195197.Google Scholar
Sharma, VK, Tsivgoulis, G, Lao, AY, Alexandrov, AV. Role of transcranial Doppler ultrasonography in evaluation of patients with cerebrovascular disease. Curr Neurol Neurosci Rep 2007;7:820.Google Scholar
Thomassen, L, Waje-Andreassen, U, Naess, H, et al. Doppler ultrasound and clinical findings in patients with acute ischemic stroke treated with thrombolysis. Eur J Neurol 2005;12:462465.Google Scholar
Molina, CA, Alexandrov, AV, Demchuk, AM, et al. Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke 2004;35:151156.Google Scholar
Askevold, ET, Naess, H, Thomassen, L. Predictors of recanalization after intravenous thrombolysis in acute ischemic stroke. J Stroke Cerebrovasc Dis 2007;16:2124.CrossRefGoogle Scholar
Georgiadis, D, Lindner, A, Manz, M, et al. Intracranial microembolic signals in 500 patients with potential cardiac or carotid embolic source and in normal controls. Stroke 1997;28:12031207.Google Scholar
Cho, K-H, Kim, JS, Kwon, SU, Cho, A-H, Kang, D-W. Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 2005;36:23792383.CrossRefGoogle ScholarPubMed
Kimura, K, Iguchi, V, Shibazaki, K, Watanabe, M, Iwanga, T, Aoki, J. M1 susceptiblity vessel sign on T2* as a strong predictor for no early recanalization after IV – t-PA in acute ischemic stroke. Stroke 2009;40:31303132.Google Scholar
Yamamoto, N, Satomi, J, Tada, Y, et al. Two-layered susceptibility vessel sign on 3-Tesla T2*-weighted imaging is a predictive biomarker of stroke subtype. Stroke 2015;46:269271.Google Scholar
Liebeskind, DS, Sanossian, N, Yong, WH, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 2011;42:12371243.Google Scholar
Caplan, LR. Of birds and nests and brain emboli. Rev Neurol 1991;147:265273.Google ScholarPubMed
Caplan, LR, Manning, W. Cardiac sources of embolism: The usual suspects. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 129159.Google Scholar
Manning, W. Cardiac sources of embolism: Pathophysiology and identification. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 161186.Google Scholar
Virchow, R. Gesammelte Abhandlungen zur Wissenschaftlichenmedtezin. Frankfurt: Meidinger Sohn, 1856, pp 219732.Google Scholar
Harker, LA, Slichter, SL. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N Engl J Med 1970;283:13021305.Google Scholar
Baumgartner, HR, Haudenschild, C. Adhesion of platelets to subendothelium. Ann N Y Acad Sci 1972;201:2236.CrossRefGoogle ScholarPubMed
Gustafsson, C, Blomback, M, Britton, M, et al. Coagulation factors and the increased risk of stroke in nonvalvular atrial fibrillation. Stroke 1990;21:4751.Google Scholar
Kumagai, K, Fukunami, M, Ohmori, M, et al. Increased intracardiovascular clotting in patients with chronic atrial fibrillation. J Am Coll Cardiol 1990;16:377380.Google Scholar
Hanna, JP, Furlan, AJ. Cardiac disease and embolic sources. In Caplan, LR (ed), Brain Ischemia. London: Springer, 1995, pp 299315.Google Scholar
Goldman, ME, Pearce, LA, Hart, RG. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (The Stroke Prevention in Atrial Fibrillation (SPAF-III) Study). J Am Soc Echocardiogr 1999;12:10801087.Google Scholar
Wolf, PA, Dawber, TR, Thomas, HE, Kannel, WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The Framingham Study. Neurology 1978;28:973977.CrossRefGoogle ScholarPubMed
Wolf, PA, Abbott, RD, Kannel, WB. Atrial fibrillation: A major contribution to stroke in the elderly. The Framingham Study. Arch Intern Med 1987;147:15611564.Google Scholar
Cairns, JA, Connolly, SJ. Nonrheumatic atrial fibrillation. Risk of stroke and role of antithrombotic therapy. Circulation 1991;84:469481.Google Scholar
Dunn, M, Alexander, J, DeSilva, R, Hildner, F. Antithrombotic therapy in atrial fibrillation. Chest 1989;95:S118S127.Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. Predictors of thromboembolism in atrial fibrillation: 1. Clinical features of patients at risk. Ann Intern Med 1992;116:15.Google Scholar
Atrial Fibrillation Investigators. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: Analysis of pooled data from five randomized controlled trials. Arch Intern Med 1994;154:14491457.Google Scholar
Caplan, LR, D’Cruz, I, Hier, DB, et al. Atrial size, atrial fibrillation, and stroke. Ann Neurol 1986;19:158161.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Predictors of thromboembolism in atrial fibrillation: II. Echocardiographic features of patients at risk. Ann Intern Med 1992;116:612.Google Scholar
DiPasquale, G, Urbinati, S, Pinelli, G. New echocardiographic markers of embolic risk in atrial fibrillation. Cerebrovasc Dis 1995;5:315322.Google Scholar
Vernhorst, P, Kamp, O, Visser, CA, Verheught, FWA. Left atrial appendage flow velocity assessment using transesophageal echocardiography in nonrheumatic atrial fibrillation and systemic embolism. Am J Cardiol 1993;71:192196.Google Scholar
Garcia-Fernandez, MA, Torrecilla, EG, San Roman, D, et al. Left atrial appendage Doppler flow patterns: Implications of thrombus formation. Am Heart J 1992;124:955965.Google Scholar
Beppu, S, Nimura, Y, Sakakibara, H. Smoke-like echo in the left atrial cavity in mitral valve disease: Its features and significance. J Am Coll Cardiol 1985;6:744749.Google Scholar
Merino, A, Hauptman, P, Badiman, L, et al. Echocardiographic “smoke” is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces. J Am Coll Cardiol 1992;20:16611668.Google Scholar
Black, IW, Stewart, WJ. The role of echocardiography in the evaluation of cardiac sources of embolism. Echocardiography 1993;10:429439.Google Scholar
Chimowitz, MI, DeGeorgia, MA, Poole, RM, et al. Left atrial spontaneous echo contrast is highly associated with previous stroke in patients with atrial fibrillation or mitral stenosis. Stroke 1993;24:10151019.Google Scholar
Warraich, HJ, Gandhavadi, M, Manning, WJ. Mechanical discordance of the left atrium and appendage. Stroke 2014;45:14811484.Google Scholar
Manning, WJ, Silverman, DI, Gordon, SPF, Krumholz, HM, Douglas, PS. Cardioversion from atrial fibrillation without prolonged anticoagulation with use of transesophageal echocardiography to exclude the presence of atrial thrombi. N Engl J Med 1993;328:750756.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. Ann Intern Med 1998;128:639647.CrossRefGoogle Scholar
Weigner, MJ, Thomas, LR, Patel, U, et al. Transesophageal-echocardiography-facilitated early cardioversion from atrial fibrillation: Short-term safety and impact on maintenance of sinus rhythm at 1 year. Am J Med 2001;110:694702.Google Scholar
Klein, AL, Grimm, RA, Murray, RD, et al. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. N Engl J Med 2001;344:14111420.Google Scholar
Stoddard, MF, Dawkins, PR, Prince, CR, Ammash, NM. Left atrial appendage thrombus is not uncommon in patients with acute atrial fibrillation and a recent embolic event: A transesophageal echocardiographic study. J Am Coll Cardiol 1995;25:452459.Google Scholar
Manning, WJ, Silverman, DI, Waksmonski, CA, Oettgen, P, Douglas, PS. Prevalence of residual left atrial thrombi in patients presenting with acute thromboembolism and newly recognized atrial fibrillation. Arch Intern Med 1995;155:21932197.Google Scholar
Kishore, A, Vail, A, Majid, A, et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: A systematic review and meta-analysis. Stroke 2014;45:520526.Google Scholar
Kamel, H. Heart-rhythm monitoring for evaluation of cryptogenic stroke. N Engl J Med 2014;370:25322533.Google Scholar
Sanna, T, Diener, H-C, Passman, RS, et al. for the CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 2014;370:24782486.Google Scholar
Gladstone, DJ, Spring, M, Dorian, P, et al. for the EMBRACE Investigators. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med 2014;370:24672477.Google Scholar
Hoshino, T, Nagao, T, Shiga, T, et al. Prolonged QTc interval predicts poststroke paroxysmal atrial fibrillation. Stroke 2015;46:7176.Google Scholar
Mair, J. Biochemistry of B-type natriuretic peptide – where are we now? Clin Chem Lab Med 2008;46:15071514.Google Scholar
Braunwald, E. Biomarkers in heart failure. N Engl J Med 2008;358:21482159.Google Scholar
Patton, KK, Ellinor, PT, Heckbert, SR, et al. N-terminal pro-B-type naturetic peptide is a major predictor of the development of atrial fibrillation: The Cardiovascular Health Study. Circulation 2009;120:176817774.Google Scholar
Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med 1990;323:15051511.Google Scholar
EAFT Study Group. Silent brain infarction in nonrheumatic atrial fibrillation. Neurology 1996;46:159165.Google Scholar
EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:12551262.CrossRefGoogle Scholar
Petersen, P, Godtfredsen, J, Boysen, G, et al. Placebo-controlled, randomized trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation: The Copenhagen AFASAK Study. Lancet 1989;1:175179.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. The Stroke Prevention In Atrial Fibrillation Study: Final results. Circulation 1991;84:527539.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet 1996;348:633638.CrossRefGoogle Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Prospective identification of patients with nonvalvular atrial fibrillation at low risk of stroke during treatment with aspirin: Stroke Prevention in Atrial Fibrillation III Study. Circulation 1997;96(Suppl):1281(abst).Google Scholar
Albers, G. Atrial fibrillation and stroke. Three new studies, three remaining questions. Arch Intern Med 1994;154:14431448.Google Scholar
Samsa, GP, Matchar, DB, Goldstein, LB, et al. Quality of anticoagulation management among patients with atrial fibrillation: Results of a review of medical records from two communities. Arch Intern Med 2000;160:967973.Google Scholar
Chiquette, E, Amato, MG, Bussey, HI. Comparison of an anticoagulation clinic with usual medical care: Anticoagulation control, patient outcomes, and health care costs. Arch Intern Med 1998;158:16411647.Google Scholar
Kucher, N, Connolly, S, Beckman, JA, et al. International normalized ratio increase before warfarin-associated hemorrhage: Brief and subtle. Arch Intern Med 2004;164:21762179.Google Scholar
Rash, A, Downes, T, Portner, R, et al. A randomized controlled trial of warfarin vs. aspirin for stroke prevention in octogenarians with atrial fibrillation (WASPO). Age Ageing 2007;36:151156.Google Scholar
Mant, J, Hobbs, FD, Fletcher, K, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (The Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): A randomized controlled trial. Lancet 2007;370:493503.Google Scholar
Di Nisio, M, Middeldorp, S, Buller, HR. Direct thrombin inhibitors. Engl J Med 2005;353:10281040.Google Scholar
Yeh, CH, Fredenburgh, JC, Weitz, JI. Oral direct factor Xa inhibitors. Circ Res 2012;111:10691078.Google Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:11391151.Google Scholar
Connolly, SJ, Eikelboom, J, Joyner, C, et al. Apixaban in patients with atrial fibrillation. N Engl J Med 2011;364:806817.Google Scholar
Granger, CB, Alexander, JH, McMurray, JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981992.Google Scholar
Patel, MR, Mahaffey, KW, Garg, J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883891.Google Scholar
Giugliano, RP, Ruff, CT, Braunwald, E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:20932104.CrossRefGoogle ScholarPubMed
Cameron, C, Coyle, D, Richter, D, et al. Systematic review and network meta-analysis comparing antithrombotic agents for the prevention of stroke and major bleeding in patients with atrial fibrillation. BMJ Open 2014;4:e004301.Google Scholar
Sherman, DG. Stroke prevention in atrial fibrillation. Pharmacological rate vs. rhythm control. Stroke 2007;38(part 2):615617.Google Scholar
Roy, D, Talajic, M, Nattel, S, et al. for the Atrial Fibrillation and Congestive Heart Failure Investigators. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 2008;358:26672677.Google Scholar
Gillinov, AM. Advances in surgical treatment of atrial fibrillation. Stroke 2007:38 (part 2): 618623.Google Scholar
Tung, R, Buch, E, Shivkumar, K. Catheter ablation of atrial fibrillation. Circulation 2012;126:223229.Google Scholar
Reddy, VY, Doshi, SK, Sievert, H, et al. on behalf of the PROTECT AF Investigators. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation. Circulation 2013;127:720729.Google Scholar
Swaans, MJ, Post, MC, Rensing, BJWM, Boersma, LVA. Ablation for atrial fibrillation in combination with left atrial appendage closure: First results of a feasibility study. J Am Heart Assoc 2012;1:e002212.Google Scholar
Onalan, O, Crystal, E. Left atrial appendage exclusion for stroke prevention in patients with nonrheumatic atrial fibrillation. Stroke 2007;38 (part 2):624630.Google Scholar
Syed, TM, Halperin, JL. Left atrial appendage closure for stroke prevention in atrial fibrillation: State of the art and current challenges. Nat Clin Pract Neurol 2007;4:428435.Google Scholar
Maisel, WH. Left atrial appendage occlusion – closure or just the beginning. N Engl J Med 2009;360:26012603.Google Scholar
Rubenstein, JJ, Schulman, CL, Yurchak, PM, et al. Clinical spectrum of the sick sinus syndrome. Circulation 1972;46:513.Google Scholar
Fairfax, AJ, Lambert, CD, Leatham, A. Systemic embolism in chronic sinoatrial disorder. N Engl J Med 1976;295:190192.Google Scholar
Lown, B. Electrical reversion of cardiac arrhythmias. Br Heart J 1967;29:469489.Google Scholar
Orencia, AJ, Hammill, SC, Whisnant, JP. Sinus node dysfunction and ischemic stroke. Heart Dis Stroke 1994;3:9194.Google Scholar
Phillips, SJ, Whisnant, JP, O’Fallon, WM, Frye, RL. Prevalence of cardiovascular disease and diabetes mellitus in residents of Rochester, Minnesota. Mayo Clin Proc 1990;65:344359.Google Scholar
Radford, DJ, Julian, DG. Sick sinus syndrome. Experience of a cardiac pacemaker clinic. BMJ 1974;3:504507.Google Scholar
Rosenqvist, M, Vallin, H, Edhag, O. Clinical and electrophysiologic course of sinus node disease: Five-year follow-up study. Am Heart J 1985;109:513522.Google Scholar
Bathen, J, Sparr, S, Rokseth, R. Embolism in sinoatrial disease. Acta Med Scand 1978;203:711.Google Scholar
Cerebral Embolism Task Force. Cardiogenic brain embolism. Arch Neurol 1986;43:7184.Google Scholar
Stein, PD, Sabbah, HN, Pitha, JV. Continuing disease process of calcific aortic stenosis. Am J Cardiol 1977;39:159163.Google Scholar
Casella, L, Abelmann, WH, Ellis, LB. Patients with mitral stenosis and systemic emboli. Arch Int Med 1964;114:773781.Google Scholar
Weiss, S, Davis, D. Rheumatic heart disease: III. Embolic manifestations. Am Heart J 1933;9:4552Google Scholar
Wallach, JB, Lukash, L, Angrist, AA. An interpretation of the incidence of mitral thrombi in the left auricle and appendage with particular reference to mitral commissurotomy. Am Heart J 1953;45:252254.Google Scholar
Bannister, RB. Risk of deferring valvotomy in patients with moderate mitral stenosis. Lancet 1960;2:329332.Google Scholar
Szekely, P. Systemic embolism and anticoagulant prophylaxis in rheumatic heart disease. BMJ 1964;1:12091212.Google Scholar
Keen, G, Leveaux, VM. Prognosis of cerebral embolism in rheumatic heart disease. BMJ 1958;2:9192.Google Scholar
Coulshed, N, Epstein, EJ, McKendrick, CS, et al. Systemic embolism in mitral valve disease. BMJ 1970;32:2634.Google Scholar
Daley, R, Mattingly, TW, Holt, CL, et al. Systemic arterial embolism in rheumatic heart disease. Am Heart J 1951;42:566581.Google Scholar
Fleming, HA, Bailey, SM. Mitral valve disease, systemic embolism and anticoagulants. Postgrad Med J 1971;47:599604.CrossRefGoogle ScholarPubMed
Carabello, BA, Crawford, FA. Valvular heart disease. N Engl J Med 1997;337:3241.Google Scholar
Soulie, P, Caramanian, M, Soulie, J, Bader, JL, Colcher, E. Les embolies calcaires des atteintes orificielles calcifees du coeur gauche. Arch Mal Coeur Vaiss 1969;12:16571684.Google Scholar
Holley, KE, Bahn, RC, McGoon, DC, Mankin, HT. Spontaneous calcific embolization associated with calcific aortic stenosis. Circulation 1963;27:197202.Google Scholar
Klues, HG, Maron, BJ, Dollar, AL, Roberts, WC. Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation 1992;85:16511660.Google Scholar
Hardarson, T, De la Calzada, CS, Curiel, R, Goodwin, JF. Prognosis and mortality of hypertrophic obstructive cardiomyopathy. Lancet 1973;14621467.Google Scholar
Glancy, DL, O’Brien, KP, Gold, HK, Epstein, SE. Atrial fibrillation in patients with idiopathic hypertrophic subaortic stenosis. Brit Heart J 1970;32:652659.Google Scholar
Tajik, AJ, Giuliani, ER, Frye, RL, et al. Mitral valve and/or annulus calcification assoiated with hypertrophic subaortic stenosis (IHSS). Circulation 1972;16(Suppl II):228.Google Scholar
Barlow, JB, Bosman, CK. Aneurysmal protrusion of posterior leaflets of the mitral valve. An auscultatory-electrocardiographic syndrome. Am Heart J 1966;71:166178.Google Scholar
Lauzier, S, Barnett, HJM. Cerebral ischemia with mitral valve prolapse and mitral annular calcification. In Furlan, AJ (ed), The Heart and Stroke: Exploring Mutual Cerebrovascular and Cardiovascular Issues. London: Springer, 1987, pp 63100.Google Scholar
Markiewicz, W, Stoner, J, London, E, et al. Mitral valve prolapse in one hundred presumably healthy young females. Circulation 1976;53:464473.Google Scholar
Cheitlin, MD, Byrd, RC. Prolapsed mitral valve: The commonest valve disease? Curr Probl Cardiol 1984;8:353.Google Scholar
Ranganatham, N, Silver, MD, Robinson, T, et al. Angiographic–morphological correlation in patients with severe mitral regurgitation due to prolapse of the posterior mitral valve leaflet. Circulation 1973;48:514518.Google Scholar
Kostuk, WJ, Boughner, DR, Barnett, HJM, Silver, MD. Strokes: A complication of mitral-leaflet prolapse? Lancet 1977;2:313316.Google Scholar
Marks, AR, Choong, CY, Sanfillipo, AJ, et al. Identification of high-risk and low-risk subgroups of patients with mitral-valve prolapse. N Engl J Med 1989;320:10311036.Google Scholar
Nishimura, RA, McGoon, MD, Shub, C, et al. Echocardiographically documented mitral-valve prolapse: Long term follow-up of 237 patients. N Engl J Med 1985;313:13051309.Google Scholar
Barnett, HJM. Transient cerebral ischemia: Pathogenesis, prognosis, and management. Ann Royal Coll Phys Surg Can 1974;7:153173.Google Scholar
Barnett, HJM, Jones, MW, Boughner, DR, Kostuk, WJ. Cerebral ischemic events associated with prolapsing mitral valve. Arch Neurol 1976;33:777782.Google Scholar
Barnett, HJM, Boughner, DR, Taylor, DW, et al. Further evidence relating mitral-valve prolapse to cerebral ischemic events. N Engl J Med 1980;302:139144.Google Scholar
Aronow, WS, Koenigsberg, M, Kronzon, I, Gutstein, H. Association of mitral annular calcium with new thromboembolic stroke and cardiac events at 39-month follow-up in elderly patients. Am J Cardiol 1990;65:15111512.Google Scholar
Benjamin, EJ, Plehn, JF, D’Agostino, RB, et al. Mitral annular calcification and the risk of stroke in an elderly cohort. N Engl J Med 1992;327:374379.Google Scholar
Korn, D, DeSanctis, R, Sell, S. Massive calcification of the mitral valve, a clinicopathological study of fourteen cases. N Engl J Med 1962;267:900909.Google Scholar
DeBono, D, Warlow, C. Mitral annulus calcification and cerebral or retinal ischemia. Lancet 1979;2:383385.Google Scholar
Benjamin, EJ, Plehn, JF, D’Agostino, RB, et al. Mitral annular calcification and the risk of stroke in an elderly cohort. N Engl J Med 1992;327:374379.Google Scholar
Kizer, J, Wiebers, DO, Whisnant, JP, et al. Mitral annular calcification, aortic valve sclerosis, and incident stroke in adults free of clinical cardiovasacular disease. The Strong Heart Study. Stroke 2005;36:25332537.Google Scholar
Pomerance, A. Pathological and clinical study of calcification of the mitral valve ring. J Clin Pathol 1970;23:354361.Google Scholar
Stein, JH, Soble, JS. Thrombus associated with mitral valve calcification. A possible mechanism for embolic stroke. Stroke 1995;26:16971699.Google Scholar
Barnett, HJM. Stroke by cause. Some common, some exotic, some controversial. Stroke 2005;36:25232525.Google Scholar
Adler, Y, Shohat-Zabarski, R, Vaturi, M, et al. Association between mitral annular calcium and aortic atheroma as detected by transesophageal echocardiographic study. Am J Cardiol 1998;81:784786.Google Scholar
Vongpatanasin, W, Hillis, D, Lange, RA. Prosthetic heart valves. N Engl J Med 1996;335:407416.Google Scholar
Edmunds, LH Jr. Thromboembolic complications of current cardiac valvular prostheses. Ann Thor Surg 1982;34:96106.Google Scholar
Metzdorff, MT, Grunkemeier, GL, Pinson, CW, Starr, A. Thrombosis of mechanical cardiac valves: A qualitative comparison of the silastic ball valve and the tilting disc valve. J Am Coll Cardiol 1984;4:5053.Google Scholar
Harker, LA, Slichter, SL. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N Engl J Med 1970;283:13021305.Google Scholar
Silber, H, Khan, SS, Matloff, JM, et al. The St. Jude valve: Thrombolysis as the first line of therapy for cardiac valve thrombosis. Circulation 1993;87:3037.Google Scholar
Vitale, N, Renzulli, A, Cerasuolo, F, et al. Prosthetic valve obstruction: Thrombolysis versus operation. Ann Thorac Surg 1994;57:365370.Google Scholar
Cannegieter, SC, Rosendaal, FR, Briet, E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 1994;89:635641.Google Scholar
Cohn, LH, Mudge, GH, Pratter, F, Collins, JJ Jr. Five to eight-year follow-up of patients undergoing porcine heart-valve replacement. N Engl J Med 1981;304:258262.Google Scholar
Osler, W. Gulstonian lectures on malignant endocarditis. Lancet 1885;1:459465.Google Scholar
Jones, HR, Siekert, RG, Geraci, J. Neurologic manifestations of bacterial endocarditis. Ann Intern Med 1969;71:2128.Google Scholar
Salgado, AV, Furlan, AJ, Keys, TF, et al. Neurologic complications of endocarditis: A 12-year experience. Neurology 1989;39:173178.Google Scholar
Hart, RG, Foster, JW, Luther, MF, Kanter, MC. Stroke in infective endocarditis. Stroke 1990;21:695700.Google Scholar
Kanter, MC, Hart, RG. Neurologic complications of infective endocarditis. Neurology 1991;41:10151020.Google Scholar
Keyser, DL, Biller, J, Coffman, TT, Adams, HP. Neurologic complications of late prosthetic valve endocarditis. Stroke 1990;21:472475.Google Scholar
Matsushita, K, Kuriyama, Y, Sawada, T, et al. Hemorrhagic and ischemic cerebrovascular complications of active infective endocarditis of native valve. Eur Neurol 1993;33:267274.Google Scholar
Pruitt, AA, Rubin, RH, Karchmer, AW, Duncan, GW. Neurological complications of bacterial endocarditis. Medicine 1978;57:329–43.Google Scholar
Steckelberg, JM, Murphy, JG, Ballard, D, et al. Emboli in infective endocarditis: The prognostic value of echocardiography. Ann Intern Med 1991;114:635640.Google Scholar
Tunkel, AR, Mandell, GL. Infecting microorganisms. In Kay, D, (ed.), Infective Endocarditis. New York: Raven Press, 1992, pp 8597.Google Scholar
Garvey, GJ, Neu, HC. Infective endocarditis – an evolving disease. A review of endocarditis at the Columbia-Presbyterian Medical Center, 1968–1973. Medicine 1978;57:105127.Google Scholar
Jaffe, WM, Morgan, DE, Pearlman, AS, Otto, CM. Infective endocarditis, 1983–1988: Echocardiographic findings and factors influencing morbidity and mortality. J Am Coll Cardol 1990:15:12271233.Google Scholar
Rohmann, S, Erbel, R, Gorge, G, et al. Clinical relevance of vegetation localization by transesophageal echocardiography in infective endocarditis. Eur Heart J 1992;12:446452.Google Scholar
Shively, BK, Gurule, FT, Roldan, CA, Leggett, JH, Schiller, NB. Diagnostic value of transesophageal compared with transthoracic echocardiography in infective endocarditis. J Am Coll Cardiol 1991;18:391397.Google Scholar
Sanfilippo, AJ, Picard, MH, Newell, JB, et al. Echocardiographic assessment of patients with infectious endocarditis: Prediction of risk for complications. J Am Coll Cardiol 1991;18:11911199.Google Scholar
Hart, RG, Kagan-Hallet, K, Joerns, S. Mechanisms of intracranial hemorrhage in infective endocarditis. Stroke 1987;18:10481056.Google Scholar
Masuda, J, Yutani, C, Waki, R, et al. Histopathological analysis of the mechanisms of intracranial hemorrhage complicating infective endocarditis. Stroke 1992;23:843850.Google Scholar
Klein, I, Iung, B, Wolff, M, et al. Silent T2* cerebral microbleeds. A potential new imaging clue in infective endocarditis. Neurology 2007;68:2043.Google Scholar
Nandigam, K. Silent T2* cerebral microbleeds: A potential new imaging clue in infective endocarditis. Neurology 2008;70:323324.Google Scholar
Morawetz, RB, Karp, RB. Evolution and resolution of intracranial bacterial (mycotic) aneurysms. Neurosurgery 1984;15:4349.Google Scholar
Moskowitz, MA, Rosenbaum, AE, Tyler, HR. Angiographically monitored resolution of cerebral mycotic aneurysms. Neurology 1974;24:11031108.Google Scholar
Bingham, WF. Treatment of mycotic intracranial aneurysms. J Neurosurg 1977;46:428437.Google Scholar
Bertorini, TE, Laster, RE, Thompson, BF, Gelfand, M. Magnetic resonance imaging of the brain in bacterial endocarditis. Arch Intern Med 1989;149:815817.Google Scholar
Libman, E, Sacks, B. A hitherto undescribed form of valvular and mural endocarditis. Arch Intern Med 1924;33:701737.Google Scholar
Klemperer, P, Pollack, AD, Baehr, G. Pathology of disseminated lupus erythematosus. Arch Pathol 1941;32:569631.Google Scholar
Baehr, G, Klemperer, P, Schifrin, A. A diffuse disease of the peripheral circulation usually associated with lupus erythematosus and endocarditis. Trans Assoc Am Physicians 1935;50:139155.Google Scholar
Gross, L. The cardiac lesions in Libman–Sacks disease, with a consideration of its relationship to acute diffuse lupus erythematosus. Am J Pathol 1940;16:375407.Google Scholar
Roldan, CA, Shively, B, Crawford, MH. An echocardiographic study of valvular heart disease associated with systemic lupus erythematosus. N Engl J Med 1996;335:14241430.Google Scholar
Moyssakis, I, Tektonidou, MG, Vassilios, V, et al. Libman–Sacks endocarditis in systemic lupus erythematosus: Prevalence, associations, and evolution. Am J Med 2007;120:636642.Google Scholar
Barbut, D, Borer, J, Gharavi, A, et al. Prevalence of anticardiolipin antibody in isolated mitral or aortic regurgitation, or both, and possible relation to cerebral ischemic events. Am J Cardiol 1992;70:901905.Google Scholar
Barbut, D, Borer, J, Wallerson, D, et al. Anticardiolipin antibody and stroke: Possible relation of valvular heart disease and embolic events. Cardiology 1991;79:99109.Google Scholar
Antiphospholipid Antibodies in Stroke Study Group. Clinical and laboratory findings in patients with antiphospholipid antibodies and cerebral ischemia. Stroke 1990;21:12681273.Google Scholar
Amico, L, Caplan, LR, Thomas, C. Cerebrovascular complications of mucinous cancer. Neurology 1989;39:522526.Google Scholar
Reagan, TJ, Okazaki, H. The thrombotic syndrome associated with carcinoma. Arch Neurol 1974;31:390395.Google Scholar
Edoute, Y, Haim, N, Rinkevich, D, Brenner, B, Reisner, SA. Cardiac valvular vegetations in cancer patients: A prospective echocardiographic study of 200 patients. Am J Med 1997;102:252258.Google Scholar
Connolly, HM, Crary, JL, McGoon, MD, et al. Valvular heart disease associated with Fenflurmine-phentermine. N Engl J Med 1997;337:581588.Google Scholar
Yamamoto, M, Uesugi, T, Nakayama, T. Dopamine agonists and cardiac valvulopathy in Parkinson’s disease: A case control study. Neurology 2006;67:12251229.Google Scholar
Lambl, VA. Papillare exkreszenzen an der semilunar-klappe der aorta. Wien Med Wochenscshr 1856;6:244247.Google Scholar
Magarey, FR. On the mode of formation of Lambl’s excrescences and their relation to chronic thickening of the mitral valve. J Pathol Bacteriol 1949;61:203208.Google Scholar
Roldan, CA, Shively, BK, Crawford, MH. Valve excrescences: Prevalence, evolution and risk for embolism. J Am Coll Cardiol 1997;30:13081314.Google Scholar
Freedberg, RS, Goodkin, GM, Perez, JL, et al. Valve strands are strongly associated with systemic embolization: A transesophageal echocardiographic study. J Am Coll Cardiol 1995;26:17091712.Google Scholar
Roberts, JK, Omarali, I, Di Tullio, MR, et al. Valvular strands and cerebral ischemia. Effect of demographics and strand characteristics. Stroke 1997;28:21852188.Google Scholar
Cohen, A, Tzourio, C, Chauvel, C, et al. Mitral valve strands and the risk of ischemic stroke in elderly patients. Stroke 1997;28:15741578.Google Scholar
Lee, RJ, Bartzokis, T, Yeoh, TK, et al. Enhanced detection of intracardiac sources of cerebral emboli by transesophageal echocardiography. Stroke 1991;22:734739.Google Scholar
Nighoghossian, N, Derex, L, Loire, R, et al. Giant Lambl excrescences. An unusual source of cerebral embolism. Arch Neurol 1997;54:4144.Google Scholar
Vaitkus, PT, Berlin, JA, Schwartz, JS, Barnathan, ES. Stroke complicating acute myocardial infarction: A meta-analysis of risk modification by anticoagulation and thrombolytic therapy. Arch Intern Med 1992;152:20202024.Google Scholar
Konrad, MS, Coffey, CE, Coffey, KS, et al. Myocardial infarction and stroke. Neurology 1984;34:14031409.Google Scholar
Chiarella, F, Santoro, E, Domenicucci, S, et al. on behalf of the GISSI-3 Investigators. Predischarge two-dimensional echocardiographic evaluation of left ventricular thrombosis after acute myocardial infarction in the GISSI-3 study. Am J Cardiol 1998;81:822827.Google Scholar
Meltzer, RS, Visser, CA, Fuster, V. Intracardiac thrombi and systemic embolization. Ann Intern Med 1986;104:689698.CrossRefGoogle ScholarPubMed
Visser, CA, Kan, G, Meltzer, RS, et al. Embolic potential of left ventricular thrombi after myocardial infarction: A two-dimensional echocardiographic study of 119 patients. J Am Coll Cardiol 1985;5:12761280.Google Scholar
Kouvaras, G, Chronopoulas, G, Soufras, G, et al. The effects of long term antithrombotic treatment on left ventricular thrombi in patients after an acute myocardial infarction. Am Heart J 1990;119:7378.Google Scholar
Asinger, RW, Mikell, FL, Elsperger, J, Hodges, M. Incidence of left-ventricular thrombosis after acute transmural myocardial infarction. Serial evaluation by two-dimensional echocardiography. N Engl J Med 1981;305:297302.Google Scholar
Nihoyannopoulos, P, Smith, GC, Maseri, A, Foale, RA. The natural history of left ventricular thrombus in myocardial infarction: A rationale in support of masterly inactivity. J Am Coll Cardiol 1989;14:903911.Google Scholar
Greaves, SC, Zhi, G, Lee, RT, et al. Incidence and natural history of left ventricular thrombus following anterior wall acute myocardial infarction. Am J Cardiol 1997;80:442448.Google Scholar
Keren, A, Goldberg, S, Gottlieb, S, et al. Natural history of left ventricular thrombi: Their appearance and resolution in the posthospitalization period of acute myocardial infarction. J Am Coll Cardiol 1990;15:790800.Google Scholar
Domenicucci, S, Chiarella, F, Bellotti, P, et al. Long-term prospective assessment of left ventricular thrombus in anterior wall acute myocardial infarction and implications for a rational approach to embolic risk. Am J Cardiol 1999;83:519524.Google Scholar
Lapeyre, AC III, Steele, PM, Kazmier, FJ, et al. Systemic embolism in chronic left ventricular aneurysm: Incidence and the role of anticoagulation. J Am Coll Cardiol 1985;6:534538.Google Scholar
Anticoagulants in acute myocardial infarction: Results of a cooperative clinical trial. JAMA 1973;225:724729.Google Scholar
Faxon, DP, Ryan, TJ, Davis, KB, et al. Prognostic significance of angiographically documented left ventricular aneurysm from the coronary artery surgery study (CASS). Am J Cardiol 1982;50:157164.Google Scholar
Reeder, GS, Lengyei, M, Tajik, AJ, et al. Mural thrombus in left ventricular aneurysm. Incidence, role of angiography, and relation between anticoagulation and embolism. Mayo Clin Proc 1981;56:7781.Google Scholar
Loh, E, Sutton, M, Wun, C-C, et al. Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med 1997;336:251257.Google Scholar
Stratton, JR, Lighty, GW, Pearlman, AS, Ritchie, JL. Detection of left ventricular thrombus by two-dimensional echocardiography: Sensitivity, specificity, and causes of uncertainty. Circulation 1982;66:156166.Google Scholar
Ports, TA, Cogan, J, Schiller, NB, Rapaport, E. Echocardiography of left ventricular masses. Circulation 1978;58:528536.Google Scholar
Chen, C, Koschyk, D, Hamm, C, et al. Usefulness of transesophageal echocardiography in identifying small left ventricular apical thrombus. J Am Coll Cardiol 1993;21:208215.Google Scholar
Oppenheimer, SM, Lima, J. Neurology and the heart. J Neurol Neurosurg Psychiatry 1998;64:289297.Google Scholar
Wong, C, Marwick, TH. Obesity cardiomyopathy: Diagnosis and therapeutic implications. Nature Clin Practice Cardiovasc Med. 2007;4:480489.Google Scholar
Grabowski, A, Kilian, J, Strank, C, Cieslinski, G, Meyding-Lamade, U. Takotsubo cardiomyopathy – a rare cause of cardioembolic stroke. Cerebrovasc Dis 2007;24:146148.Google Scholar
Ziegelstein, RC. Acute emotional stress and cardiac arrhythmias. JAMA 2007;298:324329.Google Scholar
Wold, LE, Lie, JT. Cardiac myxomas: A clinicopathologic profile. Am J Pathol 1980;101:219240.Google Scholar
Reynen, K. Cardiac myxomas. N Engl J Med 1995;333:16101617.Google Scholar
Blondeau, P. Primary cardiac tumors: French study of 533 cases. Thorac Cardiovasc Surg 1990;38 (Suppl 2):192195.Google Scholar
Lee, VH, Connolly, HM, Brown, RD Jr. Central nervous system manifestations of cardiac myxoma. Arch Neurol 2007;64:11151120.Google Scholar
Sandok, BA, von Estorff, I, Giuliani, ER. Subsequent neurological events in patients with atrial myxoma. Ann Neurol 1980;8:305307.Google Scholar
Edwards, FH, Hale, D, Cohen, A, et al. Primary cardiac valve tumors. Ann Thorac Surg 1991;52:11271131.Google Scholar
Giannesini, C, Kubis, N, N’Guyen, A, et al. Cardiac papillary fibroelastoma: A rare cause of ischemic stroke in the young. Cerebrovasc Dis 1999;9:4549.Google Scholar
Brown, RD, Khandheria, BK, Edwards, WD. Cardiac papillary fibroelastoma: A treatable cause of transient ischemic attack and ischemic stroke detected by transesophageal echocardiography. Mayo Clin Proc 1995;70:863868.Google Scholar
Klarich, KW, Enriquez-Sarano, M, Gura, GM, et al. Papillary fibroelastoma: Echocardiographic characteristics for diagnosis and pathologic correlation. J Am Coll Cardiol 1997;30:784–90.Google Scholar
Gagliardi, R, Franken, R, Protti, G. Cardiac papillary fibroelastoma and stroke in a young man – etiology and treatment. Cerebrovasc Dis 2008;185187.Google Scholar
Azarbal, B, Tobis, J. Interatrial communications, stroke, and migraine headache. Appl Neurol 2005;1:2236.Google Scholar
Hagen, PT, Scholz, DG, Edwards, WD. Incidence and size of patent foramen ovale during the first 10 decades of life: An autopsy study of 965 normal hearts. Mayo Clin Proc 1984;59:1720.Google Scholar
Lechat, PH, Mas, JL, Lascault, G, et al. Prevalence of patent foramen ovale in patients with stroke. N Engl J Med 1988;318:11481152.Google Scholar
Di Tullio, M, Sacco, RL, Gopal, A, et al. Patent foramen ovale as a risk factor for cryptogenic stroke. Ann Intern Med 1992;117:461465.Google Scholar
Petty, GW, Khanderia, BK, Chu, C-P, et al. Patent foramen ovale in patients with cerebral infarction. A transesophageal echocardiographic study. Arch Neurol 1997;54:819822.Google Scholar
Gautier, JC, Durr, A, Koussa, S, et al. Paradoxical cerebral embolism with a patent foramen ovale. A report of 29 patients. Cerebrovasc Dis 1991;1:193202.Google Scholar
Venketasubramanian, N, Sacco, RL, Di Tullio, M, et al. Vascular distribution of paradoxical emboli by transcranial Doppler. Neurology 1993;43:15331535.Google Scholar
Kim, BJ, Kim, N-Y, Kang, D-W, Kim, JS, Kwon, SU. Provoked right-to-left shunt in patent foramen ovale associates with ischemic stroke in posterior circulation. Stroke 2014;45:37073710.Google Scholar
Konstantinides, S, Kasper, W, Geibel, A, et al. Detection of left-to-right shunt in atrial septal defect by negative contrast echocardiography: A comparison of transthoracic and transesophageal approach. Am Heart J 1993;126:909917.Google Scholar
Hamann, GF, Schatzer-Klotz, D, Frohlig, G, et al. Femoral injection of echo contrast medium may increase the sensitivity of testing for a patent foramen ovale. Neurology 1998;50:14231428.Google Scholar
Hausmann, D, Mügge, A, Daniel, WG. Identification of patent foramen ovale permitting paradoxic embolism. J Am Coll Cardiol 1995;26:10301038.Google Scholar
Homma, S, Tullio, MR, Sacco, RL, et al. Characteristics of patent foramen ovale associated with cryptogenic stroke: A biplane transesophageal echocardiographic study. Stroke 1994;25:582586.Google Scholar
Chimowitz, MI, Nemec, JJ, Marwick, TH, et al. Transcranial Doppler ultrasound identifies patients with right-to-left cardiac or pulmonary shunts. Neurology 1991;41:19021904.Google Scholar
Albert, A, Muller, HR, Hetzel, A. Optimized transcranial Doppler technique for the diagnosis of cardiac right-to-left shunts. J Neuroimaging 1997;7:159163.Google Scholar
Di Tullio, M, Sacco, RL, Venketasubramanian, N, et al. Comparison of diagnostic techniques for the detection of a patent foramen ovale in stroke patients. Stroke 1993;24:10201024.Google Scholar
Mohrs, OK, Petersen, SE, Erkapic, D, et al. Diagnosis of patent foramen ovale using contrast-enhanced dynamic MRI: A pilot study. AJR Am J Roetgenol 2005;184:234240.Google Scholar
Ilercil, A, Meisner, JS, Vijayaraman, P, et al. Clinical significance of fossa ovalis membrane aneurysm in adults with cardioembolic cerebral ischemia. Am J Cardiol 1997;80:9699.Google Scholar
Belkin, RN, Hurwitz, BJ, Kislo, J. Atrial septal aneurysm: Association with cerebrovascular and peripheral embolic events. Stroke 1987;18:856862.Google Scholar
Schneider, B, Hanrath, P, Vogel, P, Meinertz, T. Improved morphologic characterization of atrial septal aneurysm by transesophageal echocardiography: Relation to cerebrovascular events. J Am Coll Cardiol 1990;16:10001009.Google Scholar
Burger, AJ, Sherman, HB, Charlamb, MJ. Low incidence of embolic strokes with atrial septal aneurysms: A prospective, long-term study. Am Heart J 2000;139:149152.Google Scholar
Agmon, Y, Khandheria, BK, Meissner, I, et al. Frequency of atrial septal aneurysms in patients with cerebral ischemic events. Circulation 1999;99:19421944.Google Scholar
Zabalgoitia-Reyes, M, Herrera, C, Gandhi, DK, et al. A possible mechanism for neurologic ischemic events in patients with atrial septal aneurysm. Am J Cardiol 1990;66:761764.Google Scholar
Berthet, K, Lavergne, T, Cohen, A, et al. Significant association of atrial vulnerability with atrial septal abnormalities in young patients with ischemic stroke of unknown cause. Stroke 2000;31:398403.Google Scholar
Silver, MD, Dorsey, JS. Aneurysms of the septum primum in adults. Arch Pathol Lab Med 1978;102:6265.Google Scholar
Cabanes, L, Mas, JL, Cohen, A, et al. Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age. A study using transesophageal echocardiography. Stroke 1993;24:18651873.Google Scholar
Hanna, JP, Sun, JP, Furlan, AJ, et al. Patent foramen ovale and brain infarct. Echocardiographic predictors, recurrence, and prevention. Stroke 1994;25:782786.CrossRefGoogle ScholarPubMed
Ay, H, Buonanno, FS, Abraham, S, et al. An electrocardiographic criterion for diagnosis of patent foramen ovale associated with ischemic stroke. Stroke 1998;29:13931397.Google Scholar
Bogousslavsky, J, Garazi, S, Jeanrenaud, X, et al. Stroke recurrence in patients with patent foramen ovale: The Lausanne study. Neurology 1996;46:13011305.Google Scholar
French Study Group on Patent Foramen Ovale and Atrial Septal Aneurysm. Recurrent cerebrovascular events in patients with patent foramen ovale or atrial septal aneurysms and cryptogenic stroke or TIA. Am Heart J 1995;130:10831088.Google Scholar
Devuyst, G, Bogousslavsky, J, Ruchat, P, et al. Prognosis after stroke followed by surgical closure of patent foramen ovale: A prospective follow-up study with brain MRI and simultaneous transesophageal and transcranial Doppler ultrasound. Neurology 1996;47:11621166.Google Scholar
Kim, D, Saver, JL. Patent foramen ovale and stroke: What we do and don’t know. Rev Neurol Dis 2005;2:17.Google Scholar
Bridges, ND, Hellensbrand, W, Catson, L, et al. Transcatheter closure of patent foramen ovale after presumed paradoxical embolism. Circulation 1992;86:19021908.Google Scholar
Li, Y, Zhou, K, Hua, Y, et al. Amplatzer occluder versus Cardioseal/Starflex occluder: A meta-analysis of the efficacy and safety of transcatheter occlusion for patent foramen ovale and atrial septal defect. Cardiol Young 2013;23:582596.Google Scholar
Carroll, JD, Saver, JL, Thaler, DE, et al. for the RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med 2013;368:10921100.Google Scholar
Meier, B, Kalesan, B, Mattle, HP, et al. for the PC Trial Investigators. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med 2013;368:10831091.Google Scholar
Furlan, AJ, Reisman, M, Joseph Massaro, J, et al. for the CLOSURE I Investigators. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med 2012;366:991999.Google Scholar
Kent, DM, Ruthazer, R, Weimar, C, et al. An index to identify stroke-related vs. incidental patent foramen ovale in cryptogenic stroke. Neurology 2013;81:619625.Google Scholar
Thaler, DE, Ruthazer, R, Weimar, C, et al. Recurrent stroke predictors differ in medically treated patients with pathogenic vs. other PFOs. Neurology 2014;83:221226.Google Scholar
Bogousslavsky, J, Cachin, C, Regli, F, et al. Cardiac sources of embolism and cerebral infarction. Clinical consequences and vascular concomitants. Neurology 1991;41:855859.Google Scholar
Tunick, PA, Kronzon, I. Protruding atherosclerotic plaque in the aortic arch of patients with systemic embolization: A new finding seen by transesophageal echocardiography. Am Heart J 1990;120:658660.Google Scholar
Tunick, PA, Culliford, AT, Lamparello, PJ, Kronzon, I. Atheromatosis of the aortic arch as an occult source of multiple systemic emboli. Ann Intern Med 1991;114:391392.Google Scholar
Tunick, PA, Perez, JL, Kronzon, I. Protruding atheromas in the thoracic aorta and systemic embolization. Ann Intern Med 1991;115:423427.Google Scholar
Amarenco, P, Duyckaerts, C, Tzourio, C, et al. The prevalence of ulcerated plaques in the aortic arch in patients with stroke. N Engl J Med 1992;326:221225.Google Scholar
Amarenco, P, Cohen, A, Baudrimont, M, Bousser, M-G. Transesophageal echocardiographic detection of aortic arch disease in patients with cerebral infarction. Stroke 1992;23:10051009.Google Scholar
Tobler, HG, Edwards, JE. Frequency and location of atherosclerotic plaques in the ascending aorta. J Thor Cardiovasc Surg 1988;96:304306.Google Scholar
Bruns, JL, Segel, DP, Adler, S. Control of cholesterol embolization by discontinuation of anticoagulant therapy. Am J Med Sci 1978;275:105108.Google Scholar
French Study of Aortic Plaques in Stroke Group. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med 1996;334:12161221.Google Scholar
Mitusch, R, Doherty, C, Wucherpfennig, H, et al. Vascular events during follow-up in patients with aortic arch atherosclerosis. Stroke 1997;28:3639.Google Scholar
Amarenco, P, Cohen, A. Update on imaging aortic atherosclerosis. Adv Neurol 2003;92:7589.Google Scholar
Vaduganathan, V, Ewton, A, Nagueh, SF, et al. Pathologic correlates of aortic plaques, thrombi and mobile “aortic debris” imaged in vivo with transesophageal echocardiography J Am Coll Cardiol 1997;30:357363.Google Scholar
Weinberger, J, Azhar, S, Danisi, F, Hayes, R, Goldman, M. A new noninvasive technique for imaging atherosclerotic plaque in the aortic arch of stroke patients by transcutaneous real-time B-mode ultrasonography. Stroke 1998;29:673676.Google Scholar
Schwammenthal, A, Schwammenthal, Y, Tanne, D, et al. Transcutaneous detection of aortic arch atheromas by suprasternal harmonic imaging. J Am Coll Cardiol 2002;39:11271132.Google Scholar
Kutz, SM, Lee, VS, Tunick, PA, et al. Atheromas of the thoracic aorta: A comparison of transesophageal echocardiography and breath-hold gadolinium enhanced 3-dimensional magnetic resonance angiography. J Am Soc Echocardiogr 1999;12:853858.Google Scholar
Barkhausen, J, Ebert, W, Heyer, C, Debatin, JF, Weinmann, H-J. Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging. Circulation 2003;108:605609.Google Scholar
Harloff, A, Dudler, P, Frydrychowicz, A, et al. Reliability of aortic MRI at 3 Tesla in patients with cryptogenic stroke. J Neurol Neurosurg Psychiatry 2007;79:540546.Google Scholar
Chatzikonstantinou, A, Krissak, R, Fluchter, S, et al. CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic stroke. Cerebrovasc Dis 2012;33:322328.Google Scholar
Wehrum, T, Kams, M, Strecker, C, et al. Prevalence of potential retrograde embolization pathways in the proximal descending aorta in stroke patients. Cerebrovas Dis 2014;38:410417.Google Scholar
Yamashiro, K, Funabe, S, Tanaka, R, et al. Primary aortic sarcoma. Neurology 2015;84:755756.Google Scholar
Blackshear, JL, Jahangir, A, Oldenberg, WA, Safford, RE. Digital embolization from plaque-related thrombus in the thoracic aorta: Identification with transesophageal echocardiography and resolution with warfarin therapy. Mayo Clin Proc 1993;68:268272.Google Scholar
Freedberg, RS, Tunick, PA. Culliform, AT, Tatelbaum, RJ, Kronzon, I. Disappearance of a large intraaortic mass in a patient with prior systemic embolization. Am Heart J 1993;125:14451447.Google Scholar
Fine, MJ, Kapoor, W, Falanga, V. Cholesterol crystal embolization: A review of 221 cases in the English literature. Angiology 1987;38:769784.Google Scholar
Hausmann, D, Gulba, D, Bargheer, , et al. Successful thrombolysis of an aortic-arch thrombus in a patient after mesenteric embolism. N Engl J Med 1992;327:500501.Google Scholar
Belden, JR, Caplan, LR, Bojar, RM, Payne, DD, Blachman, P. Treatment of multiple cerebral emboli from an ulcerated, thrombogenic ascending aorta with aortectomy and graft replacement. Neurology 1997;49:621622.Google Scholar
Amarenco, P, Davis, S, Jones, EF, et al. for the Aortic Arch Related Cerebral Hazard Trial Investigators. Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke 2014;45:12481257.Google Scholar
Slogoff, S, Girgis, KZ, Keats, AS. Etiologic factors in neuropsychiatric complications associated with cardiopulmonary bypass. Anesth Analg 1982;61:903911.Google Scholar
Gilman, S. Neurological complications of open heart surgery. Ann Neurol 1990;28:475476.Google Scholar
Shaw, PJ, Bates, D, Cartledge, NEF. Early neurological complications of coronary artery bypass surgery. BMJ 1985;391:13841387.Google Scholar
Breuer, AC, Furlan, AJ, Hanson, MR, et al. Central nervous system complications of coronary artery bypass graft surgery: Prospective analysis of 421 patients. Stroke 1983;14:682687.Google Scholar
Coffey, CE, Massey, EW, Roberts, KB, et al. Natural history of cerebral complication of coronary artery bypass graft surgery. Neurology 1983;33:14161421.Google Scholar
Feeney, DM, Gonzalez, A, Law, WA. Amphetamine, haloperidol and experience interact to affect the rate of recovery after motor cortex injury. Science 1982;217:855857.Google Scholar
Houda, DA, Feeney, DM. Haloperidol blocks amphetamine induced recovery of binocular depth perception of the bilateral visual cortex abilities in the cat. Proc West Pharmacol Soc 1985;28:209211.Google Scholar
Sila, C. Neuroimaging of cerebral infarction associated with coronary revascularization. AJNR Am J Neuroradiol 1991;12:817818.Google Scholar
Moody, DM, Bell, MA, Challa, VR, et al. Brain microemboli during cardiac surgery or aortography. Ann Neurol 1990;28:477486.Google Scholar
Pugsley, W, Klinger, L, Paschalis, C, et al. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke 1994;25:13931399.Google Scholar
Barbut, D, Caplan, LR. Brain complications of cardiac surgery. Curr Probl Cardiol 1997;22:445476.Google Scholar
Barbut, D, Lo, Y, Gold, JP, et al. Impact of embolization during coronary artery bypass grafting on outcome and length of stay. Ann Thor Surg 1997;63:9981002.Google Scholar
Clark, RE, Brillman, J, Davis, DA, et al. Microemboli during coronary artery bypass grafting: Genesis and effect on outcome. J Thorac Cardiovasc Surg 1995;25:13931399.Google Scholar
Tufo, HM, Ostfeld, AM, Shekelle, R. Central nervous system dysfunction following open-heart surgery. JAMA 1970;212:13331340.Google Scholar
Stockard, JJ, Bickford, RG, Schauble, JF. Pressure-dependent cerebral ischemia during cardiopulmonary bypass. Neurology 1973;23:521529.Google Scholar
Gold, JP, Charlson, ME, Williams-Russo, P, et al. Improvement of outcomes after coronary artery bypass: A randomized trial comparing intraoperative high vs. low mean arterial pressure. J Thorac Cardiovasc Surg 1995;110:13021314.Google Scholar
Gottesmann, RF, Hillis, AE, Grega, MA, et al. Early postoperative cognitive dysfunction and blood pressure during coronary artery bypass graft operation. Arch Neurol 2007;64:11111114.Google Scholar
Dubinsky, RM, Lai, SM. Mortality from combined carotid endarterectomy and coronary artery bypass surgery in the US. Neurology 2007;68:195197.Google Scholar
Breslau, PJ, Fell, G, Ivey, TD, et al. Carotid arterial disease in patients undergoing coronary artery bypass operations. J Thorac Cardiovasc Surg 1981;82:765767.Google Scholar
Turnipseed, WD, Berkhoff, HA, Belzer, FO. Postoperative stroke in cardiac and peripheral vascular disease. Ann Surg 1980;192:365368.Google Scholar
Chimowitz, M. Neurological complications of cardiac surgery. In Caplan, LR, Hurst, JW, Chimowitz, M (eds), Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 226257.Google Scholar
Furlan, A, Craciun, A. Risk of stroke during coronary artery bypass graft surgery in patients with internal carotid artery disease documented by angiography. Stroke 1985;16:797799.Google Scholar
Von Reutern, G, Hetzel, A, Birnbaum, D, et al. Transcranial Doppler ultrasound during cardiopulmonary bypass in patients with internal carotid artery disease documented by angiography. Stroke 1988;19:674680.Google Scholar
Hise, JH, Nipper, MN, Schnitker, JC. Stroke associated with coronary artery bypass surgery. AJNR Am J Neuroradiol 1991;12:811814.Google Scholar
Barbut, D, Gold, JP. Aortic atheromatosis and risks of cerebral embolization. J Cardiothorac Vasc Anesth 1996;10:2430.Google Scholar
Blauth, CI, Cosgrove, DM, Webb, BW, et al. Atheroembolism from the ascending aorta. An emerging problem in cardiac surgery. J Thorac Cardiovasc Surg 1992;103:11041112.Google Scholar
Masuda, J, Yutani, C, Ogata, J, et al. Atheromatous embolism to the brain: A clinicopathologic analysis of 15 autopsy cases. Neurology 1994;44:12311237.Google Scholar
Katz, ES, Tunick, PA, Rusinek, H, et al. Protruding aortic atheromas predict stroke in elderly patients undergoing cardiopulmonary bypass: Experience with intraoperative transesophageal echocardiography. J Am Coll Cardiol 1992;20:7077.Google Scholar
Mills, NL, Everson, CT. Atherosclerosis of the ascending aorta and coronary artery bypass. Pathology, clinical correlates and operative management. J Thorac Cardiovasc Surg 1991;102:546553.Google Scholar
Yao, FSF, Barbut, D, Hager, DN, et al. Detection of aortic emboli by transesophageal echocardiography during coronary artery bypass surgery. J Cardiothorac Vasc Anesth 1996;10:314317.Google Scholar
Gardner, TJ, Horneffer, PJ, Manolio, TA, et al. Stroke following coronary artery bypass grafting: A ten-year study. Ann Thorac Surg 1985;40:574581.Google Scholar
Caplan, LR. Translating what is known about neurological complications of coronary artery bypass graft surgery into action (Editorial). Arch Neurol 2009;66:10621064.Google Scholar
Warehag, TH, Davila-Roman, VG, Barzilai, B, et al. Management of the severely atherosclerotic aorta during cardiac operations. J Thorac Cardiovasc Surg 1992;103:453462.Google Scholar
Barbut, D, Yao, FS, Hager, DN, et al. Comparison of transcranial Doppler ultrasonography and transesophageal echocardiography during coronary artery bypass surgery. Stroke 1996;27:8790.Google Scholar
Dittrich, R, Ringelstein, EB. Occurrence and clinical impact of microembolic signals during or after cardiosurgical procedures. Stroke 2008;39:503511.Google Scholar
Marshall, WG, Barzilai, B, Kouchoukos, NT, et al. Intraoperative ultrasonic imaging of the ascending aorta. Ann Thorac Surg 1989;48:339344.Google Scholar
Borowicz, I, Goldsborough, M, Selnes, O, McKann, G. Neuropsychologic change after cardiac surgery. A critical review. J Cardiothorac Vasc Anesth 1996;10:105111.Google Scholar
Barbut, D, Hinton, R, Szatrowski, TP, et al. Cerebral emboli detected during bypass surgery are associated with clamp removal. Stroke 1994;25:23982402.Google Scholar
Hammon, J, Stump, D, Kon, N, et al. Risk factors and solutions for the development of neurobehavioral changes after coronary artery bypass grafting. Ann Thorac Surg 1997;63:16131618.Google Scholar
Hanson, MR, Hamid, MA, Tomsak, RL, Chou, SS, Leigh, RJ. Selective saccadic palsy caused by pontine lesions: Clinical, physiological, and pathological correlations. Ann Neurol 1986;20:209217.Google Scholar
Tomsak, RL, Volpe, BT, Stahl, JS, Leigh, RJ. Saccadic palsy after cardiac surgery: Visual disability and rehabilitation. Ann NY Acad Sci 2002;956:430433.Google Scholar
Eggers, SDZ, Moster, ML, Cranmer, K. Selective saccadic palsy after cardiac surgery. Neurology 2008;70:318320.Google Scholar
Solomon, D, Ramat, S, Tomsak, RL, et al. Saccadic palsy after cardiac surgery: Characteristics and pathogenesis. Ann Neurol 2007;63:355365.Google Scholar
van Dijk, D, Spoor, M, Hijman, R, et al. for the Octopus Study Group. Cognitive and cardiac outcomes 5 years after off-pump vs. on-pump coronary artery bypass graft surgery. JAMA 2007;297:701708.Google Scholar
Duncan, A, Rumbaugh, C, Caplan, LR. Cerebral embolic disease, a complication of carotid aneurysms. Radiology 1979;133:379384.Google Scholar
Fisher, M, Davidson, R, Marcus, E. Transient focal cortical ischemia as a presenting manifestation of unruptured cerebral aneurysms. Ann Neurol 1980;8:367372.Google Scholar
Pessin, MS, Chimowitz, MI, Levine, SR, et al. Stroke in patients with fusiform vertebrobasilar aneurysms. Neurology 1989;39:1621.Google Scholar
Caplan, LR, Stein, R, Patel, D, et al. Intraluminal clot of the carotid artery detected radiographically. Neurology 1984;34:11751181.Google Scholar
Perloff, JK. Congenital mitral stenosis, cor triatriatum, congenital pulmonary vein stenosis. In Perloff, JK, Marelli, AJ (eds), The Clinical Recognition of Congenital Heart Disease. Philadelphia: W B Saunders, 1987, pp 169171.Google Scholar
Manning, WJ, Weintraub, RM, Waksmonski, CA, et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med 1995;123:817822.Google Scholar
Fatkin, D, Scalia, G, Jacobs, N, et al. Accuracy of biplane transesophageal echocardiography in detecting left atrial thrombus. Am J Cardiol 1996;77:321323.Google Scholar
Pearson, AC, Labovitz, AJ, Tatineni, S, Gomez, CR. Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology. J Am Coll Cardiol 1991;17:6672.Google Scholar
DeRook, FA, Comess, KA, Albers, GW, Popp, RL. Transesophageal echocardiography in the evaluation of stroke. Ann Intern Med 1992;117:922932.Google Scholar
Daniel, WG, Mugge, A. Transesophageal echocardiography. N Engl J Med 1995;332:12681279.Google Scholar
Horowitz, DR, Tuhrim, S, Weinberger, J, et al. Transesophageal echocardiography: Diagnostic and clinical applications in the evaluation of the stroke patient. J Stroke Cerebrovasc Dis 1997;6:332336.Google Scholar
Johnson, LL, Pohost, GM. Nuclear cardiology. In Schlant, RC, Alexander, RW (eds), Hurst’s The Heart, 8th ed. New York: McGraw-Hill, 1994, pp 22812323.Google Scholar
Ezekowiz, MD, Wilson, DA, Smith, EO, et al. Comparison of indium-111 platelet scintigraphy and two-dimensional echocardiography in the diagnosis of left ventricular thrombi. N Engl J Med 1982;306:15091513.Google Scholar
Daccarett, M, McGann, CJ, Akoum, NW, MacLeod, R, Marrouche, NF. MRI of the left atrium: Predicting clinical outcomes in patients with atrial fibrillation. Exp Rev Cardiovasc Ther 2011;9:105111.Google Scholar
Baher, A, Mowla, A, Kodali, S, et al. Cardiac MRI improves identification of etiology of acute ischemic stroke. Cerebrovasc Dis 2014;37:277284.Google Scholar
Hur, J, Kim, YJ, Lee, HJ, et al. Left atrial appendage thrombi in stroke patients: Detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology 2009;251:683690.Google Scholar
Hur, J, Kim, YJ, Lee, HJ, et al. Cardioembolic stroke: Dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 2012;263:688695.Google Scholar
Romero, J, Husain, SA, Kelesidis, I, Sanz, J, Medina, HM, Garcia, MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: A meta-analysis. Circ Cardiovasc Imaging 2013;6:185194.Google Scholar
Romero, J, Cao, JJ, Garcia, MJ, Taub, CC. Cardiac imaging for assessment of left atrial appendage stasis and thrombosis. Nat Rev Cardiol 2014;11:470480.Google Scholar
Caplan, LR, Feinberg, WM, Fisher, MJ, del Zoppo, GJ. The blood. In Caplan, LR (ed), Brain Ischemia. Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 83126.Google Scholar
Caplan, LR. Treatment of the acute embolic event. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 277288.Google Scholar
Furlan, A, Higashida, R, Wechsler, L, et al. Intraarterial prourokinase for acute ischemic stroke. The PROACT II Study: A randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:20032011.Google Scholar
Fisher, CM, Perlman, A. The nonsudden onset of cerebral embolism. Neurology 1967;17:10251032.Google Scholar
Melski, J, Caplan, LR, Mohr, JP, Geer, D, Bleich, H. Modeling the diagnosis of stroke at two hospitals. MD Computing 1989;6:157163.Google Scholar
Staroselskaya, I, Chaves, C, Silver, B, et al. Relationship between magnetic resonance arterial patency and perfusion-diffusion mismatch in acute ischemic stroke and its potential clinical use. Arch Neurol 2001;58:10691074.Google Scholar
Derex, L, Nighoghossian, N, Hermier, M, Adeleine, P, Froment, JC, Trouillas, P. Early detection of cerebral arterial occlusion on magnetic resonance angiography: Predictive value of the baseline NIHSS score and impact on neurological outcome. Cerebrovasc Dis 2002;13:225229.Google Scholar
Parsons, MW, Barber, PA, Chalk, J, et al. Diffusion- and perfusion-weighted response to thrombolysis in stroke. Ann Neurol 2002;51:2837.Google Scholar
Campbell, BC, Christensen, S, Parsons, MW, et al. for the EPITHET and DEFUSE Investigators. Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann Neurol 2013;73:510519.Google Scholar
Pessin, MS, del Zoppo, GJ, Furlan, AJ. Thrombolytic treatment in acute stroke: Review and Update of Selected Topics in Cerebrovascular Disease. 19th Princeton Conference, 1994. Boston: Butterworth–Heinemann, 1995, pp 409418.Google Scholar
Caplan, LR. Caplan’s Stroke, a Clinical Approach. Boston, Butterworth–Heinemann, 2000, pp 124130.Google Scholar
Caplan, LR. Thrombolysis 2004: The good, the bad, and the ugly. Rev Neurol Dis 2004;1:1626.Google Scholar
Christoforidis, G, Mohammad, Y, Bourekas, E, Slivka, A. Initial severity of angiographic occlusion predicts subsequent volume of cerebral infarction following intra-arterial thrombolysis in acute ischemic stroke. Neurology 2004;62 (Suppl 5): A449.Google Scholar
Toni, D, Fiorelli, M, Zanette, EM, et al. Early spontaneous improvement and deterioration of ischemic stroke patients: A serial study with transcranial Doppler ultrasonography. Stroke 1998;29:11441148.Google Scholar
Lewandowski, C, Frankel, M, Tomsick, T, et al. Combined intravenous and intraarterial r-tPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) Bridging Trial. Stroke 1999;30:25982605.Google Scholar
IMS Study Investigators. Combined intravenous and intra-arterial recanalization for acute ischemic stroke: The Interventional Management of Stroke Study. Stroke 2004;35:904912.Google Scholar
Hausegger, K, Hauser, M, Kau, T. Mechanical thrombectomy with stent retrievers in acute ischemic stroke. Cardiovasc Intervent Radiol 2014;37:863–74.Google Scholar
Ciccone, A, Valvassori, L. Endovascular treatment for acute ischemic stroke. N Engl J Med 2013;368:24332434.Google Scholar
Berlis, A, Lutsep, H, Barnwell, S. Mechanical thrombolysis in acute ischemic stroke with endovascular photoacoustic recanalization. Stroke 2004;35:11121116.Google Scholar
Hacke, W. The dilemma of reinstituting anticoagulation for patients with cardioembolic sources and intracranial hemorrhage: How wide is the strait between Skylla and Karybdis? Arch Neurol 2000;57:16821684.Google Scholar
Phan, TG, Koh, M, Wijdicks, EF. Safety of discontinuation of anticoagulation in patients with intracranial hemorrhage at high thromboembolic risk. Arch Neurol 2000;57:17101713.Google Scholar
O’Brien, MD. Ischemic cerebral edema in brain ischemia. In Caplan, LR (ed.), Basic Concepts and Clinical Relevance, London: Springer-Verlag, 1995, pp 4350.Google Scholar
Parisi, DM, Koval, K, Egol, K. Fat embolism syndrome. Am J Orthop (Belle Mead NJ) 2002;31:507512.Google Scholar
Bulger, E, Smith, DG, Maier, RV, Jurkovich, G. Fat embolism syndrome. A 10-year review. Arch Surg 1997;132:435439.Google Scholar
Sevitt, S. Fat Embolism. London: Butterworth & Co., 1962.Google Scholar
Dines, DE, Burgher, LW, Okazaki, H. The clinical and pathological correlation of fat embolism syndrome. Mayo Clin Proc 1975;50:407411.Google Scholar
Jacobson, DM, Terrence, CF, Reinmuth, OM. The neurologic manifestations of fat embolism. Neurology 1986;36:847851.Google Scholar
Hill, JD, Aguilar, MJ, Baranco, AP, Gerbode, F. Neuropathological manifestations of cardiac surgery. Ann Thorac Surg 1969;7:409517.Google Scholar
Ghatal, NR, Sinnenberg, RJ, DeBlois, GG. Cerebral fat embolism following cardiac surgery. Stroke 1983;14:619621.Google Scholar
Charache, S, Page, DL. Infarction of bone marrow in sickle cell disorders. Ann Intern Med 1967;67:11951200.Google Scholar
Vichinsky, E, Williams, K, Das, M, et al. Pulmonary fat embolism: A distinct cause of severe acute chest syndrome in sickle cell anemia. Blood 1994;83:31073112.Google Scholar
Shelley, WM, Curtis, EM. Bone marrow and fat embolism in sickle cell anemia and sickle cell-hemoglobin C disease. Bull Johns Hopkins Hosp 1958;103:825.Google Scholar
Chmel, H, Bertles, J. Hemoglobin S/C disease in a pregnant woman with crisis and fat embolization syndrome. Am J Med 1975;58:563566.Google Scholar
Yoo, KM, Yoo, BG, Kim, KS, Lee, SU, Han, BH. Cerebral lipiodol embolism during transcatheter arterial chemoembolism. Neurology 2004;63:181183.Google Scholar
Qian, Y, Ances, BM, Pruitt, A, Choi, B, Moonis, G. Intracranial fat embolization due to baclofen pump. Neurology 2005;64:919.Google Scholar
Simon, A, Ulmer, JL, Strottman, JM. Contrast-enhanced MR imaging of cerebral fat embolism: Case report and review of the literature. AJNR 2003;24:97101.Google Scholar
Forteza, AM, Rabinstein, A, Koch, S, et al. Endovascular closure of a patent foramen ovale in the fat embolism syndrome. Changes in the embolic pattern as detected by transcranial Doppler. Arch Neurol 2002;59:455459.Google Scholar
Forteza, AM, Koch, S, Romano, JG, et al. Transcranial Doppler detection of fat emboli. Stroke 1999;30:26872691.Google Scholar
Guillevin, R, Vallee, JN, Demeret, S, et al. Cerebral fat embolism: Usefulness of magnetic resonance spectroscopy. Ann Neurol 2005;57:434439.Google Scholar
Chastre, J, Fagon, J-Y, Soler, P, et al. Bronchoalveolar lavage for rapid diagnosis of the fat embolism syndrome in trauma patients. Ann Intern Med 1990;113:583588.Google Scholar
Godeau, B, Schaeffer, A, Bachir, D, et al. Bronchoalveolar lavage in adult sickle cell patients with acute chest syndrome: Value for diagnostic assessment of fat embolism. Am J Resp Care Med 1996;153:16911696.Google Scholar
Kamenar, E, Burger, PC. Cerebral fat embolism: A neuropathological study of a microembolic state. Stroke 1980;11:477484.Google Scholar
Menkin, M, Schwartzman, RJ. Cerebral air embolism. Report of five cases and review of the literature. Arch Neurol 1977;34:169170.Google Scholar
Valentino, R, Hilbert, G, Vargas, F, Gruson, D. Computed tomographic scan of massive cerebral air embolism. Lancet 2003;361:1848.Google Scholar
Demaerel, P, Gevers, A-M, De Brueker, Y, Sunaert, S, Wilms, G. Stroke caused by cerebral air embolism during endoscopy. Gastrointest Endosc 2003;1:134135.Google Scholar
Weber, M-A, Fiebach, JB, Lichy, MP, Schwark, C, Grau, A. Bilateral cerebral air embolism. J Neurol 2003;250:11151117.Google Scholar
Hodics, T, Linfante, I. Cerebral air embolism. Neurology 2003;60:112.Google Scholar
Hertz, JA, Schinco, MA, Frykberg, ER. Extensive pneumocranium. J Trauma 2002;52:188.Google Scholar
Laskey, AL, Dyer, C, Tobias, JD. Venous air embolism during home infusion therapy. Pediatrics 2002;109:e15.Google Scholar
Gei, AF, Vadhera, , Hankins, GDV. Embolism during pregnancy: Thrombus, air, and amniotic fluid. Anesthesiol Clin North America 2003;21:165182.Google Scholar
Malinow, AM, Naulty, JS, Hunt, CO, et al. Precordial ultrasonic monitoring during cesarean delivery. Anesthesiology 1987;66:816819.Google Scholar
Spencer, MP, Campbell, SD. Development of bubbles in venous and arterial blood during hyperbaric decompression. Bull Mason Clin 1968;22:2632.Google Scholar
Gillen, HW. Symptomatology of cerebral gas embolism. Neurology 1968;18:507512.Google Scholar
van Hulst, RA, Klein, J, Lachman, B. Gas embolism: Pathophysiology and treatment. Clin Physiol Funct Imaging 2003;23:237246.Google Scholar
Cantais, E, Louge, P, Suppini, A, Foster, PP, Palmier, B. Right-to-left shunt and risk of decompression illness with cochleovestibular and cerebral symptoms in divers: Case control study in 101 consecutive dive accidents. Crit Care Med 2003;31:8488.Google Scholar
Jeon, S-B, Kim, JS, Lee, DK, Kang, D-W, Kwon, SU. Clinicoradiological characteristics of cerebral air embolism. Cerebrovasc Dis 2007;23:459462.Google Scholar
Yeh, T, Austin, EH, Sehic, A, Edmonds, HL. Rapid recognition and treatment of cerebral air embolism: The role of neuroimaging. J Thor Cardiovasc Surg 2003;126:589591.Google Scholar
Lefkovitz, NW, Roessman, U, Kori, S. Major cerebral infarction from tumor embolus. Stroke 1986;17:555557.Google Scholar
Banerjee, AK, Chopra, JS. Cerebral embolism from a thyroid carcinoma. Arch Neurol 1972;27:186187.Google Scholar
Kase, CS, White, R, Vinson, TL, Eichelberger, RP. Shotgun pellet embolus to the middle cerebral artery. Neurology 1981;31:458461.Google Scholar
Yaari, R, Ahmadi, J, Chang, GY. Cerebral shotgun pellet embolism. Neurology 2000;54:1487.Google Scholar
Duncan, I, Fourie, PA. Embolization of a bullet in the internal carotid artery. AJR Am J Roentgenol 2002;178:15721573.CrossRefGoogle ScholarPubMed
Langenbach, M, Leopold, H-C, Hennerici, M. Neck trauma with embolization of the middle cerebral artery by a metal splinter. Neurology 1990;40:552553.Google Scholar
Dato, GMA, Arsianian, A, Di Marzio, P, Filosso, PL, Ruffini, E. Posttraumatic and iatrogenic foreign bodies in the heart: Report of fourteen cases and review of the literature. J Thor Cardiovascular Surg 2003;126:408414.Google Scholar
Crie, JS, Hajar, R, Folger, G. Umbilical catheter masquerading at echocardiography as a left atrial mass. Clin Cardiol 1989;12:728730.Google Scholar
Mattox, KL, Beall, AC, Ennix, CL, DeBakey, ME. Intravascular migratory bullets. Am J Surg 1979;137:192195.Google Scholar
Caplan, LR, Thomas, C, Banks, G. Central nervous system complications of “Ts and blues” addiction. Neurology 1982;32:623628.Google Scholar
Caplan, LR, Hier, DB, Banks, G. Current concepts of cerebrovascular disease – stroke: Stroke and drug abuse. Stroke 1982;27:869–73.Google Scholar
Atlee, W. Talc and cornstarch emboli in the eyes of drug abusers. JAMA 1972;219:4951.Google Scholar
Mizutami, T, Lewis, R, Gonatas, N. Medial medullary syndrome in a drug abuser. Arch Neurol 1980;37:425428.Google Scholar
Chillar, RK, Jackson, AL, Alaan, L. Hemiplegia after intracarotid injection of methylphenidate. Arch Neurol 1982;39:598599.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×