Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T12:32:36.563Z Has data issue: false hasContentIssue false

Part I - General principles

Published online by Cambridge University Press:  05 August 2016

Louis R. Caplan
Affiliation:
Department of Neurology, Beth Israel Deaconess Medical Center, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Caplan's Stroke
A Clinical Approach
, pp. 1 - 216
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Hodgins, E. Episode: Report On the Accident Inside My Skull. New York, NY: Atheneum, 1964, pp 714.Google Scholar
Carroll, L. Alice’s Adventures in Wonderland. New York, NY: Dutton, 1929, pp 9394.Google Scholar
Osler, W. Aequanimitas. In Aequanimitas With Other Addresses to Medical Students, Nurses and Practitioners Of Medicine. Philadelphia, PA: Blakiston, 1932, pp 89.Google Scholar
Go, AS, Mozaffrian, D, Roger, VL et al. Executive summary: Heart disease and stroke statistics – 2014 update: A report from the American Heart Association. Circulation 2014;129(3):399410.Google Scholar
Rosamond, W, Flegal, K, Friday, G et al. Heart disease and stroke statistics – 2007 update: A report from the American heart Association Statistics Committee and Stroke Statistics Committee. Circulation 2007;115(5):e69e171.Google Scholar
Fields, WS, Lemak, NA. A History Of Stroke: Its Recognition and Treatment. New York, NY: Oxford University Press, 1989.Google Scholar
Gilman, S. Russell N DeJong. 1907–1990. Ann Neurol 1991;29:108109.Google Scholar
Friedlander, WJ. About three old men: An inquiry into how cerebral atherosclerosis has altered world politics. Stroke 1972;3:467473.Google Scholar
Bruenn, HG. Clinical notes on the illness and death of president Franklin D. Roosevelt. Ann Intern Med 1970;72:579591.Google ScholarPubMed
McHenry, LC Jr. Garrison’s History Of Neurology. Springfield, IL: Charles C Thomas Publisher, 1969.Google Scholar
Linenthal, AJ. First a Dream: The History of Boston’s Jewish hospitals, 1896 to 1928. Boston, MA: Beth Israel Hospital, 1990, pp 276294.Google Scholar
Blumgart, HL, Schlesinger, MJ, Davis, D. Studies on the relation of the clinical manifestations of angina pectoris, coronary thrombosis, and myocardial infarction to the pathological findings. Am Heart J 1940;19:19.Google Scholar
Blumgart, HL, Schlesinger, MJ, Zoll, PM. Angina pectoris, coronary failure, and acute myocardial infarction. JAMA 1941;116:9197.CrossRefGoogle Scholar
Blumgart, HL. Caring for the patient. N Engl J Med 1964;270:449456.CrossRefGoogle ScholarPubMed
Nuland, S. Doctors, Bibliography Of Medicine. Birmingham, AL: Libraries of Gryphon Editions, 1988.Google Scholar
Adams, F. The Genuine Works of Hippocrates: Translated from the Greek. Baltimore, MD: Williams & Wilkins, 1939.Google Scholar
Clark, E. Apoplexy in the Hippocratic writings. Bull Hist Med 1963;37:301314.Google Scholar
Vesalius, A. De Humani Corporis Fabrica. Basileae, Italy: J Oporini, 1543.Google Scholar
Wepfer, JJ. Observationes Anatomicae, Ex Cadaveribus Eorum, Quos Sustulit Apoplexia, Cum Exercitatione De Ejus Loco Affecto. Schaffhausen, Germany: Joh. Caspari Suteri, l658.Google Scholar
Gurdjian, ES. History of occlusive cerebrovascular disease: I. From Wepfer to Moniz. Arch Neurol 1979;36:340343.Google Scholar
Willis, T. The London Practice Of Physick. London: Thomas Basset at the George in Fleet Street and William Crooke at the Green-Dragon without Temple-Bar, 1685.Google Scholar
Willis, T. Cerebri Anatome: Cui Accessit Nervorum Descriptio Et Usus. London: J Flesher, 1664.Google Scholar
Willis, T. Instructions and prescripts for curing the apoplexy. In The London Practice of Physic (Portage, S, ed.), 1679.Google Scholar
Zimmer, C. Soul Made Flesh: The Discovery Of the Brain and How It Changed the World. New York, NY: William Heinemann (Random House), 2004.Google Scholar
Caplan, LR. Posterior circulation ischemia: Then, now, and tomorrow. The Thomas Willis lecture – 2000. Stroke 2000;31:20112023.CrossRefGoogle Scholar
Morgagni, GB. The Seats and Causes Of Disease Investigated By Anatomy. Translated by Alexander, B. London: Millar and Cadell, 1769. Birmingham: Classics of Medicine Library, 1983.Google Scholar
Cheyne, J. Cases of Apoplexy and Lethargy With Observations Upon the Comatose Diseases. London: J Moyes Printer, 1812.Google Scholar
Abercrombie, J. Pathological and Practical Researches On Diseases Of the Brain and Spinal Cord. Edinburgh: Waugh and Innes, 1828.Google Scholar
Hooper, R. The Morbid Anatomy Of the Human Brain Illustrated By Coloured Engravings Of the Most Frequent and Important Organic Diseases To Which That Viscus Is Subject. London: Rees, Orme, Brown & Green, 1831.Google Scholar
Cruveilher, J. Anatomie Pathologique Du Corps Humain: Descriptions Avec Figures Lithographiées Et Caloriées Des Diverses Alterations Morbides Dont Le Corps Humain Est Susceptible. Paris: J B Bailliere, 1835–1842.Google Scholar
Carswell, R. Pathological Anatomy: Illustrations Of the Elementary Forms Of Disease. London: Longman, 1838.Google Scholar
Bright, R. Reports Of Medical Cases, Selected With a View Of Illustrating the Symptoms and Cures Of Diseases By a Reference To Morbid Anatomy. London: Longman, Rees, Orme, Brown & Green, 1831.Google Scholar
Fisher, CM. The history of cerebral embolism and hemorrhagic infarction. In The Heart and Stroke (Furlan, A, ed.), Berlin: Springer-Verlag, 1987, pp 316.Google Scholar
Virchow, R. Ueber die akut entzundung der arterien. Virchows Arch Path Anat 1847;1:272378.Google Scholar
Duret, H. Sur la distribution des arteres nouricieres du bulbe rachidien Arch Physiol Norm Pathol 1873;2:97113.Google Scholar
Duret, H. Recherches anatomiques sur la circulation de l’encephale. Arch Physiol Norm Pathol 1874;3:6091,316353.Google Scholar
Stopford, JS. The anatomy of the pons and medulla oblongata. J Anat Physiol 1928;50:225280.Google Scholar
Foix, C, Hillemand, P. Irrigation de la protuberance. C R Soc Biol (Paris) 1925;92:3536.Google Scholar
Foix, C, Hillemand, P. les Arteres de l’axe encephalique jusqu’au diencephale inclusivement. Rev Neurol (Paris) 1925;41:705739.Google Scholar
Foix, C, Levy, M. les Ramollissements sylviens. Rev Neurol (Paris) 1927;43:151.Google Scholar
Caplan, LR. Charles Foix – the first modern stroke neurologist. Stroke 1990;21:348356.Google Scholar
Osler, W. The Principles and Practice Of Medicine (5th ed). New York, NY: D Appleton, 1903.Google Scholar
Gowers, WR. A Manual Of Disease Of the Nervous System. London: J & A Churchill, 1893.Google Scholar
Wilson, SAK, Bruce, AN. Neurology (2nd ed). London: Butterworth–Heinmann, 1955.Google Scholar
Foix, C, Masson, A. Le Syndrome de l’artere cerebrale posterieure. Presse Med 1923;31:361365.Google Scholar
Foix, C, Hillemand, P. Les syndromes de l’artere cerebrale anterieure. Encephale 1925;20:209232.Google Scholar
Estol, CJ. Dr C Miller Fisher and the history of carotid artery disease. Stroke 1996;27:559566.Google Scholar
Fisher, CM. Occlusion of the internal carotid artery. Arch Neurol Psychiatry 1951;65:346377.Google Scholar
Fisher, CM. Occlusion of the carotid arteries. Arch Neurol Psychiatry 1954;72:187204.Google Scholar
Fisher, CM, Ojemann, RG. A clinico-pathologic study of carotid endarterectomy plaques. Rev Neurol 1986;142:573589.Google Scholar
Fisher, CM. Observations of the fundus oculi in transient monocular blindness. Neurology 1959;9:333347.Google Scholar
Fisher, CM. Facial pulses in internal carotid artery occlusion. Neurology 1970;20:476478.Google Scholar
Fisher, CM. The pathology and pathogenesis of intracerebral hemorrhage. In Pathogenesis and Treatment Of Cerebrovascular Disease (Fields, WS, ed.), Springfield, IL: CharlesThomas Publishers, 1961, pp 295317.Google Scholar
Fisher, CM. Clinical syndromes in cerebral hemorrhage. In Pathogenesis And Treatment Of Cerebrovascular Disease (Fields, WS, ed.), Springfield, IL: CharlesThomas Publishers, 1961, pp 318342.Google Scholar
Fisher, CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 1971;30:536550.Google Scholar
Fisher, CM, Picard, EH, Polak, A, Dalal, P, Ojemann, R. Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. J Nerv Ment Dis 1965;140:3857.Google Scholar
Fisher, CM, Lacunes: Small deep cerebral infarcts. Neurology 1965;15 774784.CrossRefGoogle ScholarPubMed
Fisher, CM. The arterial lesions underlying lacunes. Acta Neuropath (Berlin) 1969;12:115.Google Scholar
Fisher, CM. Pure motor hemiparesis of vascular origin. Arch Neurol 1965;13:3044.Google Scholar
Fisher, CM, Karnes, W, Kubik, CS. Lateral medullary infarction. The pattern of vascular occlusion. J Neuropath Exp Neurol 1961;20:323379.Google Scholar
Fisher, CM. A new vascular syndrome – “the subclavian steal”. N Engl J Med 1961;265:912.Google Scholar
Fisher, CM, Caplan, LR. Basilar artery branch occlusion: a cause of pontine infarction. Neurology 1971;21:900905.Google Scholar
Fisher, CM. The posterior cerebral artery syndrome. Can J Neurol Sci 1986;13:232239.Google Scholar
Fisher, CM. Ocular bobbing. Arch Neurol 1964;11:543546.Google Scholar
Fisher, CM. Some neuro-opthalmological observations. J Neurol Neurosurg Psychiatry 1967;30:383392.Google Scholar
Fisher, CM. The “herald hemiparesis” of basilar artery occlusion. Arch Neurol 1988;45:13011303.Google Scholar
Kubik, CS, Adams, RD. Occlusion of the basilar artery: A clinical and pathological study. Brain 1946;69:73121.Google Scholar
Moniz, E. l’Encephalographie artèrielle, son importance dans la localization des tumeurs cérébrales. Rev Neurol (Paris) 1927;2:7290.Google Scholar
Moniz, E. l’Angiographie Cérébrale. Paris: Masson, 1931.Google Scholar
Gurdjian, ES, Gurdjian, ES. History of occlusive cerebrovascular disease: II. After Moniz with special reference to surgical treatment. Arch Neurol 1979;36:427432.Google Scholar
Seldinger, SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol 1953;39:368376.Google Scholar
Edelman, RC, Mattle, HP, O’Reilly, GV, et al. Magnetic resonance imaging of flow dynamics in the circle of Willis. Stroke 1990;21:5665.Google Scholar
Knauth, M, von Kummer, R, Jansen, O, et al. Potential of CT angiography in acute ischemic stroke. Am J Neuroradiol 1997;18:10011010.Google Scholar
Franklin, DL, Schlegel, WA, Rushner, RF. Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 1961;134:564565.CrossRefGoogle ScholarPubMed
Aaslid, R, Markwalder, TM, Nornes, H. Non-invasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982;57:769774.Google Scholar
Caplan, LR, Brass, LM, DeWitt, LD, et al. Transcranial Doppler ultrasound: Present status. Neurology 1990;40:696700.Google Scholar
Aring, CD, Meritt, HH. Differential diagnosis between cerebral hemorrhage and cerebral thrombosis. Arch Intern Med 1935;56:435456.Google Scholar
Dalsgaard-Nielsen, T. Survey of 1000 cases of apoplexia cerebri. Acta Psychiatr Neurol Scand 1955;30:169185.Google Scholar
Whisnant, JP, Fitzgibbons, JP, Kurland, LT, et al. Natural history of stroke in Rochester, Minnesota, 1945 through 1954. Stroke 1971;2:1122.Google Scholar
Matsumoto, N, Whisnant, JP, Kurland, LT, et al. Natural history of stroke in Rochester, Minnesota, 1955 through 1969: An extension of a previous study 1945 through 1954. Stroke 1973;4:2029.Google Scholar
Mohr, JP, Caplan, LR, Melski, JW, et al. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;28:754762.Google Scholar
Kunitz, S, Gross, CR, Heyman, A, et al. The Pilot Stroke Data Bank: Definition, design, and data. Stroke 1984;15:740746.Google Scholar
Caplan, LR, Hier, DB, D’Cruz, I. Cerebral embolism in the Michael Reese Stroke Registry. Stroke 1983;14:530536.CrossRefGoogle ScholarPubMed
Chambers, BR, Donnan, GA, Bladin, PF. Patterns of stroke: An analysis of the first 700 consecutive admissions to the Austin Hospital Stroke Unit. Aust N Z J Med 1983;13:5764.Google Scholar
Foulkes, MA, Wolf, PA, Price, TR, et al. The Stroke Data Bank: Design, methods, and baseline characteristics. Stroke 1988;19:547554.Google Scholar
Bogousslavsky, J, Mille, GV, Regli, F. The Lausanne Stroke Registry: An analysis of 1,000 consecutive patients with first stroke. Stroke 1988;19:10831092.Google Scholar
Moulin, T, Tatu, L, Crepin-Leblond, T, Chavot, D, Berges, S, Rumbach, T. The Besancon Stroke Registry: An acute stroke registry of 2,500 consecutive patients. Eur Neurol 1997;38(1):1020.CrossRefGoogle Scholar
Heuschmann, PU, Kolominsky-Rabas, PL, Misselwitz, B, et al.; German Stroke Registers Study Group. Predictors of in-hospital mortality and attributable risks of death after ischemic stroke: The German Stroke Registers Study Group. Arch Intern Med 2004;164:17611768.Google Scholar
Vemmos, KN, Takis, CE, Georgilis, K, Zakopoulos, NA, Lekakis, JP, Papamichael, CM, Zis, VP, Stamatelopoulos, S. The Athens stroke registry: Results of a five-year hospital-based study. Cerebrovasc Dis 2000;10:133141.Google Scholar
Gross, CR, Kase, CS, Mohr, JP, et al. Stroke in south Alabama: Incidence and diagnostic features-a population based study. Stroke 1984;15:249255.Google Scholar
Wolf, PA, Kannel, WB, Dauber, TR. Prospective investigations: The Framingham study and the epidemiology of stroke. Adv Neurol 1978;19:107120.Google Scholar
Oxfordshire Community Stroke Project. Incidence of stroke in Oxfordshire: First year’s experience of a community stroke registry. BMJ 1983;287:713717.Google Scholar
Alter, M, Sobel, E, McCoy, RC, et al. Stroke in the Lehigh Valley: Incidence based on a community-wide hospital registry. Neuroepidemiology 1985;4:115.Google Scholar
Yatsu, FM, Becker, C, McLeroy, K, et al. Community hospital-based stroke programs: North Carolina, Oregon, and New York: I. Goals, objectives, and data collection procedures. Stroke 1986;17:276284.Google Scholar
Mohr, JP. Stroke data banks [editorial]. Stroke 1986;17:171172.Google Scholar
Caplan, LR. Stroke data banks, then and now. In Basis For a Classification Of Cerebrovascular Disease (Courbier, R, ed.). Amsterdam: Excerpta Medica, 1985, pp 152162.Google Scholar
Caplan, LR. Caplan’s short rendition of stroke during the 20th century: Part 2. A short history. Int J Stroke 2006;1:228234.Google Scholar
Indredavik, B, Bakke, F, Solberg, R et al. Benefit of a stroke unit: a randomized controlled trial. Stroke 1991;22:10261031.Google Scholar
Indredavik, B, Slordahl, SA, Bakke, F, Rokseth, R, Haheim, LL. Stroke unit treatment. Long term effects. Stroke 1997;28:18611866.Google Scholar
Diez-Tejedor, E, Fuentes, B. Acute care in stroke: Do stroke units make the difference? Cerebrovasc Dis 2001;11(Suppl 1):3139.Google Scholar
Birbeck, GL, Zingmond, DS, Cui, X, Vickrey, BG. Multispecialty stroke services in California hospitals are associated with reduced mortality. Neurology 2006;66:15271532.Google Scholar
Stroke Unit Trialists’ Collaboration. Collaborative systematic review of the randomized trials of organised in-patient (stroke unit) care after stroke. BMJ 1997;314:11511159.Google Scholar
Stroke Unit Trialists’ Collaboration. How do stroke units improve patient outcomes? A collaborative systematic review of the randomized trials. Stroke 1997;28:21392144.Google Scholar
Hacke, W, Kaste, M, Fieschi, C et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995; 274:10171025.Google Scholar
Hacke, W, Kaste, M, Fieschi, C et al. for the Second European-Australasian Acute Stroke Study Investigators. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS-ll). Lancet 1998;352:12451251.Google Scholar
McLean, J. The thromboplastic action of cephalin. Am J Physiol 1916;41:250257.Google Scholar
Howell, WH, Holt, E. Two new factors in blood coagulation – heparin and pro-antithrombin. Am J Physiol 1918;47:328341.Google Scholar
Link, KP. The discovery of dicumarol and its sequels. Circulation 1959;19:97107.Google Scholar
Baker, RN, Broward, JA, Fang, HC, et al. Anticoagulant therapy in cerebral infarction. Report on cooperative study. Neurology 1962;12:823835.Google Scholar
The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med 1990;323:15051511.Google Scholar
Petersen, P, Godtfredsen, J, Boysen, G et al. Placebo-controlled, randomized trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation: The Copenhagen AFASAK study. Lancet 1989;1:175179.CrossRefGoogle ScholarPubMed
The Stroke Prevention in Atrial Fibrillation Investigators. The stroke prevention in atrial fibrillation study: Final results. Circulation 1991;84:527539.Google Scholar
EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:12551262.Google Scholar
Craven, LL. Experiences with aspirin (acetylsalicylic acid) in the nonspecific prophylaxis of coronary thrombosis. Mississippi Valley Med J 1953;75:3844.Google Scholar
Craven, LL. Prevention of coronary and cerebral thrombosis. Mississippi Valley Med J 1956;78:213215.Google Scholar
Mundall, J, Quintero, P, von Kaulla, K, et al. Transient monocular blindness and increased platelet aggregability treated with aspirin – a case report. Neurology 1971;21:402.Google Scholar
Harrison, MJG, Marshall, J, Meadows, JC, et al. Effect of aspirin in amaurosis fugax. Lancet 1971;2:743744.Google Scholar
Fields, WS, LeMak, NA, Frankowski, RF, Hardy, RJ. Controlled trial of aspirin in cerebral ischemia. Stroke 1977;8:301316.Google Scholar
The Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in threatened stroke. N Engl J Med 1978;299:5359.Google Scholar
Mohr, JP, Thompson, JLP, Lazar, RM et al. for the Warfarin-Aspirin Recurrent Stroke Study Group. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med 2001;345:14441451.Google Scholar
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 2005;352:13051316.Google Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. RELY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:11391151.Google Scholar
Granger, CB, Alexander, JH, McMurray, JJ, et al. ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981992.Google Scholar
Patel, MR, Mahaffey, KW, Garg, J, et al. ROCKET-AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883891.Google Scholar
Giugliano, RP, Ruff, CT, Braunwald, E, et al. ENGAGE AF-TIMI 48 Investigators. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:20932104.Google Scholar
Eastcott, HHG, Pickering, GW, Rob, CG. Reconstruction of internal carotid artery in a patient with intermittent attacks of hemiplegia. Lancet 1954;2:994996.Google Scholar
DeBakey, ME. Successful carotid endarterectomy for cerebrovascular insufficiency. Nineteen years follow-up. JAMA 1975;233:10831085.Google Scholar
Carrea, R, Molins, M, Murphy, G. Surgical treatment of spontaneous thrombosis of the internal carotid artery in the neck. Carotid–carotideal anastamosis. Acta Neurol Latinoamer 1955;1:7178.Google Scholar
Cooley, DA, Al-Naaman, YD, Carton, CA. Surgical treatment of arteriosclerotic occlusions of common carotid artery. J Neurosurg 1956;2:12651267.Google Scholar
Cate, WR Jr, Scott, HW. Cerebral ischemia of central origin. Relief by subclavian–vertebral artery thrombendarterectomy. Surgery 1959;45:1931.Google Scholar
Thompson, JE. The evolution of surgery for the treatment and prevention of stroke: The Willis lecture. Stroke 1996;27:14271434.Google Scholar
Fields, WS, North, RR, Hass, WK et al. Joint Study of Extracranial Arterial Occlusion as a Cause of Stroke: Organization of study and survey of patient population. JAMA 1968;203:955960.Google Scholar
Hass, WK, Fields, WS, North, R et al. Joint Study of Extracranial Arterial Occlusion. II. Arteriography, techniques, sites, and complications. JAMA 1968;203:961968.Google Scholar
Fields, WS (ed). Pathogenesis and Treatment Of Cerebrovascular Disease. Springfield, IL: Charles C Thomas Publisher, 1961.Google Scholar
Fields, WS, Sahs, AL (eds). Intracranial Aneurysms and Subarachnoid Hemorrhage. Springfield, IL: Charles C Thomas Publisher, 1965.Google Scholar
Maroon, JC, Donaghy, RMP. Experimental cerebral revascularization with autogenous grafts. J Neurosurg 1973;38:172179.Google Scholar
Hunter, KM, Donaghy, RMP. Arterial micrografts. An experimental study. Can J Surg 1973;16:2327.Google Scholar
Yasargil, MG, Krayenbuhl, HA, Jacobson, JH. Microneurosurgical arterial reconstruction. Surgery 1970;67:221233.Google Scholar
Yasargil, MG (ed). Microsurgery Applied To Neurosurgery. Stuttgart: George Thieme Verlag, 1969.Google Scholar
EC/IC Bypass Study Group. Failure of extracranial–intracranial arterial bypass to reduce the risk of ischemic stroke: results of an international randomized trial. N Engl J Med 1985;313:191200.Google Scholar
Powers, WJ, Clarke, WR, Grubb, RL et al. for the COSS Investigators. Extracranial–intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia. The Carotid Occlusion Surgery Randomized Trial. JAMA 2011;306(18):19831992.Google Scholar
Caplan, LR. Bypassing trouble. Arch Neurol 2012;69(4):518520.Google Scholar
North American Symptomatic Carotid Endarterectomy Trial (NASCET) Collaborators. Beneficial effects of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991;325:445453.Google Scholar
Barnett, HJM, Taylor, DW, Eliasziw, et al. For the North American Symptomatic Carotid Endarterectomy Trial Collaborators. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med 1998;339:14151425.Google Scholar
European Carotid Surgery Trialists’ Collaborative Group. MRC European Carotid Surgery trial: Interim results of symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet 1991;1:12351243.Google Scholar
European Carotid Surgery Trialists’ Collaborative Group. Randomized trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998;351:13791387.Google Scholar
Asymptomatic Carotid Atherosclerosis Study Group. Carotid endarterectomy for patients with asymptomatic carotid artery stenosis. JAMA 1995;273:14211428.Google Scholar
Halliday, AW, Thomas, DJ, Mansfield, AO. The asymptomatic carotid surgery trial (ACST). Int Angiol 1995;14:1820.Google Scholar
Halliday, A, Mansfield, A, Marro, J. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363:14911502.Google Scholar
Brott, TG, Hobson, RW II, Howard, G, et al.; CREST Investigators. Stenting vs. endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 2010;363(1):1123.Google Scholar
Caplan, LR, Brott, TG. Of horse races, trials, meta-analyses, and carotid artery stenosis. Arch Neurol 2011;68(2):157159.Google Scholar
Meinert, CL. Clinical Trials: Design, Conduct, and Analysis. New York, NY: Oxford University Press, 1986.Google Scholar
Sackett, DL. Evidence-based medicine: What it is and what it isn’t. BMJ 1996;312:7172.Google Scholar
Sackett, DL, Rosenberg, W. On the need for evidence-based medicine. Evidence-based Medicine 1995;1:56.Google Scholar
Caplan, LR. Editorial. Evidence based medicine: concerns of a clinical neurologist. J Neurology Neurosurg Psychiatry 2001;71:569576.Google Scholar
Caplan, LR. Evidence and the effective clinical neurologist. The 2009 H Houston Merritt Lecture. Arch Neurol 2011;68(10):12521256.Google Scholar
Sloan, MA. Thrombolysis and stroke: Past and future. Arch Neurol 1987;44:748768.Google Scholar
Sussman, BJ, Fitch, TSP. Thrombolysis with fibrinolysin in cerebral arterial occlusion. JAMA 1958;167:17051709.Google Scholar
Herndon, RM, Meyer, JS, Johnson, JF et al. Treatment of cardiovascular thrombosis with fibrinolysisn. Am J Cardiol 1960;30:540545.Google Scholar
Clark, RL, Clifton, EE. The treatment of cerebrovascular thrombosis and embolism with fibrinolytic agents. Am J Cardiol 1960;30:546551.Google Scholar
Meyer, JS, Gilroy, J, Barnhart, ME et al. Anticoagulants plus streptokinase therapy in progressive stroke. JAMA 1963;189:373.Google Scholar
Meyer, JS, Gilroy, J Barnhart, ME et al. Therapeutic thrombolysis in cerebral thromboembolism. Randomized evaluation of intravenous streptokinase. In Cerebral Vascular Diseases. (Millikan, CH, Siekert, R, Whisnant, JP, eds), New York, NY: Grune & Sratton, 1964, pp 200213.Google Scholar
Zeumer, H, Hacke, W, Ringelstein, EB. Intra-arterial thrombolysis in vertebrobasilar thromboembolic disease. AJNR Am J Neuroradiol 1983;4:401404.Google Scholar
Zeumer, H, Hundgen, R, Ferbert, A et al. Local intra-arterial fibrinolyic therapy in inaccessible internal carotid occlusion. Neuroradiology 1984;76:315317.Google Scholar
Hacke, W, Zeumer, H, Ferbert, A, Bruckmann, H, del Zoppo, G. Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 1988;19:12161222.Google Scholar
del Zoppo, GJ, Poeck, K, Pessin, MS et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 1992;32:7886.Google Scholar
Wolpert, SM, Bruckmann, H, Greenlee, R et al. Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. AJNR Am J Neuroradiol 1993;14:313.Google Scholar
Pessin, MS, del Zoppo, GJ, Furlan, AJ. Thrombolytic treatment in acute stroke: Review and update of selected topics. In Cerebrovascular Diseases, 19th Princeton Conference, 1994. Boston, MA: Butterworth–Heinemann, 1995, pp 409418.Google Scholar
Hacke, W, del Zoppo, GJ, Hirschberg, M (eds). Thrombolytic Therapy In Acute Ischemic Stroke. Berlin: Springer-Verlag, 1991.Google Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:15811587.Google Scholar
Adams, HP, Brott, TG, Furlan, AJ et al. Use of thrombolytic drugs. A supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for Health Care Professionals from a special writing group of the Stroke Council American Heart Association. Stroke 1996;27:17111718.Google Scholar
Quality Standards Subcommittee of the American Academy of Neurology. Practice advisory: Thrombolytic therapy for acute ischemic stroke – summary statement, Neurology 1996;47:835839.Google Scholar
Hacke, W, Kaste, M, Bluhmki, E et al. for the ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008;359:13171329.Google Scholar
Lindsberg, P, Soinne, L, Tatlisumak, T et al. Long-term outcome after intravenous thrombolysis of basilar artery occlusion. JAMA 2004;292:18621866.Google Scholar
Lindsberg, PJ, Mattle, HP. Therapy of basilar artery occlusion: A systematic analysis comparing intra-arterial and intravenous thrombolysis. Stroke 2006;37:922928.Google Scholar
del Zoppo, GJ, Higashida, RT, Furlan, AJ et al. PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 1998;29:411.Google Scholar
Furlan, AJ, Higashida, RT, Wechsler, L et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II Study: A randomized controlled trial. JAMA 1999;282:20032011.Google Scholar
Serbenenko, FA. Balloon catheterization and occlusion of major cerebral vessels. J Neurosurg 1974;41:125145.Google Scholar
Introcaso, JH, Uske, A. Endovascular treatment of intracranial aneurysms. In Cerebrovascular Disease (Batjer, HH, Caplan, LR, Friberg, L et al., eds), Philadelphia, PA: Lippincott-Raven, 1996, pp 915927.Google Scholar
Guglielmi, G, Vinuela, F, Sepetka, I et al. Electrothrombosis of saccular aneurysms. Neurosurgery via endovascular approach. I. Electrochemical basis, technique, and experimental results. J Neurosurg 1991;75:17.Google Scholar
Fiorella, , Albuquerque, FC, Woo, H et al. Neuroform stent assisted aneurysm treatment: evolving treatment strategies, complications and results of long term follow-up. J Neurointerv Surg 2010;2:1622.Google Scholar
Geyik, S, Yavuz, N, Yurttutan, N, Saatci, I, Cekirge, HS. Stent-assisted coiling in endovascular treatment of 500 consecutive cerebral aneurysms with long-term follow-up. AJNR Am J Neuroradiol 2013;34:16.Google Scholar
D’Urso, PI, Lanzino, G, Cloft, HJ, Kallmes, DF. Flow diversion for intracranial aneurysms: A review. Stroke 2011;42:23632368.Google Scholar
Chalouhi, N, Tjoumakaris, S, Starke, R et al. Comparison of flow diversion and coiling in large unruptured intracranial saccular aneurysms. Stroke 2013;44:21502154.Google Scholar
Latchaw, RE, Madison, MT, Larsen, DW, Silva, P. Intracranial arteriovenous malformations: Endovascular strategies and methods. In Cerebrovascular Disease (Batjer, HH, Caplan, LR, Friberg, L et al., eds), Philadelphia, PA: Lippincott-Raven, 1996, pp 707725.Google Scholar
Luessenhop, AJ, Spence, WT. Artificial embolization of cerebral arteries. Report of use in a case of arteriovenous malformation. JAMA 1960;172:11531155.Google Scholar
Gruentzig, A. Transluminal dilatation of coronary artery stenosis. Lancet 1978;1:263.Google Scholar
Gruentzig, AR, Senning, A, Siegenthaler, WE. Nonoperative dilatation of coronary artery stenosis: percutaneous transluminal coronary angioplasty N Engl J Med 1979;301:6168.Google Scholar
Meyers, PM, Schumacher, HC, Higashida, RT, Leary, MC, Caplan, LR. Use of stents to treat extracranial cerebrovascular disease. Annu Rev Med 2006;57:437454.Google Scholar
Kerber, CW, Cromwell, LD, Loehden, OL. Catheter dilatation of proximal carotid stenosis during distal bifurcation endarterectomy. AJNR Am J Neuroradiol 1980;1:348349.Google Scholar
Bockenheimer, SA, Mathias, K. Percutaneous transluminal angioplasty in arteriosclerotic internal carotid artery stenosis. AJNR Am J Neuroradiol 1983;4:791792.Google Scholar
Theron, J, Raymond, J, Casasco, A, Courtheoux, F. Percutaneous angioplasty of atherosclerotic and postsurgical stenosis of carotid arteries. AJNR Am J Neuroradiol 1987;8:495500.Google Scholar
Kachel, R. Results of balloon angioplasty in the carotid arteries. J Endovasc Surg 1996;3:2230.Google Scholar
Meyers, PM, Schumacher, C, Tanji, K, Higashida, RT, Caplan, LR. Use of stents to treat intracranial cerebrovascular disease. Ann Rev Med 2007;58:107122.Google Scholar
Caplan, LR, Manning, W (eds). Brain Embolism. New York, NY: Informa Healthcare, 2006.Google Scholar
Caplan, LR, Hollander, J. The Effective Clinical Neurologist (3rd ed). Shelton, CT: People’s Medical Publishing House, 2011.Google Scholar
Hutton, C, Caplan, LR. Striking Back At Stroke: A Doctor–Patient Journal. Washington, DC: Dana Press, 2003.Google Scholar
Caplan, LR. Stroke. St. Paul, MN: AAN Press, 2005.Google Scholar
Caplan, LR. Navigating the Complexities of Stroke. New York, NY: Oxford University Press, 2013.Google Scholar

References

Wagner, KR, Xi, G, Hua, Y, et al: Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg 1998;88:10581065.CrossRefGoogle ScholarPubMed
Bullock, R, Brock-Utne, J, van Dellen, J, Blake, G: Intracerebral hemorrhage in a primate model: effect on regional cerebral blood flow. Surg Neurol 1988;29:101107.Google Scholar
Weiss, H: Platelet physiology and abnormalities of platelet function. N Engl J Med 1975;293:531540,580588.Google Scholar
Ashby, B, Daniel, JL, Smith, JB: Mechanisms of platelet activation and inhibition. Hematol Oncol Clin North Am 1990;4:126.Google Scholar
Baker, A, Iannone, A: Cerebrovascular disease. I. The large arteries of the circle of Willis. Neurology 1959;9:321332.Google Scholar
Fisher, CM, Gore, I, Okabe, N, et al: Atherosclerosis of the carotid and vertebral arteries–extracranial and intracranial. J Neuropathol Exp Neurol 1965;24:455476.Google Scholar
Fisher, CM: Lacunes: Small deep cerebral infarcts. Neurology 1965;15:774784.Google Scholar
Fisher, CM: The arterial lesions underlying lacunes. Acta Neuropathol 1969;12:115.Google Scholar
Luscher, TF, Lie, JT, Stanson, AW, et al: Arterial fibromuscular dysplasia. Mayo Clin Proc 1987;62:931952.Google Scholar
Shinohara, Y: Takayasu disease. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 3742.Google Scholar
Davis, SM: Temporal arteritis. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 1017.Google Scholar
Mokri, B: Cervicocephalic arterial dissections. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 211229.Google Scholar
Imparato, A, Riles, T, Mintzer, R, et al: The importance of hemorrhage in the relationship between gross morphologic characteristics and cerebral symptoms in 376 carotid artery plaques. Ann Surg 1983;197:195203.Google Scholar
DeGeorgia, M, Belden, J, Pao, L, et al: Thrombus in vertebrobasilar dolichoectatic artery treated with intravenous urokinase. Cerebrovasc Dis 1999;9:2833.Google Scholar
Caplan, LR, Manning, W: Cardiac sources of embolism: The usual suspects. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 129159.Google Scholar
Caplan, LR: Arterial sources of embolism. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 203222.Google Scholar
Gautier, JC, Durr, A, Koussa, S, et al: Paradoxical cerebral embolism with a patent foramen ovale. A report of 29 patients. Cerebrovasc Dis 1991;1:193202.Google Scholar
Caplan, LR: Embolic particles. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 259275.Google Scholar
Caplan, LR: Cardiac arrest and other hypoxic-ischemic insults. In Caplan, LR, Hurst, JW, Chimowitz, M (eds): Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 134.Google Scholar
Mohr, J: Neurological complications of cardiac valvular disease and cardiac surgery including systemic hypotension. In Vinken, P, Bruyn, G (eds): Handbook of Clinical Neurology, vol 38. Amsterdam: North Holland, 1979, pp 143171.Google Scholar
Romanul, F, Abramowicz, A: Changes in brain and pial vessels in arterial boundary zones. Arch Neurol 1964;11:4065.Google Scholar
Fisher, CM, Adams, RD: Observations on brain embolism with special reference to hemorrhagic infarction. In Furlan, A (ed): The Heart and Stroke. London: Springer-Verlag, 1987, pp 1736.Google Scholar
Weir, B: Aneurysms Affecting the Nervous System. Baltimore: Williams & Wilkins, 1987.Google Scholar
Chicoine, MR, Dacey, RG: Clinical aspects of subarachnoid hemorrhage. In Welch, KMA, Caplan, LR, Reis, DJ, et al. (eds): Primer on Cardiovascular Diseases. San Diego: Academic Press, 1997, pp 425432.Google Scholar
Kaufman, HH (ed): Intracerebral Hematomas. New York: Raven Press, 1992.Google Scholar
Cole, F, Yates, P: Intracerebral microaneurysms and small cerebrovascular lesions. Brain 1967;90:759768.Google Scholar
Rosenblum, W: Miliary aneurysms and “fibrinoid” degeneration of cerebral blood vessels. Hum Pathol 1977;8:133139.Google Scholar
Caplan, LR: Intracerebral hemorrhage revisited. Neurology 1988;38:624627.Google Scholar
Caplan, LR: Hypertensive intracerebral hemorrhage. In Kase, C, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1993, pp 99116.Google Scholar
Finney, L, Walker, A: Transtentorial Herniation. Springfield, Ill: Thomas, 1962.Google Scholar
Fisher, CM: Observations concerning brain herniation. Ann Neurol 1983;14:110.Google Scholar
Ropper, AH: Lateral displacement of brain and level of consciousness in patients with acute hemispheral mass. N Engl J Med 1986;314:953958.Google Scholar
Stephens, R, Stilwell, D: Arteries and Veins of the Human Brain. Springfield, IL: Charles C Thomas Publisher, 1969.Google Scholar
de Oliveira, E, Tedeschi, H, Rhoton, AL Jr, Peace, DA: Microsurgical anatomy of the internal carotid artery: Intrapetrous, intracavernous, and clinoidal segments. In Carter, LP, Spetzler, RF, Hamilton, MG (eds): Neurovascular Surgery. New York: McGraw-Hill, 1995, pp 310.Google Scholar
Helgason, C, Caplan, LR, Goodwin, J, Hedges, T: Anterior choroidal artery – territory infarction. Arch Neurol 1986;43:681686.Google Scholar
Tatu, L, Moulin, T, Bogousslavsky, J, Duvernoy, H: Arterial territories of the human brain: Cerebral hemispheres. Neurology 1998;50:16991708.Google Scholar
Lie, T: Congenital malformations of the carotid and vertebral arterial systems, including the persistent anastomoses. In Vinken, P, Bruyn, G (eds): Handbook of Clinical Neurology, vol 12. Amsterdam: North Holland, 1972, pp 289339.Google Scholar
Caplan, LR: Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell, 1996.Google Scholar
Foix, C, Hillemand, P: Contributions a l’etude des ramolissements protuberentiels. Rev Med 1926;43:287305.Google Scholar
Foix, C, Hillemand, P: Les Arteres de l’axe encephalique jusqu’a diencephale inclusivement. Rev Neurol 1925;32:705739.Google Scholar
Caplan, LR: Charles Foix – The first modern stroke neurologist. Stroke 1990;21:348356.Google Scholar
Stopford, J: The arteries of the pons and medulla oblongata. J Anat Physiol 1915,1916;50:131164,255280.Google Scholar
Gillilan, L: Anatomy and embryology of the arterial system of the brainstem and cerebellum. In Vinken, P, Bruyn, G (eds): Handbook of Clinical Neurology, vol 11. Amsterdam: North Holland, 1972, 2444.Google Scholar
Duvernoy, HM: Human Brainstem Vessels. Berlin: Springer-Verlag, 1978.Google Scholar
Capron, L: Extra-and intracranial atherosclerosis. In Toole, JF (ed): Vascular Diseases, Part 1, vol 53, Bruyn, G, Klawans, HL (eds): Handbook of Clinical Neurology. Amsterdam: Elsevier Science, 1988, pp 91106.Google Scholar
Stehbens, WE: Pathology of the Cerebral Blood Vessels. St Louis: Mosby, 1972.Google Scholar
Taveras, JM, Wood, EH: Diagnostic Neuroradiology. Baltimore: Williams & Wilkins, 1964.Google Scholar
Moosy, J: Morphology, sites, and epidemiology of cerebral atherosclerosis in research publications. Assoc Res Nerv Ment Dis 1966;51:122.Google Scholar
Caplan, LR: Cerebrovascular disease: Large artery occlusive disease. In Appel, S (ed): Current Neurology, vol 8. Chicago: Yearbook Medical, 1988, pp 179226.Google Scholar
Gorelick, PB, Caplan, LR, Hier, DB, et al: Racial differences in the distribution of anterior circulation occlusive cerebrovascular disease. Neurology 1984;34:5459.Google Scholar
Caplan, LR, Gorelick, PB, Hier, DB: Race, sex, and occlusive cerebrovascular disease: A review. Stroke 1986;17:648655.Google Scholar
Caplan, LR: Cerebral ischemia and infarction in blacks. Clinical, autopsy, and angiographic studies. In Gillum, RF, Gorelick, PB, Cooper, ES (eds): Stroke in Blacks. Basel: Karger, 1999, pp 718.Google Scholar
Kieffer, S, Takeya, Y, Resch, J, et al: Racial differences in cerebrovascular disease: Angiographic evaluation of Japanese and American populations. AJR Am J Roentgenol 1967;101:9499.Google Scholar
Feldmann, E, Daneault, N, Kwan, E, et al: Chinese–white differences in the distribution of occlusive cerebrovascular disease. Neurology 1990;40:15411545.Google Scholar
Mohr, JP: Lacunes. Stroke 1982;13:311.Google Scholar
Caplan, LR: Intracranial branch atheromatous disease. Neurology 1989;39:12461250.Google Scholar
Caplan, LR, Zarins, C, Hemmatti, M: Spontaneous dissection of the extracranial vertebral artery. Stroke 1985;16:10301038.Google Scholar
O’Connell, BF, Towfighi, J, Brennan, RW, et al: Dissecting aneurysms of head and neck. Neurology 1985;35:993997.Google Scholar
Caplan, LR, Baquis, GD, Pessin, MS, et al: Dissection of the intracranial vertebral artery. Neurology 1988;38:868877.Google Scholar
Chaves, C, Estol, C, Esnaola, M, et al: Spontaneous intracranial internal carotid artery dissection. Arch Neurol 2002;59:977981.Google Scholar
Wilkinson, I, Russell, R: Arteries of the head and neck in giant cell arteritis. Arch Neurol 1972;27:378391.Google Scholar
Caplan, LR: Recipient artery: Anatomy and pathology. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 3159.Google Scholar
Gacs, G, Merei, FT, Bodosi, M: Balloon catheter as a model of cerebral emboli in humans. Stroke 1982;13:3942.Google Scholar
Vinters, HV, Gilbert, JJ: Cerebral amyloid angiopathy: Incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 1983;14:924928.Google Scholar
Kase, CS: Cerebral amyloid angiopathy. In Kase, C, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1993, pp 179200.Google Scholar
Bull, J: Contribution of radiology to the study of intracranial aneurysms. BMJ 1922;2:17011708.Google Scholar
Alpers, B: Aneurysms of the circle of Willis. In Fields, WS (ed): Intracranial Aneurysms and Subarachnoid Hemorrhage. Springfield, IL: Charles C Thomas Publisher, 1965, pp. 524.Google Scholar
Ringelstein, E, Zeumer, H, Angelou, D: The pathogenesis of strokes from internal carotid artery occlusion. Stroke 1983;14:867875.Google Scholar
Ringelstein, EB, Koschorke, S, Holling, A, et al: Computed tomographic pattern of proven embolic brain infarctions. Ann Neurol 1989;26:759765.Google Scholar
Zulch, K, Behrends, R: The pathogenesis and topography of anoxia, hypoxia, and ischemia of the brain in man. In Meyer, J, Gastant, H (eds): Cerebral Anoxia and the EEG. Springfield, IL: Charles C Thomas Publisher, 1961, 144163.Google Scholar
Caplan, LR: Clinical features at different sites. In Kase, C, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1993, pp 305308.Google Scholar
Smith, EE, Eichler, F: Cerebral amyloid angiopathy and lobar intracerebral hemorrhage. Arch Neurol 2006;63:148151.Google Scholar
Caplan, LR: Drugs. In Kase, C, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1993, pp 201220.Google Scholar
Kase, CS: Bleeding disorders. In Kase, C, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1993, pp 117152.Google Scholar
Kase, C, Robinson, K, Stein, R, et al: Anticoagulant-related intracerebral hemorrhage. Neurology 1985;35:943948.Google Scholar
Jafar, JJ, Crowell, RM: Focal ischemic thresholds. In Wood, JH (ed): Cerebral Blood Flow. New York: McGraw-Hill, 1987, pp 449457.Google Scholar
Toole, JF: Cerebrovascular Disorders, 4th ed. New York: Raven Press, 1990.Google Scholar
Frackowiak, R, Lenzi, G, Jones, T, et al: Quantitative measurements of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: Therapy, procedure, and normal values. J Comput Assist Tomogr 1980;4:722736.Google Scholar
Baron, J-C: Positron emission tomography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 115130.Google Scholar
Roy, CS, Sherrington, CS: On the regulation of the blood-supply of the brain. J Physiol (London) 1890;11:85108.Google Scholar
Friedland, RP, Iadecola, C: Roy and Sherrington (1890): A centennial reexamination of “On the regulation of the blood-supply of the brain”. Neurology 1991;41:1014.Google Scholar
Symon, L: Pathological regulation in cerebral ischemia. In Wood, JH (ed): Cerebral Blood Flow. New York: McGraw-Hill, 1987, pp 413424.Google Scholar
Tong, DC, Albers, GW: Normal values. In Babikian, VL, Wechsler, LR (eds): Transcranial Doppler Ultrasonography, 2nd ed. Boston: Butterworth–Heinemann, 1999, pp 3346.Google Scholar
Kontos, HA: Oxygen radicals in cerebral ischemia: The 2001 Willis Lecture. Stroke 2001;32:27122716.Google Scholar
Garcia, JH, Anderson, ML: Pathophysiology of cerebral ischemia. Crit Rev Neurobiol 1989;4:303324.Google Scholar
Collins, RC, Dobkin, BH, Choi, DW: Selective vulnerability of the brain: New insights into the pathophysiology of stroke. Ann Intern Med 1989;110:9921000.Google Scholar
Choi, DW: Excitotoxicity and stroke. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 2936.Google Scholar
Garcia, JH: Mechanisms of cell death in ischemia. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 718.Google Scholar
Mattson, MP, Barger, SW: Programmed cell life: Neuroprotective signal transduction and ischemic brain injury. In Caplan, LR (ed): Cerebrovascular Diseases, Nineteenth Princeton Stroke Conference, Moskowitz, MA. Boston: Butterworth–Heinemann, 1995, pp 271290.Google Scholar
Nurden, AT, Duperat, V-G, Nurden, P: Platelet function and pharmacology of antiplatelet drugs. Cerebrovasc Dis 1997(suppl 6):29.Google Scholar
Moncada, S, Higgs, E, Vane, J: Human arterial and venous tissues generate prostacyclin (prostaglandin 4) a potent inhibitor of platelet aggregation. Lancet 1977;1:1820.Google Scholar
Schmid-Schonbein, H, Perktold, K: Physical factors in the pathogenesis of atheroma formation. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 185213.Google Scholar
Caplan, LR, Hennerici, M: Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol 1998;55:14751482.Google Scholar
Caplan, LR, Wong, KS, Gao, S, Hennerici, MG: Is hypoperfusion an important cause of strokes? If so, how? Cerebrovasc Dis 2006;21:145153.Google Scholar
Masuda, J, Yutani, C, Ogata, J, et al: Atheromatous embolism in the brain: A clinicopathologic analysis of 15 autopsy cases. Neurology 1994;44:12311237.Google Scholar
McKibbin, DW, Bulkley, BH, Green, WR, et al: Fatal cerebral atheromatous embolization after cardiac bypass. J Thorac Cardiovasc Surg 1976;71:741745.Google Scholar
Pollanen, MS, Deck, JHN: The mechanism of embolic watershed infarction: Experimental studies. Can J Neurol Sci 1990;17:395398.Google Scholar
Fisher, M, Francis, R: Altered coagulation in cerebral ischemia. Arch Neurol 1990;47:10751079.Google Scholar
Tohgi, H, Kawashima, M, Tamura, K, et al: Coagulation-fibrinolysis abnormalities in acute and chronic phases of cerebral thrombosis and embolism. Stroke 1990;21:16631667.Google Scholar
Feinberg, WM: Coagulation. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 8596.Google Scholar
Deykin, D: Thrombogenesis. N Engl J Med 1967;276:622628.Google Scholar
del Zoppo, GJ: Vascular hemostasis and brain embolism. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 243258.Google Scholar
Svensson, PJ, Dahlback, B: Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994;330:517522.Google Scholar
Bertina, RM, Koelman, BPC, Rosendall, FR, et al: Mutation in the blood coagulation factor V associated with resistance to activated protein C. Nature 1994;369:6467.Google Scholar
Poort, SR, Rosendaal, FR, Reitsma, PH, Bertina, RM: A common genetic variation in the 3’ untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996;88:36983703.Google Scholar
Martinelli, I, Sacchi, E, Landi, G, et al: High risk of cerebral vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998;338:17931797.Google Scholar
Sloan, M: Thrombolysis and stroke. Arch Neurol 1987;44:748768.Google Scholar
Raichle, M: The pathophysiology of brain ischemia. Ann Neurol 1983;13:210.Google Scholar
Astrup, J, Siesjo, B, Simon, L: Thresholds in cerebral ischemia: The ischemic penumbra. Stroke 1981;12:723725.Google Scholar
Thomas, D, du Boulay, G, Marshall, J, et al: Effect of hematocrit on cerebral blood flow in man. Lancet 1977;2:941943.Google Scholar
Thomas, D, Marshall, J, Russell, RW, et al: Cerebral blood flow in polycythemia. Lancet 1977;2:161163.Google Scholar
Tohgi, H, Yasmanouchi, H, Murakami, M, et al: Importance of the hematocrit as a risk factor in cerebral infarction. Stroke 1978;9:369374.Google Scholar
Caplan, LR, Sergay, S: Positional cerebral ischemia. J Neurol Neurosurg Psychiatry 1976;39:385391.Google Scholar
Toole, J: Effects of change of head, limb, and body position on cephalic circulation. N Engl J Med 1968;279:307311.Google Scholar
Kim, HY, Singhal, AB, Lo, EH: Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann Neurol 2005;57:571575.Google Scholar
Ginsberg, M, Welsh, F, Budd, W: Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. Stroke 1980;11:347354.Google Scholar
Plum, F: What causes infarction in ischemic brain? Neurology 1983;33:222233.Google Scholar
Siesjo, BK, Kristian, T, Katsura, K: The role of calcium in delayed postischemic brain damage. In Caplan, LR (ed): Cerebrovascular Diseases, the Nineteenth Princeton Stroke Conference, Moskowitz MA. Boston: Butterworth–Heinemann, 1995, pp 353370.Google Scholar
Gorelick, PB, Caplan, LR: Calcium, hypercalcemia and stroke. Curr Concepts Cerebrovasc Dis (Stroke) 1985;20:1317.Google Scholar
Hillbom, M, Kaste, M: Ethanol intoxication: A risk factor for ischemic brain infarction in adolescents and young adults. Stroke 1981;12:422425.Google Scholar
Ames, A III, Wright, RL, Kouada, M, et al: Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 1968;52:437453.Google Scholar
O’Brien, MD: Ischemic cerebral edema. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 4350.Google Scholar
Ropper, AH: Brain edema after stroke, clinical syndrome and intracranial pressure. Arch Neurol 1984;41:2629.Google Scholar
Ropper, AH: A preliminary MRI study of the geometry of brain displacement and level of consciousness with acute intracranial masses. Neurology 1989;39:622627.Google Scholar
Barnett, H: Delayed cerebral ischemic episodes distal to occlusion of major cerebral arteries. Neurology 1978;28:769774.Google Scholar
Fisher, CM: Occlusion of the internal carotid artery. Arch Neurol Psychiatry 1951;65:346377.Google Scholar
Caplan, LR: Occlusion of the vertebral or basilar artery. Stroke 1979;10:277282.Google Scholar
Glass, TA, Hennessey, PM, Pazdera, L, et al: Outcome at 30 days in the New England Medical Center Posterior Circulation Registry. Arch Neurol 2002;59(3):369376.Google Scholar
Caplan, LR, Wityk, RJ, Glass, TA, et al: New England Medical Center Posterior Circulation Registry. Ann Neurol 2004;56:389398.Google Scholar
Savitz, SI, Caplan, LR: Current concepts: Vertebrobasilar disease. N Engl J Med 2005;352:26182626.Google Scholar
Jones, H, Millikan, C, Sandok, B: Temporal profile of acute vertebrobasilar system infarction. Stroke 1980;11:173177.Google Scholar
Fisher, CM: Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 1971;30:536550.Google Scholar
Herbstein, D, Schaumberg, H: Hypertensive intracerebral hematoma: An investigation of the initial hemorrhage and rebleeding using Cr 51 labeled erythrocytes. Arch Neurol 1974;30:412414.Google Scholar
Duret, H: Traumatismes Cranio-Cerebaux. Paris: Librarie Felix Alcan, 1919.Google Scholar
Fisher, CM, Kistler, JP, Davis, JM: Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980;6:19.Google Scholar
MacDonald, RL: Cerebral vasospasm. In Welch, KMA, Reis, DJ, Caplan, LR, et al. (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 490497.Google Scholar
Hijdra, A, van Gijn, J, Nagelkerke, NJD, et al: Prediction of delayed cerebral ischemia, rebleeding, and outcome after aneurysmal subarachnoid hemorrhage. Stroke 1988;19:12501256.Google Scholar
Aygun, N, Perl, J II: Subarachnoid hemorrhage. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 241269.Google Scholar

References

Caplan, LR, Hollander, J. The Effective Clinical Neurologist, 3rd edn. Shelton, CT: People’s Medical Publishing House – USA, 2011.Google Scholar
Caplan, LR, Kelly, JJ. Consultations in Neurology. Toronto: BC Decker, 1988.Google Scholar
Bayes, T. An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc Lond 1763;53:270418. Reprinted in Biometrika 1935;45:296315.Google Scholar
Winkler, RL. Introduction to Bayesian Inference and Decision. New York: Holt, Rinehart & Winston, 1972.Google Scholar
Aring, C, Merritt, H. Differential diagnosis between cerebral hemorrhage and cerebral thrombosis. Arch Intern Med 1935;56:435456.Google Scholar
Dalsgaard-Nielsen, T. Survey of 1000 cases of apoplexia cerebri. Acta Psychiatr Neurol Scand 1955;30:169185.Google Scholar
Mohr, JP, Caplan, LR, Melski, JW, et al. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;28:754762.Google Scholar
Whisnant, J, Fitzgibbons, J, Kurland, L, et al. Natural history of stroke in Rochester, Minnesota, 1945–1954. Stroke 1971;2:1122.Google Scholar
Matsumoto, N, Whisnant, J, Kurland, L, et al. Natural history of stroke in Rochester, Minnesota, 1955–1969. Stroke 1973;4:2029.Google Scholar
Caplan, LR, Hier, DB, D’Cruz, I. Cerebral embolism in the Michael Reese Stroke Registry. Stroke 1983;14:530536.Google Scholar
Chambers, BR, Donnan, GA, Bladin, PF. Patterns of stroke: An analysis of the first 700 consecutive admissions to the Austin Hospital Stroke Unit. Aust N Z J Med 1983;13:5764.Google Scholar
Foulkes, MA, Wolf, PA, Price, TR, et al. The Stroke Data Bank: Design, methods, and baseline characteristics. Stroke 1988;19:547554.Google Scholar
Bogousslavsky, J, Mille, GV, Regli, F. The Lausanne Stroke Registry: An analysis of 1,000 consecutive patients with first stroke. Stroke 1988;19:10831092.Google Scholar
Moulin, T, Tatu, L, Crepin-Leblond, T, Chavot, D, Berges, S, Rumbach, T. The Besancon Stroke Registry: An acute stroke registry of 2,500 consecutive patients. Eur Neurol 1997;38(1):1020.Google Scholar
Heuschmann, PU, Kolominsky-Rabas, PL, Misselwitz, B, et al. German Stroke Registers Study Group. Predictors of in-hospital mortality and attributable risks of death after ischemic stroke: The German Stroke Registers Study Group. Arch Intern Med 2004;164:17611768.Google Scholar
Vemmos, KN, Takis, CE, Georgilis, K, et al. The Athens Stroke Registry: Results of a five-year hospital-based study. Cerebrovasc Dis 2000; 10:133141.Google Scholar
Gross, CR, Kase, CS, Mohr, JP, et al. Stroke in south Alabama: incidence and diagnostic features – a population based study. Stroke 1984;15:249255.Google Scholar
Oxfordshire Community Stroke Project. Incidence of stroke in Oxfordshire: First year’s experience of a community stroke registry. BMJ 1983;287:713717.Google Scholar
Bamford, J, Sandercock, P, Dennis, M, et al. A prospective study of acute cerebrovascular disease in the community: the Oxfordshire Community Stroke Project: 1981–1986. J Neurol Neurosurg Psychiatry 1990;53:1622.Google Scholar
Alter, M, Sobel, E, McCoy, RC, et al. Stroke in the Lehigh Valley: Incidence based on a community-wide hospital registry. Neuroepidemiology 1985;4:115.Google Scholar
Friday, G, Lai, SM, Alter, M, et al. Stroke in the Lehigh Valley: Racial/ethnic difference. Neurology 1989;39:11651168.Google Scholar
Yip, P-K, Jeng, JS, Lee, T-K, et al. Subtypes of ischemic stroke in hospital-based stroke registry in Taiwan. Stroke 1997;28:25072512.Google Scholar
Coull, BM, Brockschmidt, JK, Howard, G, et al. Community hospital-based stroke programs in North Carolina, Oregon and New York: IV. Stroke diagnosis and its relation to demographics, risk factors, and clinical status after stroke. Stroke 1990;21:867873.Google Scholar
Gorelick, PB, Hier, DB, Caplan, LR, et al. Headache in acute cerebrovascular disease. Neurology 1986;36:14451450.Google Scholar
Gorelick, PB, Caplan, LR, Hier, DB, et al. Racial differences in the distribution of anterior circulation occlusive disease. Neurology 1984;34:5459.Google Scholar
Kieffer, S, Takeya, Y, Resch, J, et al. Racial differences in cerebrovascular disease: angiographic evaluation of Japanese and American populations. AJR Am J Roentgenol 1967;101:9499.Google Scholar
Heyman, A, Fields, WS, Keating, RD. Joint study of extracranial arterial occlusion: VI. Racial differences in hospitalized patients with ischemic stroke. JAMA 1972;222:285289.Google Scholar
Russo, LS. Carotid system transient ischemic attacks, clinical, racial, and angiographic correlations. Stroke 1981;12:470473.Google Scholar
Heyden, S, Heyman, A, Goree, J. Nonembolic occlusion of the middle cerebral and carotid arteries: a comparison of predisposing factors. Stroke 1970;1:363369.Google Scholar
Barnett, HJM. The international collaborative study of superficial temporal artery – middle cerebral artery anastomosis. In Rose, FC (ed), Advances in Stroke Therapy. New York: Raven Press, 1982, pp 179182.Google Scholar
Huang, CY, Chan, FL, Yu, YL, et al. Cerebrovascular disease in Hong Kong Chinese. Stroke 1990;21:230235.Google Scholar
Feldmann, E, Daneault, N, Kwan, E, et al. Chinese–white differences in the distribution of occlusive cerebrovascular disease. Neurology 1990;40:15411545.Google Scholar
Caplan, LR, Gorelick, PB, Hier, DB. Race, sex, and occlusive vascular disease: A review. Stroke 1986;17:648655.Google Scholar
Caplan, LR. Cerebral ischemia and infarction in blacks. Clinical, autopsy, and angiographic studies. In Gillum, RF, Gorelick, PB, Cooper, ES (eds), Stroke in Blacks. Basel: Karger, 1999, pp 718.Google Scholar
Johnston, SC, Gress, DR, Browner, WS, Sidney, S. Short-term prognosis after emergency department diagnosis of TIA. JAMA 2000;284:29012906.Google Scholar
Daffertshofer, M, Mielke, O, Pullwitt, A. Felsenstein, M, Hennerici, M. Transient ischemic attacks are more than “ministrokes.” Stroke 2004;35:24532458.Google Scholar
Kleindorfer, D, Pangos, P, Pancoli, A, et al. Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke 2005;36:720724.Google Scholar
Hill, MD, Yiannakoulias, N, Jeerakathil, T, Tu, JV, Svenson, LW, Swchopflocher, DP. The high risk of stroke immediately after transient ischemic attack. A population-based study. Neurology 2004;62:20152020.Google Scholar
Rothwell, PM, Warlow, CP. Timing of TIAs preceding stroke. Time window for prevention is very short. Neurology 2005;64;817820.Google Scholar
Touze, E, Varenne, O, Chatellier, G, Peyrard, S, Rothwell, PM, Mas, J-L. Risk of myocardial infarction and vascular death after transient ischemic attack and ischemic stroke. Stroke 2005;36:27482755.Google Scholar
Nguyen-Huynh, MN, Johnston, SC. Transient ischemic attack: A neurologic emergency. Curr Neurol Neurosci Rep 2005;5:1320.Google Scholar
Rothwell, PM, Giles, MF, Flossmann, E, et al. A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischemic attack. Lancet 2005;366:2936.Google Scholar
Johnston, SC, Rothwell, PM, Nguyen-Huynh, MN, et al. Validation and refinement of scores to predict very early stroke after transient ischemic attack. Lancet 2007;369:283292.Google Scholar
Advisory Council for the National Institute of Neurological Diseases and Blindness. A classification and outline of cerebrovascular diseases: a report by an ad hoc committee established by the Advisory Council for the National Institute of Neurological Diseases and Blindness, Public Health Service. Neurology 1958;8:395434.Google Scholar
Albers, GW, Caplan, LR, Easton, JD et al. Transient ischemic attack – proposal for a new definition. N Engl J Med 2002;347:17131716.Google Scholar
Donnan, GA, Melley, HM, Quang, L, Hurley, S, Bladin, PF. The capsular warning syndrome: Pathogenesis and clinical features. Neurology 1993;43:957962.Google Scholar
Saposnik, G. Noel de Tilly, L, Caplan, LR. Pontine warning syndrome. Arch Neurol 2008;65:13751377.Google Scholar
Marler, J, Price, TR, Clark, GL, et al. Morning increase in onset of ischemic stroke. Stroke 1989;20:473476.Google Scholar
Sloan, M, Price, TR, Foukes, MA, et al. Circadian rhythmicity of stroke onset: intracerebral and subarachnoid hemorrhage. Ann Neurol 1990;28:226227.Google Scholar
Caplan, LR. Clinical diagnosis of brain embolism. Cerebrovasc Dis 1995;5:7988Google Scholar
Baffour, FI, Kirchoff-Torres, KF, Einstein, FH, Karakash, S, Miller, TS. Bilateral internal carotid artery dissection in the postpartum period. Obstet Gynecol 2012;119:489492.Google Scholar
Caplan, LR. Course-of-illness graphs. Hosp Pract 1985;20:125136.Google Scholar
Baker, R, Rosenbaum, A, Caplan, LR. Subclavian steal syndrome. Contemp Surg 1974;4:96104.Google Scholar
Caplan, LR. Posterior Circulation Disease. Boston, Blackwell Science 1996.Google Scholar
Reed, C, Toole, J. Clinical technique for identification of external carotid bruits. Neurology 1981;31:744746.Google Scholar
Fisher, CM. Facial pulses in internal carotid artery occlusion. Neurology 1970;20:476478.Google Scholar
Caplan, LR. The frontal artery sign:A bedside indicator of internal carotid occlusive disease. N Engl J Med 1973;288:10081009.Google Scholar
Caplan, LR. Transient ischemia and brain and ocular infarction. In Albert, DM, Jakobiec, FA (eds), Principles and Practice of Ophthalmology, vol 4 Rizzo, JF, Lessell, S (eds) Neuroophthalmology. Philadelphia: W B Saunders, 1994, pp 26532669.Google Scholar
Wray, SH. Visual aspects of extracranial internal carotid artery disease. In Bernstein, EF (ed), Amaurosis Fugax. New York: Springer-Verlag, 1988, pp 7280.Google Scholar
Atlee, W. Talc and cornstarch emboli in the eyes of drug abusers. JAMA 1972;219:4951.Google Scholar
Fisher, CM. Observations of the fundus oculi in transient monocular blindness. Neurology 1959;9:333347.Google Scholar
Kearns, T, Hollenhorst, R. Venous stasis retinopathy of occlusive disease of the carotid artery. Mayo Clin Proc 1963;38:304312.Google Scholar
Carter, JE. Chronic ocular ischemia and carotid vascular disease. In Bernstein, EF (ed), Amaurosis Fugax. New York: Springer-Verlag, 1988, pp 118134.Google Scholar
Fisher, CM. Dilated pupil in carotid occlusion. Trans Am Neurol Assoc 1966;91:230231.Google Scholar
Prisco, D, Marcucci, R. Retinal vein thrombosis: Risk factors, pathogenesis and therapeutic approach. Pathophysiol Haemost Thromb 2002;32:308311.Google Scholar
Lahey, JM, Kearney, JJ, Tunc, M. Hypercoagulable states and central retinal vein occlusion. Curr Opin Pulm Med 2003;9:385392.Google Scholar
Lamirel, C, Bruce, BB, Wright, DW, Newman, NJ, Biousse, V. Non-mydriatic digital ocular fundus photography on the iPhone 3G: The PHOTO-ED study. Arch Opthalmol 2012;130(7):939940.Google Scholar
Bidot, S, Bruce, BB, Newman, NJ, Biousse, V. Nonmydriatic retinal photography in the evaluation of acute neurological conditions. Neurol Clin Pract 2013;1:527531.Google Scholar
Bruce, BB, Thulasi, P, Fraser, CL, et al. Diagnostic accuracy and use of nonmydriatic ocular fundus photography by emergency physicians: phase II of the PHOTO-ED study. Ann Emerg Med 2013;62(1):2833.Google Scholar
Caplan, LR. The neurological examination. In Fisher, M, Bogousslavsky, J (eds), Textbook of Neurology. Boston: Butterworth–Heinemann, 1998, pp 318.Google Scholar
Heir, D, Mondlock, J, Caplan, LR. Behavioral deficits after right hemisphere stroke. Neurology 1983;33:337344.Google Scholar
Caplan, LR, Bogousslavsky, J. Abnormalities of the right cerebral hemisphere. In Bogousslavsky, J, Caplan, LR (eds), Stroke Syndromes. Cambridge: Cambridge University Press, 1995, pp 162168.Google Scholar
Caplan, LR. The patient with reduced consciousness or coma. In Skillman, J (ed), Intensive Care. Boston: Little, Brown, 1975, pp 559567.Google Scholar
Posner, J, Saper, CB, Schiff, N, Plum, F. Plum and Posner’s Diagnosis of Stupor and Coma. New York: Oxford University Press, 2007.Google Scholar
Young, GB, Ropper, AH, Bolton, CFB. Coma and Impaired Consciousness: A Clinical Perspective. New York: McGraw-Hill, 1998.Google Scholar
Fisher, CM. The neurologic examination of the comatose patient. Acta Neurol Scand 1969;45(suppl 36):156.Google Scholar
Mohr, J, Rubinstein, L, Kase, C, et al. Gaze palsy in hemispheral stroke: the NINCDS Stroke Data Bank. Neurology 1984;34:199.Google Scholar
Savitz, S, Caplan, LR. Current concepts: Vertebrobasilar disease. N Engl J Med 2005;352:26182626.Google Scholar
Newman-Toker, DE, Katah, JC, Alvernia, JE, Wang, DZ. Normal head impulse test differentiates acute cerebellar strokes from vestibular neuritis. Neurology 2008;70:23782385.Google Scholar
Kattah, JC, Talkad, AV, Wang, DZ, Hsieh, YH, Newman–Toker, DE. Hints to diagnose stroke in the acute vestibular syndrome: Three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging. Stroke. 2009;40(11):35043510.Google Scholar
Caplan, LR, Schmahmann, JD, Kase, CS, et al. Caudate infarcts. Arch Neurol 1990;47:133143.Google Scholar
Mendez, MF, Adams, NL, Skoog-Lewandowski, K. Neurobehavioral changes associated with caudate lesions. Neurology 1989;39:349354.Google Scholar
Caplan, LR. Caudate infarct. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds), Subcortical Stroke, 2nd edn. Oxford: Oxford University Press, 2002, pp 209223.Google Scholar
Ghoshal, S, Gokhale, S, Rebovich, G, Caplan, LR. The neurology of decreased activity: Abulia. Rev Neurol Dis 2011;8:e5567.Google Scholar
Graff-Radford, NR, Eslinger, PJ, Damasio, AR, et al. Nonhemorrhage infarction of the thalamus: Behavioral, anatomic and physiologic correlates. Neurology 1984;34:1423.Google Scholar
Bogousslavsky, J, Regli, F, Uske, A. Thalamic infarcts: Clinical syndromes, etiology, and prognosis. Neurology 1988;38:837848.Google Scholar
Barth, A, Bogousslavsky, J, Caplan, LR. Thalamic infarcts and hemorrhages. In Bogousslavsky, J, Caplan, LR (eds), Stroke Syndromes, 2nd edn. Cambridge: Cambridge University Press, 2001, pp 461468.Google Scholar
Eslinger, PJ, Reichwein, RK. Frontal lobe stroke syndromes. In Bogousslavsky, J, Caplan, LR (eds), Stroke Syndromes, 2nd edn. Cambridge: Cambridge University Press, 2001, pp 232241.Google Scholar
Fisher, CM. Honored guest presentation: Abulia minor vs. agitated behavior. Clin Neurosurg 1983;31:931.Google Scholar

References

Eckert, B, Zeumer, H: Brain computed tomography. In Ginsberg, MD, Bogousslavsky, J (eds): Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management, vol 2. Boston: Blackwell Science, 1998, pp 12411264.Google Scholar
von Kummer, R, Nolte, PN, Schnittger, H, et al: Detectability of cerebral hemisphere ischaemic infarcts by CT within 6 hours of stroke. Neuroradiology 1996;38:3133.Google Scholar
Moulin, T, Cattin, F, Crepin-Leblond, T, et al: Early CT signs in acute middle cerebral artery infarction: Predictive value for subsequent infarct location and outcome. Neurology 1996;47:366375.Google Scholar
Norman, D, Price, D, Boyd, D, et al: Quantitative aspects of computed tomography of the blood and cerebrospinal fluid. Radiology 1977;7:223228.Google Scholar
Caplan, LR, Flamm, ES, Mohr, JP, et al: Lumbar puncture and stroke: A statement for physicians by a committee of the Stroke Council of the American Heart Association. Stroke 1987;18:540A544A.Google Scholar
Edlow, JA, Caplan, LR: Primary care: Avoiding pitfalls in the diagnosis of subarachnoid hemorrhage. N Engl J Med 2000;341:2936.Google Scholar
Beauchamp, NJ, Bryan, RN: Neuroimaging of stroke. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 599611.Google Scholar
Baird, AE, Warach, S: Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 1998;18:583609.Google Scholar
Brant-Zawadski, M, Atkinson, D, Detrick, M, et al: Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction: Initial clinical experience in 50 patients. Stroke 1996;27:11871191.Google Scholar
Warach, S, Chien, D, Li, W, et al: Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992;42:17171723.Google Scholar
Warach, S, Gaa, J, Siewert, B, et al: Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 1995;37:231241.Google Scholar
Lansberg, MG, Norbash, AM, Marks, MP, et al: Advantages of adding diffusion-weighted magnetic resonance imaging to conventional imaging for evaluating acute stroke. Arch Neurol 2000;57:13111316.Google Scholar
Engelter, ST, Wetzel, SG, Radue, EW, et al: The clinical significance of diffusion-weighted imaging in infratentorial strokes. Neurology 2004;62:574580.Google Scholar
Kang, DW, Chalela, JA, Ezzeddline, MA, Warach, S: Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. Arch Neurol 2003;60:17301734.Google Scholar
Bonati, LH, Lyrer, PA, Wetzel, SG, et al: Diffusion-weighted imaging, apparent diffusion coefficient maps and stroke etiology. J Neurol 2005;252:13871393.Google Scholar
Bonati, LH, Kessel-Schaefer, A, Linka, AZ, et al: Diffusion-weighted imaging in stroke attributable to patent foramen ovale. Stroke 2006;37:20302034.Google Scholar
Kidwell, CS, Saver, JL, Mattiello, J, et al: Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000;47:462469.Google Scholar
Chemmanam, T, Campbell, BCV, Christensen, S, et al: Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion–diffusion mismatch. Neurology 2010;75:10401047.Google Scholar
Campbell, BCV, Purushotham, A, Christensen, S, et al: The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab 2012; 32:5056.Google Scholar
Patel, MR, Edelman, RR, Warach, S: Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 1996;27:23212324.Google Scholar
Linfante, I, Llinas, RH, Caplan, LR, Warach, S: MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 2002;30:22632267.Google Scholar
Chalela, JA, Latour, LL, Jeffries, N, et al: Hemorrhage and early MRI evaluation from the emergency room (HEME-ER): A prospective single center comparison of MRI to CT for the emergency diagnosis of intracranial hemorrhage in patients with suspected acute cerebrovascular disease. Stroke 2003;34:239240.Google Scholar
Schellinger, PD, Fiebach, JB, Mohr, A, et al: The role of stroke MRI in intracranial and subarachnoid hemorrhage. Nervenarzt 2001;72:907917.Google Scholar
Schellinger, PD, Jansen, O, Fiebach, JB, et al: A standardized MRI protocol comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999;30:765768.Google Scholar
Assouline, E, Benziane, K, Reizine, D, et al: Intra-arterial thrombus visualized on T2 gradient echo imaging in acute ischemic stroke. Cerebrovasc Dis 2005;20:611.Google Scholar
Dul, K, Drayer, BP: CT and MR imaging of intracerebral hemorrhage. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 7393.Google Scholar
Rumboldt, Z, Kalousek, M, Castillo, M: Hyperacute subarachnoid hemorrhage on T2-weighted MR images. AJNR Am J Neuroradiol 2003;24:472475.Google Scholar
Pexman, JHW, Barber, PA, Hill, MD, et al.: Use of the Alberta Stroke Program Early CT Score (ASPECTS) for Assessing CT Scans in Patients with Acute Stroke. AJNR Am J Neuroradiol 2001;22:15341542.Google Scholar
Becker, H, Desch, H, Hacker, H, et al: CT fogging effect with ischemic cerebral infarcts. Neuroradiol 1978;18:185192.Google Scholar
Nicolaides, AN, Kalodiki, E, Ramaswami, G, et al: The significance of cerebral infarcts on CT scans in patients with transient ischemic attacks. In Bernstein, EF, Callow, AD, Nicolaides, AN, Shifrin, EG (eds): Cerebral Revascularisation. London, Med-Orion, 1993, pp 159178.Google Scholar
Inatomi, Y, Kimura, K, Yonehara, T, et al: DWI abnormalities and clinical characteristics in TIA patients. Neurology 2004;62:376380.Google Scholar
Winbeck, K, Bruckmaier, K, Etgen, T, et al: Transient ischemic attack and stroke can be differentiated by analyzing early diffusion-weighted imaging signal intensity changes. Stroke 2004;35:10951099.Google Scholar
Lamy, C, Oppenheim, C, Calvet, D, et al: Diffusion-weighted MR imaging in transient ischaemic attacks. Eur Radiol 2006;16:10901095.Google Scholar
Bykowski, J, Latour, LL, Warach, S: More accurate identification of reversible ischemic injury in human stroke by cerebrospinal fluid suppressed diffusion-weighted imaging. Stroke 2004;35:11001106.Google Scholar
Prabhakaran, S, Chong, JY, Sacco, RL: Impact of abnormal diffusion-weighted imaging results on short-term outcome following transient ischemic attack. Arch Neurol 2007;64:11051109.Google Scholar
Redgrave, JNE, Coutts, SB, Schulz, UG, et al: Systematic review of associations between the presence of acute ischemic lesions on diffusion-weighted imaging and clinical predictors of early stroke risk after transient ischemic attack. Stroke 2007;38:14821488.Google Scholar
Sylaja, PN, Coutts, SB, Subramaniam, S, et al: Acute ischemic lesions of varying ages predict risk of ischemic events in stroke/TIA patients. Neurology 2007;68:415419.Google Scholar
Caplan, LR: Transient ischemic attack with abnormal diffusion-weighted imaging results. What’s in a name? Arch Neurol 2007; 64:10801082.Google Scholar
Adams, HP Jr, Kassell, NF, Turner, JC, et al: CT and clinical correlations in recent aneurysmal subarachnoid hemorrhage: A preliminary report of the Cooperative Aneurysm Study. Neurology 1983;33:981988.Google Scholar
Fishman, RA: Cerebrospinal fluid in cerebrovascular disorders. In Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, FJ (eds): Stroke: Pathophysiology, Diagnosis, and Management. New York: Churchill Livingstone, 1986, pp 109117.Google Scholar
Schluep, M, Bogousslavsky, J: Cerebrospinal fluid in cerebrovascular disease. In Ginsberg, MD, Bogousslavsky, J (eds): Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management, vol 2. Boston: Blackwell Science, 1998, pp 12211226.Google Scholar
Van der Meulen, JP: Cerebrospinal fluid xanthrochromia: An objective index. Neurology 1966;16:170178.Google Scholar
Soderstrom, CE: Diagnostic significance of CSF spectrophotometry and computer tomography in cerebrovascular disease: A comparative study in 231 cases. Stroke 1977;8:606612.Google Scholar
Davalos, A, Blanco, M, Pedraza, S, et al: The clinical-DWI mismatch: A new diagnostic approach to the brain tissue at risk of infarction. Neurology. 2004;62:21872192.Google Scholar
Caplan, LR: Significance of unexpected (silent) brain infarcts. In Caplan, LR, Shifrin, EG, Nicolaides, AN, Moore, WS (eds): Cerebrovascular Ischaemia: Investigation and Management. London: Med-Orion, 1996, pp 423433.Google Scholar
Yamamoto, H, Bogousslavsky, J: Mechanisms of second and further strokes. J Neurol Neurosurg Psychiatry 1998;64:771776.Google Scholar
Caplan, LR: Reperfusion of ischemic brain: Why and why not? In Hacke, W, del Zoppo, G, Hirschberg, M (eds): Thrombolytic Therapy in Acute Stroke. Berlin: Springer, 1991, pp 3645.Google Scholar
Ropper, AH: Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med 1986;314:953958.Google Scholar
Ropper, AH: A preliminary MRI study of the geometry of brain displacement and level of consciousness with acute intracranial masses. Neurology 1989;39:622627.Google Scholar
Lansberg, MG, Thijs, VN, O’Brien, MW, et al: Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol 2001;22:637644.Google Scholar
Weisberg, LA, Stazio, A, Shamsnia, M, et al: Nontraumatic parenchymal brain hemorrhages. Medicine (Baltimore) 1990;69:277295.Google Scholar
Delgado Almandoz, JE, Schaefer, PW, Forero, NP, et al: Diagnostic accuracy and yield of multidetector CT angiography in the evaluation of spontaneous intraparenchymal cerebral hemorrhage. AJNR Am J Neuroradiol 2009;30:12131221.Google Scholar
Kase, CS: Cerebral amyloid angiopathy. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 179200.Google Scholar
Hauw, J-J, Seilhean, D, Duyckaerts, CH: Cerebral amyloid angiopathy. In Ginsberg, MD, Bogousslavsky, J (eds): Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management. Boston: Blackwell, 1998, pp 17721794.Google Scholar
Kase, C, Robinson, R, Stein, R, et al: Anticoagulant-related intracerebral hemorrhages. Neurology 1985;35:943948.Google Scholar
Kase, CS: Bleeding disorders. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 117151.Google Scholar
Broderick, JP, Brott, TG, Duldner, JE, Tomsick, T, Huster, G. Volume of intracerebral hemorrhage: a powerful and easy-to-use predictor of 30-day mortality. Stroke 1993;24:987993.Google Scholar
Wada, R, Aviv, RI, Fox, A, et al: CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 2007;38:12571262.Google Scholar
Demchuk, AM, Dowlatshahi, D, Rodriguez-Luna, D, et al; and PREDICT Group: Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol 2012;11:307314.Google Scholar
Weisberg, L: Computed tomography in aneurysmal subarachnoid hemorrhage. Neurology 1979;29:802808.Google Scholar
Adams, H, Kassell, N, Torner, J, et al: CT and clinical correlations in recent aneurysmal subarachnoid hemorrhage: A preliminary report of the cooperative aneurysm study. Neurology 1983;33:981988.Google Scholar
van Gijn, J, van Dongen, K: Computerized tomography in subarachnoid hemorrhage: Difference between patients with and without an aneurysm on angiography. Neurology 1980;30:538539.Google Scholar
van Gijn, J, van Dongen, KJ, Vermeulen, M, et al: Perimesencephalic hemorrhage: A non-aneurysmal and benign form of subarachnoid hemorrhage. Neurology 1985;35:493497.Google Scholar
Rinkel, GJ, Wijdicks, EF, Vermeulen, M, et al: Outcome in perimesencephalic (non-aneurysmal) subarachnoid hemorrhage: A follow-up study in 37 patients. Neurology 1990;40:11301132.Google Scholar
Kumar, S, Goddeau, RP Jr, Selim, MH, et al: Atraumatic convexal subarachnoid hemorrhage: clinical presentation, imaging patterns, and etiologies. Neurology 2010;74:893899.Google Scholar
Kistler, JP, Crowell, R, Davis, K, et al: The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: A prospective study. Neurology 1983;33:424437.Google Scholar
Mohsen, F, Pominis, S, Illingworth, R: Prediction of delayed cerebral ischemia after subarachnoid hemorrhage by computed tomography. J Neurol Neurosurg Psychiatry 1984;47:11971202.Google Scholar
Kern, R, Szabo, K, Hennerici, M, Meairs, S: Characterization of carotid artery plaques using real-time compound B-mode ultrasound. Stroke 2004;35:870875.Google Scholar
Landry, A, Spence, JD, Fenster, A: Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke 2004;35:864869.Google Scholar
O’Donnell, TF, Erdoes, L, Mackey, W, et al: Correlation of B-mode ultrasound imaging and arteriography with pathologic findings at carotid endarterectomy. Arch Surg 1985;120:443449.Google Scholar
Hennerici, M, Baezner, H, Daffertshofer, M: Ultrasound of cervical arteries. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 223242.Google Scholar
Schenk, EA, Bond, G, Aretz, T, et al: Multicenter validation study of real-time ultrasonography, arteriography and pathology: Pathologic evaluation of carotid endarterectomy specimens. Stroke 1988;19:289296.Google Scholar
Hennerici, M, Meairs, S: Imaging arterial wall disease. Cerebrovasc Dis 2000;10(Suppl 5):920.Google Scholar
Gronholdt, M-LM, Nordestgaard, BG, Nielsen, TG, Sillesen, H: Echolucent carotid artery plaques are associated with elevated levels of fasting and postprandial triglyceride-rich lipoproteins. Stroke 1996;27:21662172.Google Scholar
Geroulakos, G, Hobson, RW, Nicolaides, AW: Ultrasonic carotid plaque morphology. In Caplan, LR, Shifrin, EG, Nicolaides, AN, Moore, WS (eds): Cerebrovascular Ischaemia: Investigation and Management. London: Med-Orion, 1996, pp 2532.Google Scholar
O’Leary, DH, Polka, JF, Kronmal, RA, et al: Thickening of the carotid wall: A marker for atherosclerosis in the elderly? Stroke 1996;27:224231.Google Scholar
Bots, ML, Hoes, AW, Koudstaal, PJ, et al: Common carotid intima-media thickness and risk of stroke and myocardial infarction: The Rotterdam Study. Circulation 1997;96:14321437.Google Scholar
O’Leary, DH, Polak, JF, Kronmal, RA, et al: Carotid artery intima and media thickness as a risk factor for myocardial infarction and stroke risk in older adults. N Engl J Med 1999;340:1422.Google Scholar
Yakushiji, Y, Yasaka, M, Takada, T, Minematsu, K: Serial transoral carotid ultrasonographic findings in extracranial internal carotid artery dissection. J Ultrasound Med 2005;24:877880.Google Scholar
Yakushijji, Y, Takase, Y, Kosugi, M, et al: Transoral carotid ultrasonography is useful for detection and follow-up of extracranial internal carotid artery dissecting aneurysm. Cerebrovasc Dis 2007;24:144146.Google Scholar
Forteza, A, Krejza, J, Koch, S, Babikian, V: Ultrasound imaging of cerebrovascular disease. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 335.Google Scholar
von Reutern, GM, von Budingen, HJ: Ultrasound Diagnosis of Cerebrovascular Disease. New York: Georg Thieme, 1993.Google Scholar
Bartels, E: Color-Coded Duplex Ultrasonography of the Cerebral Vessels. Stuttgart: Schattauer, 1998.Google Scholar
Steinke, W, Kloetzsch, C, Hennerici, M: Carotid artery disease assessed by color Doppler flow imaging: correlation with standard Doppler sonography and angiography. AJNR Am J Neuroradiol 1990;11:259266.Google Scholar
Steinke, W, Hennerici, M, Rautenberg, W, Mohr, JP: Symptomatic and asymptomatic high-grade carotid stenosis in Doppler color-flow imaging. Neurology 1992;42;131138.Google Scholar
Steinke, W, Ries, S, Artemis, N, et al: Power Doppler imaging of carotid artery stenosis. Comparison with color Doppler flow imaging and angiography. Stroke 1997;28:19811987.Google Scholar
Griewing, B, Doherty, C, Kessler, CH: Power Doppler ultrasound examination of the intracerebral and extracerebral vasculature. J Neuroimaging 1996;6:3235.Google Scholar
Lenzi, GL, Vicenzini, E: The ruler is dead: An analysis of carotid plaque motion. Cerebrovasc Dis 2007;23:121125.Google Scholar
Aaslid, R: Transcranial Doppler Sonography. New York: Springer, 1986.Google Scholar
Alexandrov, AV (ed): Cerebrovascular Ultrasound in Stroke Prevention and Treatment. New York: Futura Blackwell Publishing, 2003.Google Scholar
Molina, CA, Alexandrov, AV: Transcranial Doppler ultrasound. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 113128.Google Scholar
Babikian, VL, Wechsler, LR (eds): Transcranial Doppler Ultrasonography, 2nd ed. Boston: Butterworth–Heinemann, 1999.Google Scholar
Otis, SM, Ringelstein, EB: The transcranial Doppler examination: Principles and applications of transcranial Doppler sonography. In Tegeler, CH, Babikian, VL, Gomez, CR (eds): Neurosonology. St Louis: Mosby, 1996, pp 113128.Google Scholar
Gomez, CR, Brass, LM, Tegeler, CH, et al: The trans-cranial Doppler standardization project. Phase 1 results. The TCD Study Group, American Society of Neuroimaging. J Neuroimaging 1993;3:190192.Google Scholar
Caplan, LR, Brass, LM, DeWitt, LD, et al: Transcranial Doppler ultrasound: Present status. Neurology 1990;40:696700.Google Scholar
Hennerici, M, Rautenberg, W, Sitzer, G, et al: Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity. Surg Neurol 1987;27:439448.Google Scholar
Hennerici, M, Rautenberg, W, Schwartz, A: Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity. II. Evaluation of intracranial arterial disease. Surg Neurol 1987;27:523532.Google Scholar
Demchuk, A, Christou, I, Wein, T, et al: Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 2000;10:112.Google Scholar
Demchuk, AM, Christou, I, Wein, T, et al: Specific transcranial Doppler flow findings related to the presence and site of arterial occlusion. Stroke 2000;31:140146.Google Scholar
Baumgartner, RW: Transcranial color duplex sonography in cerebrovascular disease: A systematic review. Cerebrovasc Dis 2003;16:413.Google Scholar
Krejza, J, Baumagartner, RW: Clinical applications of transcranial color-coded duplex sonography. J Neuroimaging 2004;14:215225.Google Scholar
Burns, PN: Overview of echo-enhanced vascular ultrasound imaging for clinical diagnosis in neurosonology. J Neuroimaging 1997;7(Suppl 1):S2S14.Google Scholar
Bogdahn, U, Becker, G, Schlief, R, et al: Contrast-enhanced transcranial color-coded real-time sonography. Stroke 1993;24:676684.Google Scholar
Delcker, A, Turowski, B: Diagnostic value of three-dimensional transcranial contrast duplex sonography. J Neuroimaging 1997;7:139144.Google Scholar
Stolz, E, Kaps, M: New techniques in ultrasound. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 383401.Google Scholar
Sharma, VK, Tsivgoulis, G, Lao, AY, Alexandrov, AV: Role of transcranial Doppler ultrasonography in evaluation of patients with cerebrovascular disease. Curr Neurol Neurosci Rep 2007;7:820.Google Scholar
Tsivgoulis, G, Sharma, VK, Lao, AY, et al: Validation of transcranial Doppler with computed tomography angiography in acute cerebral ischemia. Stroke 2007;38:12451249.Google Scholar
Sharma, VK, Tsivgoulis, G, Lao, AY, et al: Noninvasive detection of diffuse intracranaial disease. Stroke 2007;38:31753181.Google Scholar
Caplan, LR: Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell, 1996.Google Scholar
Sliwka, U, Rautenberg, W: Multimodal ultrasound versus angiography for imaging the vertebrobasilar circulation. J Neuroimaging 1998;8:182.Google Scholar
Seiler, RW, Grolimund, P, Asaslid, R, et al: Cerebral vasospasm evaluated by transcranial ultrasound correlated with clinical grade and CT-visualized subarachnoid hemorrhage. J Neurosurg 1986;64:594600.Google Scholar
Becker, G, Greiner, K, Kaune, B, et al: Diagnosis and monitoring of subarachnoid hemorrhage by transcranial color-coded real time sonography. Neurosurgery 1991;28:814820.Google Scholar
Chaudhuri, R, Padayachee, TS, Lewis, RR, et al: Non-invasive assessment of the circle of Willis using transcranial pulsed Doppler ultrasound with angiographic correlation. Clin Radiol 1992;46:193197.Google Scholar
Anzola, GP, Gasparotti, R, Magoni, M, Prandini, F: Transcranial Doppler sonography and magnetic resonance angiography in the assessment of collateral hemispheric flow in patients with carotid artery disease. Stroke 1995;26:214217.Google Scholar
Klotzsch, C, Popescu, O, Berlit, P: Assessment of the posterior communicating artery by transcranial color-coded duplex sonography. Stroke 1996;27:486489.Google Scholar
Piepgras, A, Schmiedek, P, Leinsinger, G, et al: A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide. Stroke 1990;21:13061311.Google Scholar
Dahl, A, Russell, D, Rootwelt, K, et al: Cerebral vasoreactivity assessed with transcranial Doppler and regional cerebral blood flow measurements. Dose, concentration, and time of the response to acetazolamide. Stroke 1995;26:23022306.Google Scholar
Valdueza, JM, Draganski, B, Hoffman, O, et al: Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke 1999;30:8186.Google Scholar
Yonas, H, Smith, HA, Durham, SR, et al: Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg 1993;79:483489.Google Scholar
Markus, HS: Transcranial Doppler detection of circulating cerebral emboli: A review. Stroke 1993;24:12461250.Google Scholar
Markus, HS, Harrison, MJ: Microembolic signal detection using ultrasound. Stroke 1995;26:15171519.Google Scholar
Tong, DC, Albers, GW: Transcranial Doppler-detected microemboli in patients with acute stroke. Stroke 1995;26:15881592.Google Scholar
Sliwka, U, Job, F-P, Wissuwa, D, et al: Occurrence of transcranial Doppler high-intensity transient signals in patients with potential cardiac sources of embolism: A prospective study. Stroke 1995;26:20672070.Google Scholar
Daffertshofer, M, Ries, S, Schminke, U, Hennerici, M: High-intensity transient signals in patients with cerebral ischemia. Stroke 1996;27:18441849.Google Scholar
Sliwka, U, Lingnau, A, Stohlmann, W-D, et al: Prevalence and time course of microembolic signals in patients with acute strokes: A prospective study. Stroke 1997;28:358363.Google Scholar
Ringelstein, EB, Droste, DW, Babikian, VL, et al: Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke 1998;29:725729.Google Scholar
Siebler, M, Nachtmann, A, Sitzer, M, et al: Cerebral microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery stenosis. Stroke 1995;26:21842186.Google Scholar
Molloy, J, Markus, HS: Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke 1999;30:14401443.Google Scholar
Segura, T, Serena, J, Molins, A, Davalos, A: Clusters of microembolic signals: A new form of cerebral microembolism presentation in a patient with middle cerebral artery stenosis. Stroke 1998;29:722724.Google Scholar
Wong, KS, Li, H, Chan, YL, et al: Use of trans-cranial Doppler to predict outcome in patients with intracranial large-artery occlusive disease. Stroke 2003;31:26412647.Google Scholar
Gao, S, Wong, KS, Hansberg, T, et al: Microembolic signal predicts recurrent cerebral ischemic events in acute stroke patients with middle cerebral artery stenosis. Stroke 2004;35:28322836.Google Scholar
Mackinnon, AD, Aaslid, R, Markus, HS: Long-term ambulatory monitoring for cerebral emboli using transcranial Doppler ultrasound. Stroke 2004;35:7378.Google Scholar
Teague, SM, Sharma, MK: Detection of paradoxical cerebral echo contrast embolization by transcranial Doppler ultrasound. Stroke 1991;22:740745.Google Scholar
Chimowitz, MI, Nemec, JJ, Marwick, TH, et al: Transcranial Doppler ultrasound identifies patients with right-to-left cardiac or pulmonary shunts. Neurology 1991;41:19021904.Google Scholar
Albert, A, Muller, HR, Hetzel, A: Optimized transcranial Doppler technique for the diagnosis of cardiac right-to-left shunts. J Neuroimaging 1997;7:159163.Google Scholar
Di Tullio, M, Sacco, RL, Venketasubramanian, N, et al: Comparison of diagnostic techniques for the detection of a patent foramen ovale in stroke patients. Stroke 1993;24:10201024.Google Scholar
Klotzsch, C, Janzen, G, Berlit, P: Transesophageal echocardiography and contrast-TCD in the detection of a patent foramen ovale. Experiences with 111 patients. Neurology 1994;44:16031606.Google Scholar
Jauss, M, Zanette, E: Detection of right-to-left shunt with ultrasound contrast agent and trans-cranial Doppler sonography. Cerebrovasc Dis 2000;10:490496.Google Scholar
Sastry, S, Daly, K, Chengodu, T, McCollum, C: Is transcranial Doppler for the detection of venous-to-arterial circulation shunts reproducible? Cerebrovasc Dis 2007;23:424429.Google Scholar
Baumgartner, RW, Gonner, F, Arnold, M, Muri, R: Transtemporal power- and frequency-based color-coded duplex sonography of cerebral veins and sinuses. AJNR Am J Neuroradiol 1997;18:17711781.Google Scholar
Stolz, E, Kaps, M, Dorndorf, W: Assessment of intracranial venous hemodynamics in normal individuals and patients with cerebral venous thrombosis. Stroke 1999;30:7075.Google Scholar
Ries, S, Steinke, W, Neff, KW, Hennerici, M: Echocontrast enhanced transcranial color-coded sonography for the diagnosis of transverse sinus thrombosis. Stroke 1997;28:696700.Google Scholar
Valdueza, JM, Hoffmann, O, Weih, M, et al: Monitoring of venous hemodynamics in patients with cerebral venous thrombosis by transcranial Doppler ultrasound. Arch Neurol 1999;56:229234.Google Scholar
Becker, G, Bogdahn, U, Gehlberg, C, et al: Transcranial color-coded real-time sonography of intracranial veins. J Neuroimaging 1995;5:8794.Google Scholar
Pressman, BD, Tourje, EJ, Thompson, JR: An early sign of ischemic infarction: Increased density in a cerebral artery. AJNR Am J Neuroradiol 1987;8:645648.Google Scholar
Riedel, CH, Zoubie, J, Ulmer, S, Gierthmuehlen, J, Jansen, O: Thin-slice reconstructions of nonenhanced CT images allow for detection of thrombus in acute stroke. Stroke 2012;43:23192323.Google Scholar
Lays, D, Pruvo, JP, Godefroy, O, et al: Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke 1992;23:317324.Google Scholar
Tomsick, T, Brott, T, Barsan, W, et al: Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultraearly thrombolytic therapy. AJNR Am J Neuroradiol 1996;17:7985.Google Scholar
Lee, TC, Bartlett, E, Fox, AJ, Symons, SP: The hypodense artery sign. AJNR Am J Neuroradiol 2005;26:20272029.Google Scholar
Grunholdt, ML: B-mode ultrasound and spiral CT for the assessment of carotid atherosclerosis. Neuroimaging Clin N Am 2002;12:421435.Google Scholar
Frank, H: Characterization of atherosclerotic plaque by magnetic resonance imaging. Am Heart J 2001;141(Suppl 2):S45S48.Google Scholar
Yuan, C, Mitsumori, LM, Beach, KW, Maravilla, KR: Carotid atherosclerotic plaque: Noninvasive MR characterization and identification of vulnerable lesions. Radiology 2001;221:285299.Google Scholar
Adams, GJ, Greene, J, Vick, GW 3rd, et al: Tracking regression and progression of atherosclerosis in human carotid arteries using high-resolution magnetic resonance imaging. Magn Reson Imaging 2004;22:12491258.Google Scholar
Honda, M, Kitagawa, N, Tsutsumi, K, et al: High-resolution magnetic resonance imaging for detection of carotid plaques. Neurosurgery 2006;58:338346.Google Scholar
Hatsukami, TS, Ross, R, Polissar, NL, Yuan, C: Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000;102:959964.Google Scholar
Moody, AR, Murphy, RE, Morgan, PS, et al: Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation 2003;107:30473052.Google Scholar
Saloner, D, Acevedo-Bolton, G, Wintermark, M, Rapp, JH: MRI of geometric and compositional features of vulnerable carotid plaque. Stroke 2007;38(2):637641.Google Scholar
Touzé, E, Toussaint, J-F, Coste, J, et al; for the High-Resolution Magnetic Resonanace Imaging in Atherosclerotic Stenosis of the Carotid Artery (HIRISC) Study Group: Reproducibility of high-resolution MRI for the identification and the quantification of carotid atherosclerotic plaque components. Stroke 2007;38:18121819.Google Scholar
Yuan, C, Mitsumori, LM, Ferguson, MS, et al: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001;104:20512056.Google Scholar
Botnar, RM, Buecker, A, Wiethoff, AJ, et al: In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 2004;110:14631466.Google Scholar
Sirol, M, Fuster, V, Badimon, JJ, et al: Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 2005;112:15941600.Google Scholar
Klein, IF, Lavallee, PC, Schouman-Claeys, E, Amaraenco, P: High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005;64:551552.Google Scholar
Klein, IF, Lavallee, PC, Touboul, P-J, et al: In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 2006;67:327329.Google Scholar
Lam, WW, Wong, KS, So, NM, et al: Plaque volume measurement by magnetic resonance imaging as an index of remodeling of middle cerebral artery: Correlation with transcranial color Doppler and magnetic resonance angiography. Cerebrovasc Dis 2004;17:166169.Google Scholar
Chalela, JA, Haaymore, JB, Ezzeddine, MA, et al: The hypointense MCA sign. Neurology 2002;58:1470.Google Scholar
Cho, K-H, Kim, JS, Kwon, SU, et al: Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 2005;36:23792383.Google Scholar
Hermier, M, Nighoghossian, N: Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 2004;35:19891994.Google Scholar
Assouline, E, Benziane, K, Reizine, D, et al: Intra-arterial thrombus visualized on T2* gradient echo imaging in acute ischemic stroke. Cerebrovasc Dis 2005;20:611.Google Scholar
Idbaih, A, Boukobza, M, Crassard, I, et al: MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke 2006;37:991995.Google Scholar
Selim, M, Fink, J, Linfante, I, et al: Diagnosis of cerebral venous thrombosis with echo-planar T2*-weighted magnetic resonance imaging. Arch Neurol 2002;59:10211026.Google Scholar
Lovblad, KO, Bassetti, C, Schneider, J, et al: Diffusion-weighted MR in cerebral venous thrombosis. Cerebrovasc Dis 2001;11:169176.Google Scholar
Favrole, P, Guichard, JP, Crassard, I, et al: Diffusion-weighted imaging of intravascular clots in cerebral venous thrombosis. Stroke 2004;35:99103.Google Scholar
Essig, M, von Kummer, R, Egelhof, T, et al: Vascular MR contrast enhancement in cerebrovascular disease. AJNR Am J Neuroradiol 1996;17:887894.Google Scholar
Lazar, EB, Russell, EJ, Cohen, BA, et al: Contrast-enhanced MR of cerebral arteritis: Intravascular enhancement related to flow stasis within areas of focal arterial ectasia. AJNR Am J Neuroradiol 1992;13:271276.Google Scholar
Warach, S, Latour, LI: Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke 2004;35(Suppl 1):26592661.Google Scholar
Latour, LL, Kang, DW, Ezzeddine, MA, et al: Early blood–brain barrier disruption in human focal brain ischemia. Ann Neurol 2004;56:468477.Google Scholar
Schellinger, PD, Chalela, JA, Kang, DW, et al: Diagnostic and prognostic value of early MR Imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 2005;26:618624.Google Scholar
Bang, OY, Buck, BH, Saver, JL, et al: Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann Neurol 2007;62:170176.Google Scholar
Singer, OC, Humpich, MC, Fiehler, J, et al: Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 2008;63:5260.Google Scholar
Campbell, BCV, Christensen, S, Butcher, KS, et al: Regional very low cerebral blood volume predicts hemorrhagic transformation better than diffusion-weighted imaging volume and thresholded apparent diffusion coefficient in acute ischemic stroke. Stroke 2010;41:8288.Google Scholar
Kim, JH, Bang, OY, Liebeskind, DS, et al: Impact of baseline tissue status (diffusion-weighted imaging lesion) versus perfusion status (severity of hypoperfusion) on hemorrhagic transformation. Stroke 2010;41:e135e142.Google Scholar
Campbell, BCV, Christensen, S, Parsons, MW, et al: Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann Neurol 2013;73:510519.Google Scholar
Edelman, RR, Mattle, HP, Atkinson, DJ, et al: MR angiography. AJR Am J Roentgenol 1990;154:937946.Google Scholar
Bradley, WG: Magnetic resonance angiography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 3750.Google Scholar
Qureshi, A, Isa, A, Cinnamon, J, et al: Magnetic resonance angiography in patients with brain infarction. J Neuroimaging 1998;8:6570.Google Scholar
Gillard, JH, Oliverio, PJ, Barker, PB, et al: MR angiography in acute cerebral ischemia of the anterior circulation: A preliminary report. AJNR Am J Neuroradiol 1997;18:343350.Google Scholar
Yano, T, Kodama, T, Suzuki, Y, Watanabe, K: Gadolinium-enhanced 3D time-of-flight MR angiography. Acta Radiol 1997;38:4754.Google Scholar
Leclerc, X, Martinat, P, Godefroy, O, et al: Contrast-enhanced three-dimensional fast imaging with steady-state precession (FISP) MR angiography of supraaortic vessels: Preliminary results. AJNR Am J Neuroradiol 1998;19:14051413.Google Scholar
U-King-Im, J, Trivedi, R, Graves, M, et al: Contrast-enhanced MR angiography for carotid disease: Diagnostic and potential clinical impact. Neurology 2004;62:12821290.Google Scholar
Mitti, RL, Broderick, M, Carpenter, JP, et al: Blinded-reader comparison of magnetic resonance angiography and Duplex ultrasonography for carotid artery bifurcation stenosis. Stroke 1994;25:410.Google Scholar
Levi, CR, Mitchell, A, Fitt, G, Donnan, GA: The accuracy of magnetic resonance angiography in the assessment of extracranial carotid artery occlusive disease. Cerebrovasc Dis 1996;6:231236.Google Scholar
Bash, S, Villablanca, JP, Duckwiler, G, et al: Intracranial vascular stenosis and occlusive disease. Evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:10121021.Google Scholar
Uehara, T, Mori, E, Tabuchi, M, et al: Detection of occlusive lesions in intracranial arteries by three-dimensional time-of-flight magnetic resonance angiography. Cerebrovasc Dis 1994;4:365370.Google Scholar
Johnson, BA, Heiserman, JE, Drayer, BP, Keller, PJ: Intracranial MR angiography: Its role in the integrated approach to brain infarction. AJNR Am J Neuroradiol 1994;15:901908.Google Scholar
Ko, SB, Kim, D-E, Kim, SH, Roh, J-K: Visualization of venous system by time-of-flight magnetic resonance angiography. J Neuroimaging 2006;16:353356.Google Scholar
Amin-Hanjani, S, Du, X, Rose-Finnell, L, et al; on behalf of the VERiTAS Study Group: Hemodynamic features of symptomatic vertebrobasilar disease. Stroke 2015;46:18501856.Google Scholar
Roberts, HC, Lee, TJ, Dillon, WP: Computed tomography angiography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 5171.Google Scholar
Leclerc, X, Godefroy, O, Pruvo, JP, Leys, D: Computed tomographic angiography for the evaluation of carotid artery stenosis. Stroke 1995;26:15771581.Google Scholar
Josephson, S, Bryant, S, Mak, H, et al: Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology 2004;63:457460.Google Scholar
Feasby, T, Findlay, J: CT angiography for the assessment of carotid stenosis. Neurology 2004;63:412413.Google Scholar
Bartlett, ES, Walters, TD, Symons, SP, Fox, AJ: Carotid stenosis index revisited with direct CT angiography measurement of carotid arteries to quantify carotid stenosis. Stroke 2007;38:286291.Google Scholar
Wong, KS, Liang, EY, Lam, WWM, et al: Spiral computed tomography angiography in the assessment of middle cerebral artery occlusive disease. J Neurol Neurosurg Psychiatry 1995;59:537539.Google Scholar
Skutta, B, Furst, G, Eilers, J, et al: Intracranial stenoocclusive disease: Double detector helical CTA versus digital subtraction angiography. AJNR Am J Neuroradiol 1999;20:791799.Google Scholar
Brisman, J, Song, JK, Newell, DW: Cerebral aneurysms. N Engl J Med 2006;355:928939.Google Scholar
Nguyen-Huynh, MN, Wintermark, M, English, J, et al: How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke 2008;39:11841188.Google Scholar
Nijjar, S, Patel, B, McGinn, G, West, M: Computed tomographic angiography as the primary diagnostic study in spontaneous subarachnoid hemorrhage. J Neuroimaging 2007;17:295299.Google Scholar
Wada, R, Aviv, RI, Fox, AJ, et al: CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 2007;38:12571262.Google Scholar
Davis, SM, Broderick, J, Hennerici, M, et al: Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006;66:11751181.Google Scholar
Rodriguez-Luna, D, Dowlatshahi, D, Aviv, RI, et al; and the PRSICS Group: Venous phase of computed tomography angiography increases spot sign detection, but intracerebral hemorrhage expansion is greater in spot signs detected in arterial phase. Stroke 2014;45:734739.Google Scholar
Warach, S, Li, W, Ronthal, M, Edelman, R: Acute cerebral ischemia: evaluation with dynamic contrast-enhanced MR imaging and MR angiography. Radiology 1992;182:4147.Google Scholar
Fisher, M, Prichard, JW, Warach, S. New magnetic resonance techniques for acute ischemic stroke. JAMA 1995;274:908911.Google Scholar
Rother, J, Guckel, F, Neff, W, et al: Assessment of regional cerebral blood flow volume in acute human stroke by use of a single-slice dynamic susceptibility contrast-enhanced magnetic resonance imaging. Stroke 1996;27:10881093.Google Scholar
Sorensen, AG, Buonanno, F, Gonzalez, RG, et al: Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 1996;199:391401.Google Scholar
Schlaug, G, Benfield, A, Baird, AE, et al: The ischemic penumbra operationally defined by diffusion and perfusion MRI. Neurology 1999;53:15281537.Google Scholar
Schellinger, PD, Fiebach, JB, Jansen, O, et al: Stroke magnetic resonance imaging within 6 hours after onset of hyperacute cerebral ischemia. Ann Neurol 2001;49:460469.Google Scholar
Chaves, C, Silver, B, Staroselskaya, I, et al: Relation of perfusion-weighted magnetic resonance imaging (MRI) and clinical outcome in patients with ischemic stroke. Cerebrovasc Dis 1999;9(Suppl 1):56.Google Scholar
Staroselskaya, I, Chaves, C, Silver, B, et al: Relationship between magnetic resonance arterial patency and perfusion–diffusion mismatch in acute ischemic stroke and its potential clinical use. Arch Neurol 2001;58:10691074.Google Scholar
Neumann-Haefelin, T, Moseley, ME, Albers, GW: New magnetic resonance imaging methods for cerebrovascular disease: emerging clinical applications. Ann Neurol 2000;47:559570.Google Scholar
Ostergaard, L, Sorensen, AG, Chesler, DA, et al: Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31:10971103.Google Scholar
Chaves, CJ, Staroselskaya, I, Linfante, I, Llinas, R, et al: Patterns of perfusion-weighted imaging in patients with carotid artery occlusive disease. Arch Neurol 2003;60:237242.Google Scholar
Kane, I, Carpenter, T, Chappell, F, et al: Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke. Stroke 2007;38:31583164.Google Scholar
Wintermark, M, Flanders, AE, Velthuis, B, et al: Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006;37:979985.Google Scholar
Bivard, A, McElduff, P, Spratt, N, Levi, C, Parsons, M: Defining the extent of irreversible brain ischemia using perfusion computed tomography. Cerebrovasc Dis 2011;31:238245.Google Scholar
Campbell, BC, Christensen, VS, Levi, CR, et al: Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 2011;42:34353440.Google Scholar
Kamalian, S, Maas, MB, Goldmacher, GV, et al: CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke 2011;42:19231928.Google Scholar
Olivot, JM, Mlynash, M, Thijs, VN, et al: Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009;40:469475.Google Scholar
Zaro-Weber, O, Moeller-Hartmann, W, Heiss, WD, Sobesky, J: Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke 2010;41:28172821.Google Scholar
Albers, GW, Thijs, VN, Wechsler, L, et al: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006;60:508517.Google Scholar
Lansberg, MG, Straka, M, Kemp, S, et al: MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): A prospective cohort study. Lancet Neurol 2012;11:860867.Google Scholar
Davis, SM, Donnan, GA, Parsons, MW, et al: Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): A placebo-controlled randomised trial. Lancet Neurol 2008;7:299309.Google Scholar
Meretoja, AD, Strbian, D, Mustanoja, S, et al: Reducing in-hospital delay to 20 minutes in stroke thrombolysis. Neurology 2012;79:306313.Google Scholar
Meretoja, A, Weir, L, Ugalde, M, et al: Helsinki model cut stroke thrombolysis delays to 25 minutes in Melbourne in only 4 months. Neurology 2013;81:10711076.Google Scholar
Wong, EC: Quantifying CBF with pulsed ASL: Technical and pulse sequence factors. J Magn Reson Imaging 2005;22:727731.Google Scholar
Wang, Z, Wang, J, Connick, TJ, et al: Continuous ASL (CASL) perfusion MRI with an array coil and parallel imaging at 3T. Magn Reson Med 2005;54:732737.Google Scholar
Fernandez-Seara, MA, Wang, Z, Wang, J, et al: Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 2005;54:12411247.Google Scholar
Ances, BM, McGarvey, ML, Abrahams, JM, et al: Continuous arterial spin labeled perfusion magnetic resonance imaging in patients before and after carotid endarterectomy. J Neuroimaging 2004;14:133138.Google Scholar
Yoo, R-E, Yun, TJ, Rhim, JH, et al: Bright vessel appearance on arterial spin labeling MRI for localizing arterial occlusion in acute ischemic stroke. Stroke 2015;46:564567.Google Scholar
Park, K-Y, Youn, YC, Chung, C-S, et al: Large-artery stenosis predicts subsequent vascular events in patients with transient ischemic attack. J Clin Neurol 2007;3:169174.Google Scholar
Perez, A, Restepo, L, Kleinman, J, et al: Patients with diffusion–perfusion mismatch on magnetic resonance imaging 48 hours or more after stroke symptom onset: Clinical and imaging features. J Neuroimaging 2006;16:329333.Google Scholar
Linfante, I, Llinas, RH, Schlaug, G, et al: Diffusion-weighted imaging and National Institutes of Health Stroke Scale in the acute phase of posterior-circulation stroke. Arch Neurol 2001;58:621628.Google Scholar
Ma, H, Parsons, MW, Christensen, S, et al: A multicentre, randomized, double blinded, placebo controlled phase 3 study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND). Int J Stroke 2012;7:7480.Google Scholar
Campbell, BC, Mitchell, PJ, Yan, B, et al; and E-I investigators: A multicenter, randomized, controlled study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits with Intra-Arterial therapy (EXTEND-IA). Int J Stroke 2014;9:126132.Google Scholar
von Kummer, R, Weber, J: Brain and vascular imaging in acute ischemic stroke: The potential of computed tomography. Neurology 1997;49(Suppl 4):S52S55.Google Scholar
Nabavi, DG, Kloska, SP, Nam, E-M, et al: MOSAIC: Multimodal stroke assessment using computed tomography. Novel diagnostic approach for the prediction of infarction size and clinical outcome. Stroke 2002;33:28192826.Google Scholar
Koroshetz, W: Contrast computed tomography scan in acute stroke: “You can’t always get what you want but … you get what you need.” Ann Neurol 2002;51:415416.Google Scholar
Wintermark, M, Reichhart, M, Thiran, J-P, et al: Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002;51:417432.Google Scholar
Wintermark, M, Reichart, M, Cuisenaire, O, et al: Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002;33:20252031.Google Scholar
Parsons, MW, Pepper, EM, Bateman, GA, et al: Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology 2007;68:730736.Google Scholar
Na, DG, Byun, HS, Lee, KH, et al: Acute occlusion of the middle cerebral artery: Early evaluation with triphasic helical CT – Preliminary results. Radiology 1998;207:113122.Google Scholar
Lee, KH, Cho, S-J, Byun, HS, et al: Triphasic perfusion computed tomography in acute middle cerebral artery stroke. Arch Neurol 2000;57:990999.Google Scholar
Lee, KH, Lee, S-J, Cho, S-J, et al: Usefulness of triphasic perfusion computed tomography for intravenous thrombolysis with tissue-type plasminogen activator in acute ischemic stroke. Arch Neurol 2000;57:10001008.Google Scholar
Kohrmann, M, Juttler, E, Huttner, HB, et al: Acute stroke imaging for thrombolytic therapy – an update. Cerebrovasc Dis 2007;24:161169.Google Scholar
Menon, BK, Smith, EE, Modi, J, et al: Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol 2011;32:16401645.Google Scholar
Wintermark, M, Meuli, R, Browaeys, P, et al: Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology 2007;68:694697.Google Scholar
Chalela, JA, Kidwell, CS, Nentwich, LM, et al: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: A prospective comparison. Lancet 2007;369:293298.Google Scholar
Yonas, H, Wolfson, SK, Gur, D, et al: Clinical experience with the use of xenon-enhanced CT blood flow mapping in cerebral vascular disease. Stroke 1984;15:443450.Google Scholar
Yonas, H, Darby, JM, Marks, EC, et al: CBF measured by Xe-CT: Approach to analysis and normal values. J Cereb Blood Flow Metab 1991;11:716725.Google Scholar
Hilman, J, Sturnegk, P, Yonas, H, et al: Bedside monitoring of CBF with xenon-CT and a mobile scanner: A novel method in neurointensive care. Br J Neurosurg 2005;19:395401.Google Scholar
Fayad, P, Brass, LM: Single photon emission computed tomography in cerebrovascular disease. Stroke 1991;22:950954.Google Scholar
Caplan, LR: Question-driven technology assessment: SPECT as an example. Neurology 1991;41:187191.Google Scholar
Masdeu, JC, Brass, LM: SPECT imaging of stroke. J Neuroimaging 1995;5:514522.Google Scholar
Therapeutics and Technology Subcommittee of the American Academy of Neurology: Assessment of Brain SPECT. Neurology 1996;46:278285.Google Scholar
Masdeu, JC: Imaging of stroke with single-photon emission computed tomography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 131143.Google Scholar
Wintermark, M, Sesay, M, Barbier, E, et al: Comparative overview of brain perfusion imaging techniques. JNR J Neuroradiol 2005;32:294314.Google Scholar
Frackowiak, R: PET CBF investigations of stroke. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, B, Weir, B (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 636640.Google Scholar
Phelps, M, Mazziotta, J, Huang, S: Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 1982;2:113162.Google Scholar
Baron, JC, Bousser, M-G, Rey, A, et al: Reversal of focal misery-perfusion syndrome by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. Stroke 1981;12:454459.Google Scholar
Marchal, G, Furlong, M, Beaudouin, V, et al: Early spontaneous hyperperfusion after stroke: A marker of favorable tissue outcome. Brain 1996;119:409419.Google Scholar
Baron, J-C: Positron emission tomography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 115130.Google Scholar
Johnson, KA, Gregas, M, Becker, JA, et al: Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007;62:229234.Google Scholar
Vinters, HV: Imaging cerebral microvascular amyloid. Ann Neurol 2007;62:209212.Google Scholar
Caplan, LR, Wolpert, SM: Angiography in patients with occlusive cerebrovascular disease: A stroke neurologist and neuroradiologist’s views. AJNR Am J Neuroradiol 1991;12:593601.Google Scholar
Akers, DL, Markowitz, IA, Kerstein, MD: The value of aortic arch study in the evaluation of cerebrovascular insufficiency. Am J Surg 1987;154:230232.Google Scholar
Caplan, LR, Manning, WJ: Cardiac sources of embolism: The usual suspects. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 129159.Google Scholar
DeRook, FA, Comess, KA, Albers, GW, Popp, RL: Transesophageal echocardiography in the evaluation of stroke. Ann Intern Med 1992;117:922932.Google Scholar
Grullon, C, Alam, M, Rosman, HS, et al: Transesophageal echocardiography in unselected patients with focal cerebral ischemia: When is it useful? Cerebrovasc Dis 1994;4:139145.Google Scholar
Daniel, WG, Mugge, A: Transesophageal echocardiography. N Engl J Med 1995;332:12681279.Google Scholar
Horowitz, DR, Tuhrim, S, Weinberger, J, et al: Transesophageal echocardiography: Diagnostic and clinical applications in the evaluation of the stroke patient. J Stroke Cerebrovasc Dis 1997;6:332336.Google Scholar
Manning, WJ: Cardiac sources of embolism: Pathophysiology and identification. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 161186.Google Scholar
Furlan, AJ, Reisman, M, Massaro, J, et al; and CI Investigators: Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med 2012;366:991999.Google Scholar
Carroll, JD, Saver, JL, Thaler, DE, et al; and R Investigators: Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med 2013;368:10921100.Google Scholar
Caplan, LR: Of birds and nests and cerebral emboli. Rev Neurol 1991;147:265273.Google Scholar
Caplan, LR: Brain embolism. In Caplan, LR, Chimowitz, M, Hurst, JW (eds): Practical Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 35185.Google Scholar
Caplan, LR: The aorta as a donor source of brain embolism. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 187201.Google Scholar
Amarenco, P, Davis, S, Jones, EF, et al; for The Aortic Arch Related Cerebral Hazard Trial Investigators: Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke 2014;45:12481257.Google Scholar
Johnson, LL, Pohost, GM: Nuclear cardiology. In Schlant, RC, Alexander, RW (eds): Hurst’s The Heart, 8th ed. New York: McGraw-Hill, 1994, pp 22812323.Google Scholar
Caplan, LR. Translating what is known about neurological complications of coronary artery bypass grafting into action. Arch Neurol 2009;66:10631064.Google Scholar
Weinberger, J, Azhar, S, Danisi, F, et al: A new noninvasive technique for imaging atherosclerotic plaque in the aortic arch of stroke patients by transcutaneous real-time B-mode ultrasonography. Stroke 1998;29:673676.Google Scholar
Chatzikonstantinou, A, Krissak, R, Flüchter, S: CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic ischemic stroke. Cerebrovasc Dis 2012;33:322328.Google Scholar
Svedlund, S, Wetterholm, R, Volkmann, R, Caidahl, K: Retrograde blood flow in the aortic arch determined by transesophageal Doppler ultrasound. Cerebrovasc Dis 2009;27:2228.Google Scholar
Hur, J, Kim, YJ, Lee, H-J, et al: Cardiac computed tomographic angiography for detection of cardiac sources of embolism in stroke patients. Stroke 2009;40:20732078.Google Scholar
Rokey, R, Rolak, LA, Harati, Y, et al: Coronary artery disease in patients with cerebrovascular disease: A prospective study. Ann Neurol 1985;16:5053.Google Scholar
Dhamoon, MS, Tai, W, Boden-Albala, B, et al: Risk of myocardial infarction or vascular death after first ischemic stroke. The Northern Manhattan Study. Stroke 2007;38:17521758.Google Scholar
Calvet, D, Touzé, E, Varenne, O, et al: Prevalence of asymptomatic coronary artery disease in ischemic stroke patients: The PRECORIS study. Circulation 2010;121:16231629.Google Scholar
Yoo, J, Yang, JH, Choi, BW, et al: The frequency and risk of preclinical coronary artery disease detected using multichannel cardiac computed tomography in patients with ischemic stroke. Cerebrovasc Dis 2012;33:286294.Google Scholar
Kim, WY, Danias, PG, Stuber, M, et al: Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:18631869.Google Scholar
Budoff, MJ, Shaw, LJ, Liu, ST, et al: Long-term prognosis associated with coronary calcification: Observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:18601870.Google Scholar
Liao, J, Khalid, Z, Scallan, C, et al: Noninvasive cardiac monitoring for detecting paroxysmal atrial fibrillation or flutter after acute ischemic stroke: A systematic review. Stroke 2007;38:29352940.Google Scholar
Rizos, T, Güntner, J, Jenetsky, E, et al: Continuous stroke unit electrocardiographic monitoring versus 24-hour holter electrocardiography for detection of paroxysmal atrial fibrillation after stroke. Stroke 2012;43:26892694.Google Scholar
Rabinstein, A: Prolonged cardiac monitoring for detection of paroxysmal atrial fibrillation after cerebral ischemia. Stroke 2014;45:12081214.Google Scholar
Kishore, A, Vail, A, Majid, A, et al: Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke 2014;45:520526.Google Scholar
Patton, KK, Ellinor, PT, Hecklert, SR, et al: N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation. Circulation 2009;120:17681777.Google Scholar
Hijazi, Z, Wallentin, L, Siegbahn, A, et al: N-terminal pro–B-type natriuretic peptide for risk assessment in patients with atrial fibrillation. J Am Coll Cardiol 2013;61:22742284.Google Scholar
Warraich, HJ, Gandhavadi, M, Manning, WJ: Mechanical discordance of the left atrium and appendage. A novel mechanism of stroke in paroxysmal atrial fibrillation. Stroke 2014;45:14811484.Google Scholar
Lieb, WE, Flaharty, PM, Sergott, RC, et al: Color Doppler imaging provides accurate assessment of orbital blood flow in occlusive carotid artery disease. Ophthalmology 1991;98:548552.Google Scholar
Hedges, TR. Ocular ischemia. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 6173.Google Scholar
Castillo, M, Kwock, L, Mukherij, SK: Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 1996;17:115.Google Scholar
Pavlakis, SG, Kingsley, PB, Kaplan, GP, et al: Magnetic resonance spectroscopy: Use in monitoring MELAS treatment. Arch Neurol 1998;55:849852.Google Scholar
Koroshetz, WJ: New techniques in computed tomography, magnetic resonance imaging, and optical imaging in cerebrovascular disease. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 403412.Google Scholar
Cramer, SC, Nelles, G, Benson, RR, et al: A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997;28:25182527.Google Scholar
Ward, NS, Brown, MM, Thompson, AJ, Frackowiak, RSJ: Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003;126:24762496.Google Scholar
Love, T, Haist, F, Nicol, J, Swinney, D: A functional neuroimaging investigation of the roles of structural complexity and task-demand during auditory sentence processing. Cortex 2006;42:577590.Google Scholar
Levine, SR, Brust, JCM, Futrell, N, et al: A comparative study of the cerebrovascular complications of cocaine-alkaloidal versus hydrochloride – a review. Neurology 1991;41:11731177.Google Scholar
Caplan, LR: Drugs. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 201220.Google Scholar
Alberico, RA, Patel, M, Casey, S, et al: Evaluation of the circle of Willis with three-dimensional CT angiography in patients with suspected intracranial aneurysms. AJNR Am J Neuroradiol 1995;16:15711578.Google Scholar
Sekhar, L, Wechsler, L, Yonas, H, et al: Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1988;22:813821.Google Scholar
Sloan, MA, Haley, EC, Kassell, NF, et al: Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 1989;39:15141518.Google Scholar
Pollock, S, Tsitsopoulas, P, Harrison, M: The effect of hematocrit on cerebral perfusion and clinical status following occlusion in the gerbil. Stroke 1982;13:167170.Google Scholar
Harrison, M, Pollock, S, Kindoll, B, et al: Effect of hematocrit on carotid stenosis and cerebral infarction. Lancet 1981;2:114115.Google Scholar
Thomas, D, duBoulay, G, Marshall, J, et al: Effect of hematocrit on cerebral blood flow in man. Lancet 1977;2:941943.Google Scholar
Tohgi, H, Yamanouchi, H, Murakami, M, et al: Importance of the hematocrit as a risk factor in cerebral infarction. Stroke 1978;9:369374.Google Scholar
Grotta, J, Ackerman, R, Correia, J, et al: Whole-blood viscosity parameters and cerebral blood flow. Stroke 1982;13:296298.Google Scholar
Thomas, D: Whole blood viscosity and cerebral blood flow. Stroke 1982;13:285287.Google Scholar
Kee, DB Jr, Wood, JH: Influence of blood rheology on cerebral circulation. In Wood, JH (ed): Cerebral Blood Flow: Physiological and Clinical Aspects. New York: McGraw-Hill, 1987, pp 173185.Google Scholar
Allport, LE, Parsons, MW, Butcher, KS, et al: Elevated hematocrit is associated with reduced reperfusion and tissue survival in acute stroke. Neurology 2005;65:13821387.Google Scholar
Adams, RJ, Nichols, FT, Figueroa, R, et al: Transcranial Doppler correlation with cerebral angiography in sickle cell disease. Stroke 1992;23:10731077.Google Scholar
Switzer, JA, Hess, DC, Nichols, FT, Adams, RJ: Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. Lancet Neurol 2006;5:501512.Google Scholar
Adams, RJ: TCD in sickle cell disease: An important and useful test. Pediatr Radiol 2005;35:229234.Google Scholar
Adams, RJ, McKie, VC, Hsu, L, et al: Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998;339:511.Google Scholar
Adams, RJ, Brambilla, D: Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) Trial Investigators: Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med 2005;353:27692778.Google Scholar
Mercuri, M, Bond, MG, Evans, G, et al: Leukocyte count and carotid atherosclerosis. Stroke 1991;22:134.Google Scholar
Elkind, MS, Cheng, I, Boden-Albala, B, et al: Elevated white blood cell count and carotid plaque thickness: The Northern Manhattan Stroke Study. Stroke 2001;32:842849.Google Scholar
Elkind, MS, Sciacca, R, Boden-Albala, B, et al: Leukocyte count is associated with aortic arch plaque thickness. Stroke 2002;33:25872592.Google Scholar
Elkind, MS, Sciacca, RR, Boden-Albala, B, et al: Leukocyte count is associated with reduced endothelial reactivity. Atherosclerosis 2005;181:329338.Google Scholar
Elkind, MS, Sciacca, RR, Boden-Albala, B, et al: Relative elevation in baseline leukocyte count predicts first cerebral infarction. Neurology 2005;64:21212125.Google Scholar
Elkind, MS: Inflammation, atherosclerosis, and stroke. Neurologist 2006;12:140148.Google Scholar
Bennett, JS, Kolodziej, MA: Disorders of platelet function. Dis Month 1992;38:557563.Google Scholar
Anderson, IR, Feinberg, WM: Primary platelet disorders. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B (eds): Primer on Cerebrovascular Diseases. San Diego, Academic Press, 1997, pp 401405.Google Scholar
Wu, K: Platelet hyperaggregability and thrombosis in patients with thrombocythemia. Ann Intern Med 1978;88:711.Google Scholar
Arboix, A, Besses, C, Acin, P, et al: Ischemic stroke as first manifestation of essential thrombocythemia: Report of six cases. Stroke 1995;26:14631466.Google Scholar
Ogata, J, Yonemura, K, Kimura, K, et al: Cerebral infarction associated with essential thrombocythemia: An autopsy case study. Cerebrovasc Dis 2005;19:201205.Google Scholar
Atkinson, JLD, Sundt, TM, Kazmier, FJ, et al: Heparin-induced thrombocytopenia and thrombosis in ischemic stroke. Mayo Clin Proc 1988;63:353361.Google Scholar
Arepally, GM, Ortel, TL: Clinical practice. Heparin-induced thrombocytopenia. N Engl J Med 2006;355:809817.Google Scholar
Uchyama, S, Takeuchi, M, Osawa, M, et al: Platelet function tests in thrombotic cerebrovascular disorders. Stroke 1983;14:511517.Google Scholar
Ludlam, CA: Evidence for the platelet specificity of beta-thromboglobulin and studies on its plasma concentration in healthy individuals. Br J Haematol 1979;41:271278.Google Scholar
Fisher, M, Francis, R: Altered coagulation in cerebral ischemia: Platelet, thrombin, and plasmin activity. Arch Neurol 1990;47:10751079.Google Scholar
Helgason, CH, Bolin, KM, Hoff, JA, et al: Development of aspirin resistance in persons with previous ischemic stroke. Stroke 1994;25:23312336.Google Scholar
Yeh, RW, Everett, BM, Foo, SY, et al: Predictors for the development of elevated anti-heparin/platelet factor 4 antibody titers in patients undergoing cardiac catheterization. Am J Cardiol 2006;98:419421.Google Scholar
Qizilbash, N, Duffy, S, Prentice, CRM, et al: von Willebrand factor and risk of ischemic stroke. Neurology 1997;49:15521556.Google Scholar
Blann, AD: Plasma von Willebrand factor, thrombosis, and the endothelium: The first 30 years. Thromb Haemost 2006;95:4955.Google Scholar
Bowen, DJ, Collins, PW: Insights into von Willebrand factor proteolysis: Clinical implications. Br J Haematol 2006;133:457467.Google Scholar
Weiss, EJ, Bray, PF, Tayback, M, et al: A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996;334:10901094.Google Scholar
Kannel, WB, Wolf, PA, Castelli, WP, et al: Fibrinogen and risk of cardiovascular disease. JAMA 1987;258:11831186.Google Scholar
Coull, BM, Beamer, NB, deGarmo, PL, et al: Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 1991;22:162168.Google Scholar
Beamer, N, Coull, BM, Sexton, G, et al: Fibrinogen and the albumin-globulin ratio in recurrent stroke. Stroke 1993;24:11331139.Google Scholar
Ernst, E, Resch, KL: Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med 1993;118:956963.Google Scholar
Danesh, J, Lewington, S, Thompson, SG, et al: Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA 2005;294:17991809.Google Scholar
Rothwell, PM, Howard, SC, Power, DA, et al: Fibrinogen concentration and risk of ischemic stroke and acute coronary events in 5113 patients with transient ischemic attack and minor ischemic stroke. Stroke 2004;35:23002305.Google Scholar
Mora, S, Rifai, N, Buring, JE, Ridker, PM: Additive value of immunoassay-measured fibrinogen and high-sensitivity C-reactive protein levels for predicting incident cardiovascular events. Circulation 2006;114:381387.Google Scholar
The Ancrod Stroke Study Investigators: Ancrod for the treatment of acute ischemic brain infarction. Stroke 1994;25:17551759.Google Scholar
Atkinson, RP: Ancrod in the treatment of acute ischemic stroke. a review of clinical data. Cerebrovasc Dis 1998;8(Suppl 1):2328.Google Scholar
Gonzales-Conejero, R, Fernandez-Cadenas, I, Iniesta, JA, et al: Role of fibrinogen levels and factor XIII V34L polymorphism in thrombolytic therapy in stroke patients. Stroke 2006;37:22882293.Google Scholar
Radack, K, Deck, C, Huster, G: Dietary supplementation with low-dose fish oils lowers fibrinogen levels: A randomized double-blind controlled study. Ann Intern Med 1989;111:757758.Google Scholar
Dashe, J: Hyperviscosity and stroke. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 100109.Google Scholar
Rosenson, RS, Lowe, GD: Effects of lipids and lipoproteins on thrombosis and rheology. Atherosclerosis 1998;140:271280.Google Scholar
Ariyo, A, Thach, C, Tracy, R; for the Cardiovascular Health Study Investigators: Lp (a) lipoprotein, vascular disease, and mortality in the elderly. N Engl J Med 2003;349:21082115.Google Scholar
Ohira, T, Schreiner, P, Morrisett, JD, et al: Lipoprotein (a) and incident ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 2006;37:14071412.Google Scholar
Arenillas, JF, Molina, CA, Chacon, P, et al: High lipoprotein (a), diabetes, and the extent of symptomatic intracranial atherosclerosis. Neurology 2004;63:2732.Google Scholar
Dahlback, B, Carlsson, M, Svensson, PJ: Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: Prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993;90:10041008.Google Scholar
Zoller, B, Dahlback, B: Linkage between inherited resistance to activated protein C and factor V gene mutation in venous thrombosis. Lancet 1994;343:15361538.Google Scholar
Coull, BM, Skaff, PT: Disorders of coagulation. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 8695.Google Scholar
Ridker, PM, Miletich, JP, Stampfer, MJ, et al: Factor V Leiden and risks of recurrent idiopathic venous thromboembolism. Circulation 1997;95:17771782.Google Scholar
Poort, SR, Rosendaal, FR, Reitsma, PH, et al: A common genetic variation in the 3’ untranslated region of the prothrombin gene is associated with elevated prothrombin levels and an increase in venous thrombosis. Blood 1996;88:36983703.Google Scholar
Martinelli, I, Sacchi, E, Landi, G, et al: High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998;338:17931797.Google Scholar
Kosik, KS, Furie, B: Thrombotic stroke associated with elevated plasma factor VIII. Arch Neurol 1980;8:435437.Google Scholar
Bhopale, GM, Nanda, RK: Blood coagulation factor VIII: An overview. J Biosci 2003;28:783789.Google Scholar
Estol, C, Pessin, MS, DeWitt, LD, et al: Stroke and increased factor VIII activity. Neurology 1989;39:225.Google Scholar
Pan, W-H, Bai, C-H, Chen, J-R, Chiu, H-C: Associations between carotid atherosclerosis and high factor VIII activity, dyslipidemia, and hypertension. Stroke 1997;28:8894.Google Scholar
Anadure, RK, Nagaraja, D, Christopher, R: Plasma factor VIII in non-puerperal cerebral venous thrombosis: a prospective case-control study. J Neurol Sci 2014;339:140143.Google Scholar
Lip, GYH, Lane, D, Van Walraven, C, Hart, RG: Additive role of plasma von Willebrand factor levels to clinical factors for risk stratification of patients with atrial fibrillation. Stroke 2006;37:22942300.Google Scholar
Bongers, TN, de Maat, MP, van Goor, ML, et al: High von Willebrand factor levels increase the risk of first ischemic stroke: Influence of ADAMTS 13, inflammation, and genetic variability. Stroke 2006;37:26722677.Google Scholar
Markus, HS, Hambley, H: Neurology and the blood: haematological abnormalities in ischaemic stroke. J Neurol Neurosurg Psychiatry 1998;64:150159.Google Scholar
Feinberg, WM, Bruck, DC, Ring, ME, et al: Hemostatic markers in acute stroke. Stroke 1989;20:592597.Google Scholar
Feinberg, WM, Cornell, ES, Nightingale, SD, et al: Relationship between prothrombin activation fragment F1.2 and international normalized ratio in patients with atrial fibrillation. Stroke 1997;28:11011106.Google Scholar
Toghi, H, Kawashima, M, Tamura, K, et al: Coagulation–fibrinolysis abnormalities in acute and chronic phases of cerebral thrombosis and embolism. Stroke 1990;21:16631667.Google Scholar
Jeppeson, LL, Jorgensen, HS, Nakayama, H, et al: Tissue plasminogen activator is elevated in women with ischemic stroke. J Stroke Cerebrovasc Dis 1998;7:187191.Google Scholar
Feinberg, WM: Coagulation. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 8596.Google Scholar
Palareti, G, Cosmi, B, Legnani, C, et al: D-dimer testing to determine the duration of anticoagulant therapy. N Engl J Med 2006;355:17801789.Google Scholar
Stallworth, C, Brey, R: Antiphospholipid antibody syndrome. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 6377.Google Scholar
Coull, BM, Goodnight, SH: Antiphospholipid antibodies, prothrombotic states, and stroke. Stroke 1990;21:13701374.Google Scholar
Levine, SR, Welch, KMA: The spectrum of neurologic disease associated with antiphospholipid antibodies: Lupus anticoagulants, and anticardiolipin antibodies. Arch Neurol 1987;44:876883.Google Scholar
Hess, DC, Sheppard, S, Adams, RJ: Increased immunoglobulin binding to cerebral endothelium in patients with antiphospholipid antibodies. Stroke 1993;24:994999.Google Scholar
Levine, SR, Salowich-Palm, L, Sawaya, K, et al: IgG anticardiolipin antibody titer ϒ40GPL and the risk of subsequent thrombo-occlusive events and death. A prospective cohort study. Stroke 1997;28:16601665.Google Scholar
Ortel, TL: The antiphospholipid syndrome: What are we really measuring? How do we measure it? And how do we treat it? J Thromb Thrombolysis 2006;21:7983.Google Scholar
Tuhrim, S, Rand, JH, Horowitz, DR, et al: Antiphosphatidyl serine antibodies are independently associated with ischemic stroke. Neurology 1999;53:15231527.Google Scholar
Toschi, V, Motta, A, Castelli, C, et al: High prevalence of antiphosphatidylinositol antibodies in young patients with cerebral ischemia of undetermined cause. Stroke 1998;29:17591764.Google Scholar
Tanne, D, Triplett, D, Levine, SR: Antiphospholipid-protein antibodies and ischemic stroke: Not just cardiolipin anymore. Stroke 1998;29:17551758.Google Scholar
Francès, C, Papo, T, Wechsler, B, et al: Sneddon syndrome with or without antiphospholipid antibodies. A comparative study in 46 patients. Medicine 1999;78:209219.Google Scholar
Myers, R, Yamaguchi, S: Nervous system effects of cardiac arrest in monkeys. Arch Neurol 1977;34:6574.Google Scholar
Pulsinelli, W, Waldman, S, Rawlinson, D, et al: Hyperglycemia converts ischemic neuronal damage into brain infarction. Neurology 1982;32:12391246.Google Scholar
Plum, F: What causes infarction in ischemic brain? Neurology 1983;33:222233.Google Scholar
Pulsinelli, W, Levy, D, Sigsbel, B, et al: Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 1983;74:540544.Google Scholar
Bellolio, MF, Gilmore, RM, Stead, LG: Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst Rev 2011 Sep 7;(9):CD005346. doi:10.1002/14651858.CD005346.pub3.Google Scholar
Walker, G, Williamson, P, Ravich, R, et al: Hypercalcemia associated with cerebral vasospasm causing infarction. J Neurol Neurosurg Psychiatry 1980;43:464467.Google Scholar
Gorelick, PB, Caplan, LR: Calcium, hypercalcemia, and stroke. Current concepts of cerebrovascular disease. Stroke 1985;20:1317.Google Scholar
Siesjo, B, Kristian, T: Cell calcium homeostasis and calcium-related ischemic damage. In Welch, KMA, Caplan, LR, Reis, DJ, et al. (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 172178.Google Scholar
Henderson, GV, Caplan, LR: Calcium, hypercalcemia, magnesium, and brain ischemia. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 110113.Google Scholar
Ovbiagele, B, Saver, J, Fredieu, A, et al: In-hospital initiation of secondary stroke prevention therapies yields high rates of adherence at follow-up. Stroke 2004;35:28792883.Google Scholar
Ovbiagele, B, Saver, J, Fredieu, A, et al: PROTECT. A coordinated stroke treatment program to prevent recurrent thromboembolic events. Neurology 2004;63:12171222.Google Scholar
Ridker, PM, Stampfer, MJ, Rifai, N: Novel risk factors for systemic atherosclerosis: A comparison of C-reactive protein, fibrinogen, homcysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001;285:24812485.Google Scholar
Sacco, RL, Anand, K, Lee, H-S, et al: Homocysteine and the risk of ischemic stroke in a triethnic cohort. The Northern Manhattan Study. Stroke 2004;35:22632269.Google Scholar
Tanne, D, Haim, M, Goldbourt, U, et al: Prospective study of serum homocysteine and risk of ischemic stroke among patients with preexisting coronary heart disease. Stroke 2003;34:632636.Google Scholar
Eikelboom, JW, Hankey, GJ, Anand, SS, et al: Association between high homocyst(e)ine and ischemic stroke due to large and small-artery disease but not other etiologic subtypes of ischemic stroke. Stroke 2000;31:10691075.Google Scholar
Bova, I, Chapman, J, Sylantiev, C, et al: The A677V methylenetetrahydrofolate reductase gene polymorphism and carotid atherosclerosis. Stroke 1999;30:21802182.Google Scholar
Selhub, J, Jacques, PF, Rosenberg, IH, et al: Serum total homocysteine concentrations in the Third National Health and Nutrition Examination Survey (1991–1994): Population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 1999;331339.Google Scholar
den Heijer, , Rosendaal, FR, Blom, HJ, Gerrits, WB, Bos, GM: Hyperhomocysteinemia and venous thrombosis: a meta-analysis. Thromb Haemost 1998;80:874877.Google Scholar
Ridker, PM, Rifai, N, Rose, L, et al: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347:15571565.Google Scholar
Eikelboom, JW, Hankey, GJ, Baker, RI, et al: C-reactive protein in ischemic stroke and its etiologic subtypes. J Stroke Cerebrovasc Dis 2003;12:7481.Google Scholar
Arenillas, JF, Alvarez-Sabin, J, Molina, CA, et al: C-reactive protein predicts further ischemic events in first-ever transient ischemic attack or stroke patients with intracranial large-artery occlusive disease. Stroke 2003;34:24632470.Google Scholar
Wakugawa, Y, Kiyohara, Y, Tanizaki, Y, et al: C-reactive protein and risk of first-ever ischemic and hemorrhagic stroke in general Japanese population. The Hisayama Study. Stroke 2006;37:2732.Google Scholar
Schlager, O, Exner, M, Miekusch, W, et al: C-reactive protein predicts future cardiovascular events in patients with carotid stenosis. Stroke 2007;38:12631268.Google Scholar
Salvarani, C, Canini, F, Boiardi, L, Hunder, GG: Laboratory investigations useful in giant cell arteritis and Takayasu’s arteritis. Clin Exp Rheumatol 2003;21(Suppl 32):523528.Google Scholar
Lavigne-Lissalde, G, Schved, JF, Granier, C, Villard, S: Anti-factor VIII antibodies: A 2005 update. Thromb Haemost 2005;94:760769.Google Scholar
Franchini, M: Acquired hemophilia A. Hematology 2006;11:119125.Google Scholar
Saposnik, G, Caplan, LR: Convulsive-like movements in brainstem stroke. Arch Neurol 2001;54:654657.Google Scholar
Ropper, AH: “Convulsions” in basilar artery occlusions. Neurology 1988;38:15001501.Google Scholar
Carrera, E, Michel, P, Despland, PA, et al: Continuous assessment of electrical epileptic activity in acute stroke. Neurology 2006 11;67:99104.Google Scholar
Bladin, CF, Alexandrov, A, Bellavance, A, et al: Seizures after stroke: A prospective multicenter study. Arch Neurol 2000;57:16171622.Google Scholar
Wilber, DJ, Garan, H, Finkelstein, D, et al: Out-of-hospital cardiac arrest: Use of electrophysiologic testing in the prediction of long-term outcome. N Engl J Med 1988;318:1924.Google Scholar
Madl, C, Kramer, L, Domanovits, H, et al: Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med 2000;28:721726.Google Scholar
Wijdicks, EF, Hijdra, A, Young, GB, et al; For the Quality Standards Subcommittee of the American Academy of Neurology Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;67:203210.Google Scholar
Marx, J, Thoömke, F, Urban, PP, Bense, S, Dieterich, M: Electrophysiologic diagnostics. In Urban, PP, Caplan, LR (eds): Brainstem Disorders, Berlin: Springer-Verlag, 2011, pp 61101.Google Scholar
Alberts, MJ: Genetics of cerebrovascular disease. Stroke 2004;35:342344.Google Scholar
Meschia, JF, Worrall, BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Neurol Neurosci Rep 2004;4:420426.Google Scholar
Dichgans, M, Hegele, RA: Update on the genetics of stroke and cerebrovascular disease – 2006. Stroke 2007;38:216218.Google Scholar
Dichgans, M: Genetics of ischaemic stroke. Lancet Neurol 2007;6:149161.Google Scholar
Sims, KB, Alberts, MJ, Caplan, LR. New Insights into the Diagnosis of Single-gene Disorders Associated with Cryptogenic Ischemic Stroke. CME Monograph. Lexington, KY: University of Kentucky College of Medicine and CE Health Sciences Inc, 2010.Google Scholar
Debette, S, Bis, JC, Fornage, M, et al: Genome-wide association studies of MRI-defined brain infarcts: Meta-analysis from the CHARGE Consortium. Stroke 2010;41:210217.Google Scholar
Caplan, LR, Arenillas, J, Cramer, SC, et al: Stroke-related translational research (review). Arch Neurol 2011;68:11101123.Google Scholar
Falcone, GJ, Malik, R, Dichgans, M, Rosand, J: Current concepts and clinical applications of stroke genetics. Lancet Neurol 2014;13:405418.Google Scholar
Gretarsdottir, S, Thorleifsson, G, Reynisdottir, ST, et al: The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 2003;35:131138.Google Scholar
Yee, RYL, Brophy, VH, Cheng, S, et al: Polymorphisms of the phosphodiesterase 4D, camp-specific (PDE4D) gene and risk of ischemic stroke: A prospective, nested case-control evaluation. Stroke 2006;37:20122017.Google Scholar

References

Seshadri, S, Wolf, PA. Lifetime risk of stroke and dementia: Current concepts, and estimates from the Framingham Study. Lancet Neurol 2007;6:11061114.Google Scholar
Johnston, SC, Mendis, S, Mathers, CD. Global variation in stroke burden and mortality: Estimates from monitoring, surveillance, and modelling. Lancet Neurol 2009;8:345354.Google Scholar
Gorelick, PB, Scuteri, A, Black, SE, et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011;42:26722713.Google Scholar
Viswanathan, A, Rocca, WA, Tzourio, C. Vascular risk factors and dementia: How to move forward? Neurology 2009;72:368374.Google Scholar
Pendlebury, ST, Rothwell, PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol 2009;8:10061018.Google Scholar
Falcone, GJ, Malik, R, Dichgans, M, Rosand, J. Current concepts and clinical applications of stroke genetics. Lancet Neurol 2014;13:405418.Google Scholar
Manolio, TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet 2013;14:549558.Google Scholar
Leys, D, Bandu, L, Henon, H, et al. Clinical outcome in 287 consecutive young adults (15 to 45 years) with ischemic stroke. Neurology 2002;59:2633.Google Scholar
Chabriat, H, Joutel, A, Dichgans, M, Tournier-Lasserve, E, Bousser, M-G. Cadasil. Lancet Neurol 2009;8:643653.Google Scholar
Joutel, A, Corpechot, C, Ducros, A, et al. Notch 3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707710.Google Scholar
Dichgans, M. Monogenic causes of ischemic stroke. In Stroke Genetics, Markus, H (ed). Oxford: Oxford University Press, 2003.Google Scholar
Razvi, SS, Davidson, R, Bone, I, Muir, KW. The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 2005;76:739741.Google Scholar
Dong, Y, Hassan, A, Zhang, Z, Huber, D, Dalageorgou, C, Markus, HS. Yield of screening for CADASIL mutations in lacunar stroke and leukoaraiosis. Stroke 2003;34:203205.Google Scholar
O’Sullivan, M, Jarosz, JM, Martin, RJ, Deasy, N, Powell, JF, Markus, HS. MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 2001;56:628634.Google Scholar
Chabriat, H, Levy, C, Taillia, H, et al. Patterns of MRI lesions in CADASIL. Neurology 1998;51:452457.Google Scholar
Gobron, C, Viswanathan, A, Bousser, M-G, Chabriat, H. Multiple simultaneous cerebral infarctions in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Cerebrovasc Dis 2006;22:445446.Google Scholar
Yao, M, Herve, D, Jouvent, E, et al. Dilated perivascular spaces in small-vessel disease: A study in CADASIL. Cerebrovasc Dis 2014;37:155163.Google Scholar
Ruchoux, MM, Chabriat, H, Bousser, M-G, Baudrimont, M, Tournier-Lasserve, E. Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 1994;25:22912292.Google Scholar
Dichgans, M, Markus, HS, Salloway, S, et al. Donepezil in patients with subcortical vascular cognitive impairment: A randomised double-blind trial in CADASIL. Lancet Neurol 2008;7:310318.Google Scholar
Hara, K, Shiga, A, Fukutake, T, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 2009;360:17291739.Google Scholar
Bayrakli, F, Balaban, H, Gurelik, M, Hizmetli, S, Topaktas, S. Mutation in the HTRA1 gene in a patient with degenerated spine as a component of CARASIL syndrome. Turk Neurosurg 2014;24:6769.Google Scholar
Zheng, DM, Xu, FF, Gao, Y, Zhang, H, Han, SC, Bi, GR. A Chinese pedigree of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): Clinical and radiological features. J Clin Neurosci 2009;16:847849.Google Scholar
Mendioroz, M, Fernandez-Cadenas, I, Del Rio-Espinola, A, et al. A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 2010;75:20332035.Google Scholar
Yanagawa, S, Ito, N, Arima, K, Ikeda, S. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 2002;58:817820.Google Scholar
Bianchi, S, Di Palma, C, Gallus, GN, et al. Two novel HTRA1 mutations in a European CARASIL patient. Neurology 2014;82:898900.Google Scholar
Nozaki, H, Nishizawa, M, Onodera, O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2014;45:34473453.Google Scholar
Fukutake, T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): From discovery to gene identification. J Stroke Cerebrovasc Dis 2011;20:8593.Google Scholar
Fukutake, T, Hirayama, K. Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension. Eur Neurol 1995;35:6979.Google Scholar
Terwindt, GM, Haan, J, Ophoff, RA, et al. Clinical and genetic analysis of a large Dutch family with autosomal dominant vascular retinopathy, migraine and Raynaud’s phenomenon. Brain 1998;121(Pt 2):303316.Google Scholar
Grand, MG, Kaine, J, Fulling, K, et al. Cerebroretinal vasculopathy. A new hereditary syndrome. Ophthalmology 1988;95:649659.Google Scholar
Jen, J, Cohen, AH, Yue, Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology 1997;49:13221330.Google Scholar
Richards, A, van den Maagdenberg, AM, Jen, JC, et al. C-terminal truncations in human 3‘-5‘ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 2007;39:10681070.Google Scholar
Stuart, MJ, Nagel, RL. Sickle-cell disease. Lancet 2004;364:13431360.Google Scholar
Howard, J, Davies, SC. Sickle cell disease in North Europe. Scand J Clin Lab Invest 2007;67:2738.Google Scholar
Rees, DC, Williams, TN, Gladwin, MT. Sickle-cell disease. Lancet 2010;376:20182031.Google Scholar
Ohene-Frempong, K, Weiner, SJ, Sleeper, LA, et al. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood 1998;91:288294.Google Scholar
Bernaudin, F, Verlhac, S, Arnaud, C, et al. Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood 2011;117:11301140.Google Scholar
Switzer, JA, Hess, DC, Nichols, FT, Adams, RJ. Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. Lancet Neurol 2006;5:501512.Google Scholar
Kossorotoff, M, Brousse, V, Grevent, D, et al. Cerebral haemorrhagic risk in children with sickle-cell disease. Dev Med Child Neurol 2015;57:187193.Google Scholar
Fullerton, HJ, Adams, RJ, Zhao, S, Johnston, SC. Declining stroke rates in Californian children with sickle cell disease. Blood 2004;104:336339.Google Scholar
Adams, RJ, McKie, VC, Hsu, L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998;339:511.Google Scholar
Verduzco, LA, Nathan, DG. Sickle cell disease and stroke. Blood 2009;114:51175125.Google Scholar
Gaustadnes, M, Ingerslev, J, Rutiger, N. Prevalence of congenital homocystinuria in Denmark. N Engl J Med 1999;340:1513.Google Scholar
Mudd, SH, Skovby, F, Levy, HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 1985;37:131.Google Scholar
Welch, GN, Loscalzo, J. Homocysteine and atherothrombosis. N Engl J Med 1998;338:10421050.Google Scholar
Bellamy, MF, McDowell, IF. Putative mechanisms for vascular damage by homocysteine. J Inherit Metab Dis 1997;20:307315.Google Scholar
Kelly, PJ, Furie, KL, Kistler, JP, et al. Stroke in young patients with hyperhomocysteinemia due to cystathionine beta-synthase deficiency. Neurology 2003;60:275279.Google Scholar
Germain, DP. Fabry disease. Orphanet J Rare Dis 2010;5:30.Google Scholar
Rolfs, A, Bottcher, T, Zschiesche, M, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: A prospective study. Lancet 2005;366:17941796.Google Scholar
Sarikaya, H, Yilmaz, M, Michael, N, Miserez, AR, Steinmann, B, Baumgartner, RW. Zurich Fabry study – prevalence of Fabry disease in young patients with first cryptogenic ischaemic stroke or TIA. Eur J Neurol 2012;19:14211426.Google Scholar
Wozniak, MA, Kittner, SJ, Tuhrim, S, et al. Frequency of unrecognized Fabry disease among young European-American and African-American men with first ischemic stroke. Stroke 2010;41:7881.Google Scholar
Brouns, R, Sheorajpanday, R, Braxel, E, et al. Middelheim Fabry Study (MiFaS): A retrospective Belgian study on the prevalence of Fabry disease in young patients with cryptogenic stroke. Clin Neurol Neurosurg 2007;109:479484.Google Scholar
Rolfs, A, Fazekas, F, Grittner, U, et al. Acute cerebrovascular disease in the young: The Stroke in Young Fabry Patients Study. Stroke 2013;44:340349.Google Scholar
Sims, K, Politei, J, Banikazemi, M, Lee, P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: Natural history data from the Fabry Registry. Stroke 2009;40:788794.Google Scholar
Kolodny, E, Fellgiebel, A, Hilz, MJ, et al. Cerebrovascular involvement in Fabry disease: Current status of knowledge. Stroke 2015;46:302313.Google Scholar
Nakamura, K, Sekijima, Y, Hattori, K, et al. Cerebral hemorrhage in Fabry’s disease. J Hum Genet 2010;55:259261.Google Scholar
Crutchfield, KE, Patronas, NJ, Dambrosia, JM, et al. Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 1998;50:17461749.Google Scholar
Fellgiebel, A, Keller, I, Martus, P, et al. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. Cerebrovasc Dis 2011;31:294299.Google Scholar
Zarate, YA, Hopkin, RJ. Fabry’s disease. Lancet 2008;372:14271435.Google Scholar
Schiffmann, R, Kopp, JB, Austin, HA 3rd, et al. Enzyme replacement therapy in Fabry disease: A randomized controlled trial. JAMA 2001;285:27432749.Google Scholar
Vanakker, OM, Leroy, BP, Coucke, P, et al. Novel clinico-molecular insights in pseudoxanthoma elasticum provide an efficient molecular screening method and a comprehensive diagnostic flowchart. Hum Mutat 2008;29:205.Google Scholar
Debette, S, Germain, DP. Neurologic manifestations of inherited disorders of connective tissue. Handb Clin Neurol 2014;119:565576.Google Scholar
van den Berg, JS, Hennekam, RC, Cruysberg, JR, et al. Prevalence of symptomatic intracranial aneurysm and ischaemic stroke in pseudoxanthoma elasticum. Cerebrovasc Dis 2000;10:315319.Google Scholar
Germain, DP, Boutouyrie, P, Laloux, B, Laurent, S. Arterial remodeling and stiffness in patients with pseudoxanthoma elasticum. Arterioscler Thromb Vasc Biol 2003;23:836841.Google Scholar
Dalloz, MA, Debs, R, Bensa, C, Alamowitch, S. [White matter lesions leading to the diagnosis of pseudoxanthoma elasticum]. Rev Neurol (Paris);166:844848.Google Scholar
Renard, D, Castelnovo, G, Jeanjean, L, Perrochia, H, Brunel, H, Labauge, P. Teaching neuroimage: Microangiopathic complications in pseudoxanthoma elasticum. Neurology 2008;71:e69.Google Scholar
Pavlovic, AM, Zidverc-Trajkovic, J, Milovic, MM, et al. Cerebral small vessel disease in pseudoxanthoma elasticum: Three cases. Can J Neurol Sci 2005;32:115118.Google Scholar
Neldner, KH. Pseudoxanthoma elasticum. Clin Dermatol 1988;6:1159.Google Scholar
De Paepe, A, Viljoen, D, Matton, M, et al. Pseudoxanthoma elasticum: Similar autosomal recessive subtype in Belgian and Afrikaner families. Am J Med Genet 1991;38:1620.Google Scholar
Uitto, J, Li, Q, Jiang, Q. Pseudoxanthoma elasticum: Molecular genetics and putative pathomechanisms. J Invest Dermatol;130:661670.Google Scholar
Germain, DP. Ehlers–Danlos syndrome type IV. Orphanet J Rare Dis 2007;2:32.Google Scholar
Beighton, P, De Paepe, A, Steinmann, B, Tsipouras, P, Wenstrup, RJ. Ehlers–Danlos syndromes: Revised nosology, Villefranche, 1997. Ehlers–Danlos National Foundation (USA) and Ehlers–Danlos Support Group (UK). Am J Med Genet 1998;77:3137.Google Scholar
Pepin, M, Schwarze, U, Superti-Furga, A, Byers, PH. Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. N Engl J Med 2000;342:673680.Google Scholar
North, KN, Whiteman, DA, Pepin, MG, Byers, PH. Cerebrovascular complications in Ehlers–Danlos syndrome type IV. Ann Neurol 1995;38:960964.Google Scholar
Debette, S, Goeggel Simonetti, B, Schilling, S, et al. Familial occurrence and heritable connective tissue disorders in cervical artery dissection. Neurology 2014;83:20232031.Google Scholar
Arnold, M, Bousser, M-G, Fahrni, G, et al. Vertebral artery dissection: Presenting findings and predictors of outcome. Stroke 2006;37:24992503.Google Scholar
Leys, D, Moulin, T, Stojkovic, T, Begey, S, Chavot, D, DONALD Investigators. Follow-up of patients with history of cervical artery dissection. Cerebrovasc Dis 1995;5:4349.Google Scholar
Schievink, WI, Mokri, B, O’Fallon, WM. Recurrent spontaneous cervical-artery dissection. N Engl J Med 1994;330:393397.Google Scholar
Beletsky, V, Nadareishvili, Z, Lynch, J, Shuaib, A, Woolfenden, A, Norris, JW. Cervical arterial dissection: Time for a therapeutic trial? Stroke 2003;34:28562860.Google Scholar
Touze, E, Gauvrit, JY, Moulin, T, Meder, JF, Bracard, S, Mas, JL. Risk of stroke and recurrent dissection after a cervical artery dissection: A multicenter study. Neurology 2003;61:13471351.Google Scholar
Arnold, M, Kappeler, L, Georgiadis, D, et al. Gender differences in spontaneous cervical artery dissection. Neurology 2006;67:10501052.Google Scholar
Debette, S, Leys, D. Cervical-artery dissections: Predisposing factors, diagnosis, and outcome. Lancet Neurol 2009;8:668678.Google Scholar
Engelter, ST, Brandt, T, Debette, S, et al. Antiplatelets versus anticoagulation in cervical artery dissection. Stroke 2007;38:26052611.Google Scholar
Schievink, WI, Limburg, M, Oorthuys, JW, Fleury, P, Pope, FM. Cerebrovascular disease in Ehlers–Danlos syndrome type IV. Stroke 1990;21:626632.Google Scholar
Ong, KT, Perdu, J, De Backer, J, et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers–Danlos syndrome: A prospective randomised, open, blinded-endpoints trial. Lancet 2010;376:14761484.Google Scholar
Gray, JR, Bridges, AB, West, RR, et al. Life expectancy in British Marfan syndrome populations. Clin Genet 1998;54:124128.Google Scholar
Schievink, WI, Michels, VV, Piepgras, DG. Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke 1994;25:889903.Google Scholar
Wityk, RJ, Zanferrari, C, Oppenheimer, S. Neurovascular complications of Marfan syndrome: A retrospective, hospital-based study. Stroke 2002;33:680684.Google Scholar
Ho, NC, Tran, JR, Bektas, A. Marfan’s syndrome. Lancet 2005;366:19781981.Google Scholar
Lynch, DR, Dawson, TM, Raps, EC, Galetta, SL. Risk factors for the neurologic complications associated with aortic aneurysms. Arch Neurol 1992;49:284288.Google Scholar
Spittell, PC, Spittell, JA Jr., Joyce, JW, et al. Clinical features and differential diagnosis of aortic dissection: Experience with 236 cases (1980 through 1990). Mayo Clin Proc 1993;68:642651.Google Scholar
Bonnin, P, Giannesini, C, Amah, G, Kevorkian, JP, Woimant, F, Levy, BI. Doppler sonograpy with dynamic testing in a case of aortic dissection extending to the innominate and right common carotid arteries. Neuroradiology 2003;45:472475.Google Scholar
Youl, BD, Coutellier, A, Dubois, B, Leger, JM, Bousser, M-G. Three cases of spontaneous extracranial vertebral artery dissection. Stroke 1990;21:618625.Google Scholar
Schievink, WI, Bjornsson, J, Piepgras, DG. Coexistence of fibromuscular dysplasia and cystic medial necrosis in a patient with Marfan’s syndrome and bilateral carotid artery dissections. Stroke 1994;25:24922496.Google Scholar
Harrer, JU, Sasse, A, Klotzsch, C. Intimal flap in a common carotid artery in a patient with Marfan’s syndrome. Ultraschall Med 2006;27:487488.Google Scholar
Loeys, BL, Dietz, HC, Braverman, AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet 2010;47:476485.Google Scholar
Majamaa, K, Moilanen, JS, Uimonen, S, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes: Prevalence of the mutation in an adult population. Am J Hum Genet 1998;63:447454.Google Scholar
Testai, FD, Gorelick, PB. Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Arch Neurol 2010;67:1924.Google Scholar
Sproule, DM, Kaufmann, P. Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: Basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 2008;1142:133158.Google Scholar
Ito, H, Mori, K, Kagami, S. Neuroimaging of stroke-like episodes in MELAS. Brain Dev 2011;33:283288.Google Scholar
Yoneda, M, Maeda, M, Kimura, H, Fujii, A, Katayama, K, Kuriyama, M. Vasogenic edema on MELAS: A serial study with diffusion-weighted MR imaging. Neurology 1999;53:21822184.Google Scholar
Thambisetty, M, Newman, NJ, Glass, JD, Frankel, MR. A practical approach to the diagnosis and management of MELAS: Case report and review. Neurologist 2002;8:302312.Google Scholar
Rodriguez, MC, MacDonald, JR, Mahoney, DJ, Parise, G, Beal, MF, Tarnopolsky, MA. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 2007;35:235242.Google Scholar
Napolitano, A, Salvetti, S, Vista, M, Lombardi, V, Siciliano, G, Giraldi, C. Long-term treatment with idebenone and riboflavin in a patient with MELAS. Neurol Sci 2000;21:S981982.Google Scholar
Koga, Y, Povalko, N, Nishioka, J, Katayama, K, Kakimoto, N, Matsuishi, T. MELAS and L-arginine therapy: Pathophysiology of stroke-like episodes. Ann N Y Acad Sci 2010;1201:104110.Google Scholar
Biffi, A, Greenberg, SM. Cerebral amyloid angiopathy: A systematic review. J Clin Neurol 2011;7:19.Google Scholar
De Jonghe, C, Zehr, C, Yager, D, et al. Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis 1998;5:281286.Google Scholar
Bornebroek, M, De Jonghe, C, Haan, J, et al. Hereditary cerebral hemorrhage with amyloidosis Dutch type (AbetaPP 693): Decreased plasma amyloid-beta 42 concentration. Neurobiol Dis 2003;14:619623.Google Scholar
Palsdottir, A, Snorradottir, AO, Thorsteinsson, L. Hereditary cystatin C amyloid angiopathy: Genetic, clinical, and pathological aspects. Brain Pathol 2006;16:5559.Google Scholar
Van Nostrand, WE, Melchor, JP, Cho, HS, Greenberg, SM, Rebeck, GW. Pathogenic effects of D23N Iowa mutant amyloid beta-protein. J Biol Chem 2001;276:3286032866.Google Scholar
Viswanathan, A, Greenberg, SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011;70:871880.Google Scholar
Greenberg, SM, O’Donnell, HC, Schaefer, PW, Kraft, E. MRI detection of new hemorrhages: Potential marker of progression in cerebral amyloid angiopathy. Neurology 1999;53:11351138.Google Scholar
Knudsen, KA, Rosand, J, Karluk, D, Greenberg, SM. Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston criteria. Neurology 2001;56:537539.Google Scholar
Gould, DB, Phalan, FC, Breedveld, GJ, et al. Mutations in COL4A1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:11671171.Google Scholar
Vahedi, K, Massin, P, Guichard, JP, et al. Hereditary infantile hemiparesis, retinal arteriolar tortuosity, and leukoencephalopathy. Neurology 2003;60:5763.Google Scholar
Sibon, I, Coupry, I, Menegon, P, et al. COL4A1 mutation in Axenfeld–Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol 2007;62:177184.Google Scholar
Plaisier, E, Alamowitch, S, Gribouval, O, et al. Autosomal-dominant familial hematuria with retinal arteriolar tortuosity and contractures: A novel syndrome. Kidney Int 2005;67:23542360.Google Scholar
Vahedi, K, Alamowitch, S. Clinical spectrum of type IV collagen (COL4A1) mutations: A novel genetic multisystem disease. Curr Opin Neurol 2011;24:6368.Google Scholar
Vahedi, K, Boukobza, M, Massin, P, Gould, DB, Tournier-Lasserve, E, Bousser, M-G. Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 2007;69:15641568.Google Scholar
Lanfranconi, S, Markus, HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: A systematic review. Stroke 2010;41:e513518.Google Scholar
Gould, DB, Phalan, FC, van Mil, SE, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006;354:14891496.Google Scholar
Rauch, F, Glorieux, FH. Osteogenesis imperfecta. Lancet 2004;363:13771385.Google Scholar
Prockop, DJ, Kivirikko, KI. Heritable diseases of collagen. N Engl J Med 1984;311:376386.Google Scholar
Goddeau, RP Jr, Caplan, LR, Alhazzani, AA. Intraparenchymal hemorrhage in a patient with osteogenesis imperfecta and plasminogen activator inhibitor-1 deficiency. Arch Neurol 2010;67:236238.Google Scholar
Martin, JJ, Hausser, I, Lyrer, P, et al. Familial cervical artery dissections: Clinical, morphologic, and genetic studies. Stroke 2006;37:29242929.Google Scholar
Caplan, LR, Gonzales, G, Buonanno, FS. Case 18 – A 35-year old man with neck pain, hoarseness and dysphagia. N Engl J Med 2012;366:23062313.Google Scholar
Bak, S, Gaist, D, Sindrup, SH, Skytthe, A, Christensen, K. Genetic liability in stroke: A long-term follow-up study of Danish twins. Stroke 2002;33:769774.Google Scholar
Kiely, DK, Wolf, PA, Cupples, LA, Beiser, AS, Myers, RH. Familial aggregation of stroke. The Framingham Study. Stroke 1993;24:13661371.Google Scholar
Liao, D, Myers, R, Hunt, S, et al. Familial history of stroke and stroke risk. The Family Heart Study. Stroke 1997;28:19081912.Google Scholar
Jood, K, Ladenvall, C, Rosengren, A, Blomstrand, C, Jern, C. Family history in ischemic stroke before 70 years of age: The Sahlgrenska Academy Study on Ischemic Stroke. Stroke 2005;36:13831387.Google Scholar
Flossmann, E, Schulz, UG, Rothwell, PM. Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke 2004;35:212227.Google Scholar
Jerrard-Dunne, P, Cloud, G, Hassan, A, Markus, HS. Evaluating the genetic component of ischemic stroke subtypes: A family history study. Stroke 2003;34:13641369.Google Scholar
Polychronopoulos, P, Gioldasis, G, Ellul, J, et al. Family history of stroke in stroke types and subtypes. J Neurol Sci 2002;195:117122.Google Scholar
Lee, TH, Hsu, WC, Chen, CJ, Chen, ST. Etiologic study of young ischemic stroke in Taiwan. Stroke 2002;33:19501955.Google Scholar
Yang, J, Benyamin, B, McEvoy, BP, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010;42:565569.Google Scholar
Bevan, S, Traylor, M, Adib-Samii, P, et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke 2012;43:31613167.Google Scholar
Devan, WJ, Falcone, GJ, Anderson, CD, et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 2013;44:15781583.Google Scholar
Hassan, A, Markus, HS. Genetics and ischaemic stroke. Brain 2000;123(Pt 9):17841812.Google Scholar
Zondervan, KT, Cardon, LR. Designing candidate gene and genome-wide case-control association studies. Nat Protoc 2007;2:24922501.Google Scholar
Zeggini, E, Scott, LJ, Saxena, R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638645.Google Scholar
Traylor, M, Makela, KM, Kilarski, LL, et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet 2014;10:e1004469.Google Scholar
Traylor, M, Farrall, M, Holliday, EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): A meta-analysis of genome-wide association studies. Lancet Neurol 2012;11:951962.Google Scholar
Woo, D, Falcone, GJ, Devan, WJ, et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet 2014;94:511521.Google Scholar
Bellenguez, C, Bevan, S, Gschwendtner, A, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet 2012;44:328333.Google Scholar
Holliday, EG, Maguire, JM, Evans, TJ, et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet 2012;44:11471151.Google Scholar
Kilarski, LL, Achterberg, S, Devan, WJ, et al. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology 2014;83:678685.Google Scholar
Ikram, MA, Seshadri, S, Bis, JC, et al. Genomewide association studies of stroke. N Engl J Med 2009;360:17181728.Google Scholar
Hirschhorn, JN, Lohmueller, K, Byrne, E, Hirschhorn, K. A comprehensive review of genetic association studies. Genet Med 2002;4:4561.Google Scholar
Feero, WG, Guttmacher, AE, Collins, FS. Genomic medicine – An updated primer. N Engl J Med 2010;362:20012011.Google Scholar
McCarthy, MI, Abecasis, GR, Cardon, LR, et al. Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nat Rev Genet 2008;9:356369.Google Scholar
Biffi, A, Sonni, A, Anderson, CD, et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol 2010;68:934943.Google Scholar
Holliday, EG, Traylor, M, Malik, R, et al. Genetic overlap between diagnostic subtypes of ischemic stroke. Stroke 2015;46:615619.Google Scholar
Battey, TW, Valant, V, Kassis, SB, et al. Recommendations from the International Stroke Genetics Consortium, part 2: Biological sample collection and storage. Stroke 2015;46:285290.Google Scholar
Majersik, JJ, Cole, JW, Golledge, J, et al. Recommendations from the International Stroke Genetics Consortium, part 1: Standardized phenotypic data collection. Stroke 2015;46:279284.Google Scholar
Psaty, BM, O’Donnell, CJ, Gudnason, V, et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2009;2:273280.Google Scholar
Gretarsdottir, S, Thorleifsson, G, Manolescu, A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol 2008;64:402409.Google Scholar
Lemmens, R, Buysschaert, I, Geelen, V, et al. The association of the 4q25 susceptibility variant for atrial fibrillation with stroke is limited to stroke of cardioembolic etiology. Stroke 2010;41:18501857.Google Scholar
Gudbjartsson, DF, Holm, H, Gretarsdottir, S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet 2009;41:876878.Google Scholar
Deloukas, P, Kanoni, S, Willenborg, C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013;45:2533.Google Scholar
Azghandi, S, Prell, C, van der Laan, SW, et al. Deficiency of the stroke relevant HDAC9 gene attenuates atherosclerosis in accord with allele-specific effects at 7p21.1. Stroke 2015;46:197202.Google Scholar
Cheng, YC, Cole, JW, Kittner, SJ, Mitchell, BD. Genetics of ischemic stroke in young adults. Circ Cardiovasc Genet 2014;7:383392.Google Scholar
Gschwendtner, A, Bevan, S, Cole, JW, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol 2009;65:531539.Google Scholar
Williams, FM, Carter, AM, Hysi, PG, et al. Ischemic stroke is associated with the ABO locus: The EuroCLOT study. Ann Neurol 2013;73:1631.Google Scholar
McArdle, PF, Kittner, SJ, Ay, H, et al. Agreement between TOAST and CCS ischemic stroke classification: The NINDS SiGN study. Neurology 2014;83:16531660.Google Scholar
Wu, L, Shen, Y, Liu, X, et al. The 1425G/A SNP in PRKCH is associated with ischemic stroke and cerebral hemorrhage in a Chinese population. Stroke 2009;40:29732976.Google Scholar
Serizawa, M, Nabika, T, Ochiai, Y, et al. Association between PRKCH gene polymorphisms and subcortical silent brain infarction. Atherosclerosis 2008;199:340345.Google Scholar
Kubo, M, Hata, J, Ninomiya, T, et al. A nonsynonymous SNP in PRKCH (protein kinase Ceta) increases the risk of cerebral infarction. Nat Genet 2007;39:212217.Google Scholar
International Stroke Genetics Consortium, Wellcome Trust Case-Control Consortium 2. Failure to validate association between 12p13 variants and ischemic stroke. N Engl J Med 2010;362:15471550.Google Scholar
Bis, JC, DeStefano, A, Liu, X, et al. Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium. PLoS One 2014;9:e99798.Google Scholar
Debette, S, Kamatani, Y, Metso, TM, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet 2015;47:7883.Google Scholar
Anttila, V, Winsvold, BS, Gormley, P, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet 2013;45:912917.Google Scholar
Rannikmae, K, Kalaria, RN, Greenberg, SM, et al. APOE associations with severe CAA-associated vasculopathic changes: Collaborative meta-analysis. J Neurol Neurosurg Psychiatry 2014;85:300305.Google Scholar
Biffi, A, Anderson, CD, Jagiella, JM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: A genetic association study. Lancet Neurol 2011;10:702709.Google Scholar
Rannikmae, K, Davies, G, Thomson, PA, et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology 2015;84:918926.Google Scholar
Weng, YC, Sonni, A, Labelle-Dumais, C, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol 2012;71:470477.Google Scholar
Verhaaren, BF, Debette, S, Bis, JC, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet 2015;8:398409.Google Scholar
Fornage, M, Debette, S, Bis, JC, et al. Genome-wide association studies of cerebral white matter lesion burden: The CHARGE consortium. Ann Neurol 2011;69:928939.Google Scholar
Lambert, JC, Ibrahim-Verbaas, CA, Harold, D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013;45:14521458.Google Scholar
Eichler, EE, Flint, J, Gibson, G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446450.Google Scholar
Panoutsopoulou, K, Tachmazidou, I, Zeggini, E. In search of low-frequency and rare variants affecting complex traits. Hum Mol Genet 2013;22:R1621.Google Scholar
Kiezun, A, Garimella, K, Do, R, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet 2012;44:623630.Google Scholar
Sivakumaran, S, Agakov, F, Theodoratou, E, et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 2011;89:607618.Google Scholar
Dichgans, M, Malik, R, Konig, IR, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: A genome-wide analysis of common variants. Stroke 2014;45:2436.Google Scholar

References

Caplan, LR. Evidence based medicine: Concerns of a clinical neurologist. J Neurol Neurosurg Psychiatry. 2001;71:569574Google Scholar
Thibault, GE. Too old for what? N Engl J Med. 1993;328:946950Google Scholar
Caplan, LR. Reperfusion of ischemic brain: Why and why not? In Hacke GDZ, W, Hirschberg, M, eds. Thrombolytic therapy in acute ischemic stroke. Berlin: Springer; 1991:3645Google Scholar
Pan, J, Konstas, A-A, Bateman, B, Ortolano, G, Pile-Spellman, J. Reperfusion injury following cerebral ischemia: Pathophysiology, MR imaging, and potential therapies. Neuroradiology. 2007;49:93102Google Scholar
Albers, GW, Thijs, VN, Wechsler, L, Kemp, S, Schlaug, G, Skalabrin, E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: The diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60:508517Google Scholar
Caplan, LR. Are terms such as completed stroke or RIND of continued usefulness? Stroke. 1983;14:431433Google Scholar
Caplan, LR. TIAs: We need to return to the question, “What is wrong with Mr Jones?” Neurology. 1988;38:791793Google Scholar
Cebul, RD, Snow, RJ, Pine, R, Hertzer, NR, Norris, DG. Indications, outcomes, and provider volumes for carotid endarterectomy. JAMA. 1998;279:12821287Google Scholar
Wennberg, DE, Lucas, FL, Birkmeyer, JD, Bredenberg, CE, Fisher, ES. Variation in carotid endarterectomy mortality in the medicare population: Trial hospitals, volume, and patient characteristics. JAMA. 1998;279:12781281Google Scholar
Robinson, RG, Spalletta, G. Poststroke depression: A review. Can J Psychiatry. 2010;55:341349Google Scholar
Robinson, RG, Lipsey, JR, Price, TR. Diagnosis and clinical management of post-stroke depression. Psychosomatics. 1985;26:769772, 775768Google Scholar
Alberts, MJ, Hademenos, G, Latchaw, RE, Jagoda, A, Marler, JR, Mayberg, MR, et al. Recommendations for the establishment of primary stroke centers. Brain attack coalition. JAMA. 2000;283:31023109Google Scholar
Alberts, MJ, Latchaw, RE, Selman, WR, Shephard, T, Hadley, MN, Brass, LM, et al. Recommendations for comprehensive stroke centers: A consensus statement from the brain attack coalition. Stroke. 2005;36:15971616Google Scholar
Song, S, Saver, J. Growth of regional acute stroke systems of care in the United States in the first decade of the 21st century. Stroke. 2012;43:19751978Google Scholar
Indredavik, B, Slordahl, SA, Bakke, F, Rokseth, R, Haheim, LL. Stroke unit treatment. Long-term effects. Stroke. 1997;28:18611866Google Scholar
Diez-Tejedor, E, Fuentes, B. Acute care in stroke: Do stroke units make the difference? Cerebrovasc Dis. 2001;11 Suppl 1:3139Google Scholar
Birbeck, GL, Zingmond, DS, Cui, X, Vickrey, BG. Multispecialty stroke services in California hospitals are associated with reduced mortality. Neurology. 2006;66:15271532Google Scholar
Leys, D, Ringelstein, EB, Kaste, M, Hacke, W. The main components of stroke unit care: Results of a European expert survey. Cerebrovasc Dis. 2007;23:344352Google Scholar
Candelise, L, Gattinoni, M, Bersano, A, Micieli, G, Sterzi, R, Morabito, A. Stroke-unit care for acute stroke patients: An observational follow-up study. Lancet. 2007;369:299305Google Scholar
Stroke Unit Trialists’ Collaboration. Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst Rev. 2013;9: CD000197Google Scholar
Indredavik, B, Bakke, F, Solberg, R, Rokseth, R, Haaheim, LL, Holme, I. Benefit of a stroke unit: A randomized controlled trial. Stroke. 1991;22:10261031Google Scholar
Stroke Unit Trialists’ Collaboration. Collaborative systematic review of the randomised trials of organised inpatient (stroke unit) care after stroke. BMJ. 1997;314:11511159Google Scholar
Stroke Unit Trialists’ Collaboration. How do stroke units improve patient outcomes? A collaborative systematic review of the randomized trials. Stroke. 1997;28:21392144Google Scholar
Xian, Y, Holloway, RG, Chan, PS, Noyes, K, Shah, MN, Ting, HH, et al. Association between stroke center hospitalization for acute ischemic stroke and mortality. JAMA. 2011;305:373380Google Scholar
Caplan, LR, Sergay, S. Positional cerebral ischaemia. J Neurol Neurosurg Psychiatry. 1976;39:385391Google Scholar
Toole, JF. Effects of change of head, limb and body position on cephalic circulation. N Engl J Med. 1968;279:307311Google Scholar
Wojner-Alexander, AW, Garami, Z, Chernyshev, OY, Alexandrov, AV. Heads down: Flat positioning improves blood flow velocity in acute ischemic stroke. Neurology. 2005;64:13541357Google Scholar
Favilla, CG, Mesquita, RC, Mullen, M, Durduran, T, Lu, X, Kim, MN, et al. Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation. Stroke. 2014;45:12691274Google Scholar
Rordorf, G, Cramer, SC, Efird, JT, Schwamm, LH, Buonanno, F, Koroshetz, WJ. Pharmacological elevation of blood pressure in acute stroke. Clinical effects and safety. Stroke. 1997;28:21332138Google Scholar
Hillis, AE, Ulatowski, JA, Barker, PB, Torbey, M, Ziai, W, Beauchamp, NJ, et al. A pilot randomized trial of induced blood pressure elevation: Effects on function and focal perfusion in acute and subacute stroke. Cerebrovasc Dis. 2003;16:236246Google Scholar
Chalela, JA, Dunn, B, Todd, JW, Warach, S. Induced hypertension improves cerebral blood flow in acute ischemic stroke. Neurology. 2005;64:1979Google Scholar
Hillis, AE, Kane, A, Tuffiash, E, Ulatowski, JA, Barker, PB, Beauchamp, NJ, et al. Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke. Brain Lang. 2001;79:495510Google Scholar
Lehv, MS, Salzman, EW, Silen, W. Hypertension complicating carotid endarterectomy. Stroke. 1970;1:307313Google Scholar
Holton, P, Wood, JB. The effects of bilateral removal of the carotid bodies and denervation of the carotid sinuses in two human subjects. J Physiol. 1965;181:365378Google Scholar
Breen, JC, Caplan, LR, DeWitt, LD, Belkin, M, Mackey, WC, O’Donnell, TP. Brain edema after carotid surgery. Neurology. 1996;46:175181Google Scholar
Caplan, LR, Skillman, J, Ojemann, R, Fields, WS. Intracerebral hemorrhage following carotid endarterectomy: A hypertensive complication? Stroke. 1978;9:457460Google Scholar
Ogasawara, K, Sakai, N, Kuroiwa, T, Hosoda, K, Iihara, K, Toyoda, K, et al. Intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: Retrospective review of 4494 patients. Journal of Neurosurgery. 2007;107:11301136Google Scholar
North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445453Google Scholar
European Carotid Surgery Trialists’ Collaborative Group. MRC European Carotid Surgery Trial: Interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet. 1991;337:12351243Google Scholar
Brott, TG, Halperin, JL, Abbara, S, Bacharach, JM, Barr, JD, Bush, RL, et al. ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the management of patients with extracranial carotid and vertebral artery disease: Executive summary. Circulation. 2011;124:489532Google Scholar
Barnett, HJ, Taylor, DW, Eliasziw, M, Fox, AJ, Ferguson, GG, Haynes, RB, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial collaborators. N Engl J Med. 1998;339:14151425Google Scholar
European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet. 1998;351:13791387Google Scholar
Spetzler, RF, Hadley, MN, Martin, NA, Hopkins, LN, Carter, LP, Budny, J. Vertebrobasilar insufficiency. Part 1: Microsurgical treatment of extracranial vertebrobasilar disease. J Neurosurg. 1987;66:648661Google Scholar
Kieffer, E, Koskas, F, Bahnini, A, et al. Long-term results after reconstruction of the cervical vertebral artery. In Caplan, LR, Shifrin, EG, Nicolaides, AN, Moore, WS, eds. Cerebrovascular Ischaemia – Investigation and Management. London: Med-Orion; 1996: 617625Google Scholar
Berguer, R, Flynn, LM, Kline, RA, Caplan, LR. Surgical reconstruction of the extracranial vertebral artery: Management and outcome. J Vasc Surg. 2000;31:918Google Scholar
Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995;273:14211428Google Scholar
Halliday, A, Mansfield, A, Marro, J, Peto, C, Peto, R, Potter, J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet. 2004;363:14911502Google Scholar
Hopkins, LN, Martin, NA, Hadley, MN, Spetzler, RF, Budny, J, Carter, LP. Vertebrobasilar insufficiency. Part 2. Microsurgical treatment of intracranial vertebrobasilar disease. J Neurosurg. 1987;66:662674Google Scholar
Ausman, JI, Diaz, FG, Pearce, JE, de los Reyes, RA, Leuchter, W, Mehta, B, et al. Endarterectomy of the vertebral artery from C2 to posterior inferior cerebellar artery intracranially. Surg Neurol. 1982;18:400404Google Scholar
Meyer, FB, Piepgras, DG, Sundt, TM Jr., Yanagihara, T. Emergency embolectomy for acute occlusion of the middle cerebral artery. J Neurosurg. 1985;62:639647Google Scholar
Kerber, C W, Cromwell, L D, Loehden, O L. Catheter dilatation of proximal carotid stenosis during distal bifurcation endarterectomy. AJNR Am J Neuroradiol. 1980;1:348349Google Scholar
Kachel, R. Results of balloon angioplasty in the carotid arteries. J Endovasc Surg 1996;3:2230Google Scholar
Caplan, LR, Meyers, PM, Schumacher, HC. Angioplasty and stenting to treat occlusive vascular disease. Rev Neurol Dis. 2006;3:818Google Scholar
Wholey, MH, Wholey, M, Mathias, K, Roubin, GS, Diethrich, EB, Henry, M, et al. Global experience in cervical carotid artery stent placement. Catheter Cardiovasc Interv. 2000;50:160167Google Scholar
Roubin, GS, New, G, Iyer, SS, Vitek, JJ, Al-Mubarak, N, Liu, MW, et al. Immediate and late clinical outcomes of carotid artery stenting in patients with symptomatic and asymptomatic carotid artery stenosis: A 5-year prospective analysis. Circulation. 2001;103:532537Google Scholar
Crawley, F, Clifton, A, Buckenham, T, Loosemore, T, Taylor, RS, Brown, MM. Comparison of hemodynamic cerebral ischemia and microembolic signals detected during carotid endarterectomy and carotid angioplasty. Stroke. 1997;28:24602464Google Scholar
Eckert, B, Thie, A, Valdueza, J, Zanella, F, Zeumer, H. Transcranial Doppler sonographic monitoring during percutaneous transluminal angioplasty of the internal carotid artery. Neuroradiology. 1997;39:229234Google Scholar
Markus, HS, Clifton, A, Buckenham, T, Brown, MM. Carotid angioplasty. Detection of embolic signals during and after the procedure. Stroke. 1994;25:24032406Google Scholar
McCleary, AJ, Nelson, M, Dearden, NM, Calvey, TA, Gough, MJ. Cerebral haemodynamics and embolization during carotid angioplasty in high-risk patients. Br J Surg. 1998;85:771774Google Scholar
Ribo, M, Molina, CA, Alvarez, B, Rubiera, M, Alvarez-Sabin, J, Matas, M. Transcranial Doppler monitoring of transcervical carotid stenting with flow reversal protection: A novel carotid revascularization technique. Stroke. 2006;37:28462849Google Scholar
Hofmann, R, Niessner, A, Kypta, A, Steinwender, C, Kammler, J, Kerschner, K, et al. Risk score for peri-interventional complications of carotid artery stenting. Stroke. 2006;37:25572561Google Scholar
Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVITAS): A randomised trial. Lancet. 2001;357:17291737Google Scholar
Brown, MM. Vascular Surgical Society of Great Britain and Ireland: Results of the Carotid and Vertebral Artery Transluminal Angioplasty Study. Br J Surg. 1999;86:710711Google Scholar
Coward, LJ, McCabe, DJ, Ederle, J, Featherstone, RL, Clifton, A, Brown, MM. Long-term outcome after angioplasty and stenting for symptomatic vertebral artery stenosis compared with medical treatment in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVITAS): A randomized trial. Stroke. 2007;38:15261530Google Scholar
Ederle, J, Bonati, LH, Dobson, J, Featherstone, RL, Gaines, PA, Beard, JD, et al. Endovascular treatment with angioplasty or stenting versus endarterectomy in patients with carotid artery stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVITAS): Long-term follow-up of a randomised trial. Lancet Neurol. 2009;8:898907Google Scholar
Bonati, LH, Ederle, J, McCabe, DJ, Dobson, J, Featherstone, RL, Gaines, PA, et al. Long-term risk of carotid restenosis in patients randomly assigned to endovascular treatment or endarterectomy in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): Long-term follow-up of a randomised trial. Lancet Neurol. 2009;8:908917Google Scholar
Yadav, JS, Wholey, MH, Kuntz, RE, Fayad, P, Katzen, BT, Mishkel, GJ, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med. 2004;351:14931501Google Scholar
Ringleb, PA, Allenberg, J, Bruckmann, H, Eckstein, HH, Fraedrich, G, Hartmann, M, et al. 30 day results from the space trial of stent-protected angioplasty versus carotid endarterectomy in symptomatic patients: A randomised non-inferiority trial. Lancet. 2006;368:12391247Google Scholar
Mas, JL, Chatellier, G, Beyssen, B, Branchereau, A, Moulin, T, Becquemin, JP, et al. Endarterectomy versus stenting in patients with symptomatic severe carotid stenosis. N Engl J Med. 2006;355:16601671Google Scholar
Qureshi, AI. Carotid angioplasty and stent placement after EVA-3S trial. Stroke. 2007;38:19931996Google Scholar
Brott, TG, Hobson, RW 2nd, Howard, G, Roubin, GS, Clark, WM, Brooks, W, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010;363:1123Google Scholar
Voeks, JH, Howard, G, Roubin, GS, Malas, MB, Cohen, DJ, Sternbergh, WC 3rd, et al. Age and outcomes after carotid stenting and endarterectomy: The Carotid Revascularization Endarterectomy Versus Stenting Trial. Stroke. 2011;42:34843490Google Scholar
Choi, JC, Johnston, C, Kim, AS. Early outcomes after carotid artery stenting compared with endarterectomy for asymptomatic carotid stenosis. Stroke 2015;46:120125Google Scholar
Hadjipetrou, P, Cox, S, Piemonte, T, Eisenhauer, A. Percutaneous revascularization of atherosclerotic obstruction of aortic arch vessels. J Am Coll Cardiol. 1999;33:12381245Google Scholar
Motarjeme, A. Percutaneous transluminal angioplasty of supra-aortic vessels. J Endovasc Surg. 1996;3:171181Google Scholar
Wada, T, Takayama, K, Taoka, T, Nakagawa, H, Myouchin, K, Miyasaka, T, et al. Long-term treatment outcomes after intravascular ultrasound evaluation and stent placement for atherosclerotic subclavian artery obstructive lesions. Neuroradiol J. 2014;27:213221Google Scholar
Henry, M, Amor, M, Henry, I, Ethevenot, G, Tzvetanov, K, Chati, Z. Percutaneous transluminal angioplasty of the subclavian arteries. J Endovasc Surg. 1999;6:3341Google Scholar
Schillinger, M, Haumer, M, Schillinger, S, Ahmadi, R, Minar, E. Risk stratification for subclavian artery angioplasty: Is there an increased rate of restenosis after stent implantation? J Endovasc Ther. 2001;8:550557Google Scholar
Chastain, HD 2nd, Campbell, MS, Iyer, S, Roubin, GS, Vitek, J, Mathur, A, et al. Extracranial vertebral artery stent placement: In-hospital and follow-up results. J Neurosurg. 1999;91:547552Google Scholar
Piotin, M, Spelle, L, Martin, JB, Weill, A, Rancurel, G, Ross, IB, et al. Percutaneous transluminal angioplasty and stenting of the proximal vertebral artery for symptomatic stenosis. AJNR Am J Neuroradiol. 2000;21:727731Google Scholar
Higashida, R, Tsai, F, Halbach, V, Dowd, C, Hieshima, G. Transluminal angioplasty, thrombolysis, and stenting for extracranial and intracranial cerebral vascular disease. Journal of Interventional Cardiology. 1996;9:245255Google Scholar
SSYLVIA Study Investigators. Stenting of symptomatic atherosclerotic lesions in the vertebral or intracranial arteries (SSYLVIA): Study results. Stroke. 2004;35:13881392Google Scholar
Edgell, RC, Zaidat, OO, Gupta, R, Abou-Chebl, A, Linfante, I, Xavier, A, et al. Multicenter study of safety in stenting for symptomatic vertebral artery origin stenosis: Results from the Society of Vascular and Interventional Neurology Research Consortium. Journal of Neuroimaging. 2013;23:170174Google Scholar
Meyers, PM, Schumacher, HC, Tanji, K, Higashida, RT, Caplan, LR. Use of stents to treat intracranial cerebrovascular disease. Annu Rev Med. 2007;58:107122Google Scholar
Higashida, R, Meyers, PM, Connors, JJ 3rd, Sacks, D, Strother, CM, Barr, JD, et al. Intracranial angioplasty and stenting for cerebral atherosclerosis: A position statement of the American Society of Interventional and Therapeutic Neuroradiology, Society of Interventional Radiology, and the American Society of Neuroradiology. J Vasc Interv Radiol. 2005;16:12811285Google Scholar
Gress, DR, Smith, WS, Dowd, CF, Van Halbach, V, Finley, RJ, Higashida, RT. Angioplasty for intracranial symptomatic vertebrobasilar ischemia. Neurosurgery. 2002;51:2327; discussion 2729Google Scholar
Marks, MP, Marcellus, M, Norbash, AM, Steinberg, GK, Tong, D, Albers, GW. Outcome of angioplasty for atherosclerotic intracranial stenosis. Stroke. 1999;30:10651069Google Scholar
Connors, JJ 3rd, Wojak, JC. Percutaneous transluminal angioplasty for intracranial atherosclerotic lesions: Evolution of technique and short-term results. J Neurosurg. 1999;91:415423Google Scholar
Takis, C, Kwan, ES, Pessin, MS, Jacobs, DH, Caplan, LR. Intracranial angioplasty: Experience and complications. AJNR Am J Neuroradiol. 1997;18:16611668Google Scholar
Gomez, CR, Misra, VK, Liu, MW, Wadlington, VR, Terry, JB, Tulyapronchote, R, et al. Elective stenting of symptomatic basilar artery stenosis. Stroke. 2000;31:9599Google Scholar
Yu, W, Smith, WS, Singh, V, Ko, NU, Cullen, SP, Dowd, CF, et al. Long-term outcome of endovascular stenting for symptomatic basilar artery stenosis. Neurology. 2005;64:10551057Google Scholar
Kessler, IM, Mounayer, C, Piotin, M, Spelle, L, Vanzin, JR, Moret, J. The use of balloon-expandable stents in the management of intracranial arterial diseases: A 5-year single-center experience. AJNR Am J Neuroradiol. 2005;26:23422348Google Scholar
Marks, MP, Marcellus, ML, Do, HM, Schraedley-Desmond, PK, Steinberg, GK, Tong, DC, et al. Intracranial angioplasty without stenting for symptomatic atherosclerotic stenosis: Long-term follow-up. AJNR Am J Neuroradiol. 2005;26:525530Google Scholar
Wojak, JC, Dunlap, DC, Hargrave, KR, DeAlvare, LA, Culbertson, HS, Connors, JJ 3rd. Intracranial angioplasty and stenting: Long-term results from a single center. AJNR Am J Neuroradiol. 2006;27:18821892Google Scholar
Henkes, H, Miloslavski, E, Lowens, S, Reinartz, J, Liebig, T, Kuhne, D. Treatment of intracranial atherosclerotic stenoses with balloon dilatation and self-expanding stent deployment (WingSpan). Neuroradiology. 2005;47:222228Google Scholar
Bose, A, Hartmann, M, Henkes, H, Liu, HM, Teng, MM, Szikora, I, et al. A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: The WingSpan study. Stroke. 2007;38:15311537Google Scholar
Fiorella, D, Levy, EI, Turk, AS, Albuquerque, FC, Niemann, DB, Aagaard-Kienitz, B, et al. US multicenter experience with the WingSpan stent system for the treatment of intracranial atheromatous disease: Periprocedural results. Stroke. 2007;38:881887Google Scholar
Chimowitz, MI, Lynn, MJ, Derdeyn, CP, Turan, TN, Fiorella, D, Lane, BF, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365:9931003Google Scholar
Derdeyn, CP, Chimowitz, MI, Lynn, MJ, Fiorella, D, Turan, TN, Janis, LS, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): The final results of a randomised trial. Lancet. 2014;383:333341Google Scholar
Zaidat, O. VISSIT trial final results. Sixth Annual Meeting of the Society of Vascular and Interventional Neurology. October 26–27, Houston, TX, 2013Google Scholar
Liebeskind, DS, Cotsonis, GA, Saver, JL, Lynn, MJ, Turan, TN, Cloft, HJ, et al. Collaterals dramatically alter stroke risk in intracranial atherosclerosis. Ann Neurol. 2011;69:963974Google Scholar
Montorsi, P, Galli, S, Ravagnani, PM, Trabattoni, D, Fabbiocchi, F, Lualdi, A, et al. Drug-eluting balloon for treatment of in-stent restenosis after carotid artery stenting: Preliminary report. J Endovasc Ther. 2012;19:734742Google Scholar
Vajda, Z, Aguilar, M, Göhringer, T, Horváth-Rizea, D, Bäzner, H, Henkes, H. Treatment of intracranial atherosclerotic disease with a balloon-expandable paclitaxel eluting stent. Clin Neuroradiol. 2012;22:227233Google Scholar
Gupta, R, Al-Ali, F, Thomas, AJ, Horowitz, MB, Barrow, T, Vora, NA, et al. Safety, feasibility, and short-term follow-up of drug-eluting stent placement in the intracranial and extracranial circulation. Stroke. 2006;37:25622566Google Scholar
Shuchman, M. Trading restenosis for thrombosis? New questions about drug-eluting stents. N Engl J Med. 2006;355:19491952Google Scholar
Collen, D. On the regulation and control of fibrinolysis. Edward Kowalski memorial lecture. Thromb Haemost. 1980;43:7789Google Scholar
Sloan, MA. Thrombolysis and stroke. Past and future. Arch Neurol. 1987;44:748768Google Scholar
del Zoppo, G, Hosomi, N. Mechanisms of thrombolysis. In Lyden, P, ed. Thrombolytic Therapy for Acute Stroke. Totowa, NJ: Humana Press; 2005:327Google Scholar
Meyer, JS, Gilroy, J, Barnhart, MI, Johnson, JF. Anticoagulants plus streptokinase therapy in progressive stroke. JAMA. 1964;189:373Google Scholar
Meyer, JS GJ, Barnhart, ME, Johnson, JF. Therapeutic thrombolysis in cerebral thromboembolism: Randomized evaluation of streptokinase. In Millikan, C, Whisnant, JP, eds. Cerebral Vascular Disease, Fourth Princeton Conference. New York, NY: Grune & Stratton; 1965:200213Google Scholar
Del Zoppo, GJ. Thrombolytic therapy in cerebrovascular disease. Stroke. 1988;19:11741179Google Scholar
Pessin, MS, del Zoppo, GJ, Furlan, AJ. Thrombolytic treatment in acute stroke: Review and update of selected topics. In Moskowitz, MA, Caplan, LR, eds. Cerebrovascular Diseases, 19th Princeton Conference, 1994. Boston, MA: Butterworth–Heinemann; 1995:409418Google Scholar
Caplan, LR. Caplan’s Stroke: A Clinical Approach. Boston, MA: Butterworth–Heinemann; 2000Google Scholar
Caplan, LR. Thrombolysis 2004: The good, the bad, and the ugly. Rev Neurol Dis. 2004;1:1626Google Scholar
Grond, M, Rudolf, J, Schmulling, S, Stenzel, C, Neveling, M, Heiss, WD. Early intravenous thrombolysis with recombinant tissue-type plasminogen activator in vertebrobasilar ischemic stroke. Arch Neurol. 1998;55:466469Google Scholar
Wardlaw, JM, Murray, V, Berge, E, Del Zoppo, GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2009:CD000213Google Scholar
Sandercock, P, Wardlaw, JM, Lindley, RI, Dennis, M, Cohen, G, Murray, G, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (The Third International Stroke Trial [IST-3]): A randomised controlled trial. Lancet. 2012;379:23522363Google Scholar
Hacke, W, Kaste, M, Fieschi, C, Toni, D, Lesaffre, E, von Kummer, R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:10171025Google Scholar
Fisher, M, Pessin, MS, Furian, AJ. ECASS: Lessons for future thrombolytic stroke trials. European Cooperative Acute Stroke Study. JAMA. 1995;274:10581059Google Scholar
Steiner, T, Bluhmki, E, Kaste, M, Toni, D, Trouillas, P, von Kummer, R, et al. The ECASS 3-hour cohort. Secondary analysis of ECASS data by time stratification. ECASS study group. European Cooperative Acute Stroke Study. Cerebrovasc Dis. 1998;8:198203Google Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995; 333:15811587Google Scholar
Ingall, TJ, O’Fallon, WM, Asplund, K, Goldfrank, LR, Hertzberg, VS, Louis, TA, et al. Findings from the reanalysis of the NINDS tissue plasminogen activator for Acute Ischemic Stroke Treatment Trial. Stroke. 2004;35:24182424Google Scholar
Lansberg, MG, Schrooten, M, Bluhmki, E, Thijs, VN, Saver, JL. Treatment time-specific number needed to treat estimates for tissue plasminogen activator therapy in acute stroke based on shifts over the entire range of the modified Rankin Scale. Stroke. 2009;40:20792084Google Scholar
Lees, KR, Bluhmki, E, von Kummer, R, Brott, TG, Toni, D, Grotta, JC, et al. Time to treatment with intravenous alteplase and outcome in stroke: An updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375:16951703Google Scholar
Wardlaw, JM, Murray, V, Berge, E, del Zoppo, G, Sandercock, P, Lindley, RL, et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: An updated systematic review and meta-analysis. Lancet. 2012;379:23642372Google Scholar
Lansberg, M, Bluhmki, E, Saver, J. Number needed to treat estimates for tPA per 90-minute time interval. Stroke. 2008;39:560Google Scholar
Hacke, W, Kaste, M, Fieschi, C, von Kummer, R, Davalos, A, Meier, D, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European–Australasian Acute Stroke Study Investigators. Lancet. 1998;352:12451251Google Scholar
Clark, WM, Wissman, S, Albers, GW, Jhamandas, JH, Madden, KP, Hamilton, S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS study: A randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke. JAMA. 1999;282:20192026Google Scholar
Hacke, W, Donnan, G, Fieschi, C, Kaste, M, von Kummer, R, Broderick, JP, et al. Association of outcome with early stroke treatment: Pooled analysis of ATLANTIS, ECASS, and NINDS rt-Pa stroke trials. Lancet. 2004;363:768774Google Scholar
Flaherty, ML JE, Kothari, RU, Broderick, JP. Intravenous thrombolytic therapy for acute ischemic stroke: Results of large, randomized clinical trials. In Lyden, P, ed. Thrombolytic Therapy for Acute Stroke. Totowa, NJ: Humana Press; 2005:111127Google Scholar
Donnan, GA, Davis, SM, Chambers, BR, Gates, PC, Hankey, GJ, McNeil, JJ, et al. Trials of streptokinase in severe acute ischaemic stroke. Lancet. 1995;345:578579Google Scholar
del Zoppo, GJ, Higashida, RT, Furlan, AJ, Pessin, MS, Rowley, HA, Gent, M. PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT investigators. Prolyse in acute cerebral thromboembolism. Stroke. 1998;29:411Google Scholar
Furlan, A, Higashida, R, Wechsler, L, Gent, M, Rowley, H, Kase, C, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: A randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA. 1999;282:20032011Google Scholar
Furlan, AJ, Katzan, I, Abou-Chebl, A, Russman, A. Intra-arterial thrombolysis in acute ischemic stroke. In Lyden, P, ed. Thrombolytic Therapy for Acute Stroke. Totowa, NJ: Humana Press; 2005:159184Google Scholar
Ogawa, A, Mori, E, Minematsu, K, Taki, W, Takahashi, A, Nemoto, S, et al. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: The Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. Stroke. 2007;38:26332639Google Scholar
Saver, JL. Intra-arterial fibrinolysis for acute ischemic stroke: The message of MELT. Stroke. 2007;38:26272628Google Scholar
Adams, HP Jr., Brott, TG, Furlan, AJ, Gomez, CR, Grotta, J, Helgason, CM, et al. Guidelines for thrombolytic therapy for acute stroke: A supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1996;27:17111718Google Scholar
Practice advisory: Thrombolytic therapy for acute ischemic stroke – summary statement. Report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 1996;47:835839Google Scholar
Jauch, EC, Saver, JL, Adams, HP Jr., Bruno, A, Connors, JJ, Demaerschalk, BM, et al. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870947Google Scholar
Adams, HP Jr., del Zoppo, G, Alberts, MJ, Bhatt, DL, Brass, L, Furlan, A, et al. Guidelines for the early management of adults with ischemic stroke: A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007;38:16551711Google Scholar
Horowitz, SH. Thrombolytic therapy in acute stroke: Neurologists, get off your hands! Arch Neurol. 1998;55:155157Google Scholar
Burton, T. Doctors push for more scans in stroke cases. Wall Street Journal. 2009:D1Google Scholar
American College of Emergency Physicians. Use of intravenous tPA for the management of acute stroke in the emergency department. www.acep.org, 2002Google Scholar
Adams, HP Jr, Kenton, EJ 3rd, Scheiber, SC, Juul, D. Vascular neurology: A new neurologic subspecialty. Neurology. 2004;63:774776Google Scholar
Josephson, SA, Engstrom, JW, Wachter, RM. Neurohospitalists: An emerging model for inpatient neurological care. Ann Neurol. 2008;63:135140Google Scholar
Scott, PA, Xu, Z, Meurer, WJ, Frederiksen, SM, Haan, MN, Westfall, MW, et al. Attitudes and beliefs of Michigan emergency physicians toward tissue plasminogen activator use in stroke: Baseline survey results from the increasing stroke treatment through interactive behavioral change tactic (INSTINCT) trial hospitals. Stroke. 2010;41:20262032Google Scholar
Schwamm, LH, Pancioli, A, Acker, JE 3rd, Goldstein, LB, Zorowitz, RD, Shephard, TJ, et al. Recommendations for the establishment of stroke systems of care: Recommendations from the American Stroke Association’s task force on the development of stroke systems. Stroke. 2005;36:690703Google Scholar
Demaerschalk, BM, Durocher, DL. How diagnosis-related group 559 will change the US medicare cost reimbursement ratio for stroke centers. Stroke. 2007;38:13091312Google Scholar
Wahlgren, N, Ahmed, N, Davalos, A, Ford, GA, Grond, M, Hacke, W, et al. Thrombolysis with alteplase for acute ischaemic stroke in the safe implementation of thrombolysis in stroke-monitoring study (SITS-MOST): An observational study. Lancet. 2007;369:275282Google Scholar
Fonarow, GC, Smith, EE, Saver, JL, Reeves, MJ, Bhatt, DL, Grau-Sepulveda, MV, et al. Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: Patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 minutes. Circulation. 2011;123:750758Google Scholar
Saver, JL, Fonarow, GC, Smith, EE, Reeves, MJ, Grau-Sepulveda, MV, Pan, W, et al. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA. 2013;309:24802488Google Scholar
Nakagawara, J, Minematsu, K, Okada, Y, Tanahashi, N, Nagahiro, S, Mori, E, et al. Thrombolysis with 0.6 mg/kg intravenous alteplase for acute ischemic stroke in routine clinical practice: The Japan post-marketing alteplase registration study (J-MARS). Stroke. 2010;41:19841989Google Scholar
Chao, AC, Hsu, HY, Chung, CP, Liu, CH, Chen, CH, Teng, MM, et al. Outcomes of thrombolytic therapy for acute ischemic stroke in Chinese patients: The Taiwan Thrombolytic Therapy for Acute Ischemic Stroke (TTT-AIS) study. Stroke. 2010;41:885890Google Scholar
Schwamm, LH, Reeves, MJ, Pan, W, Smith, EE, Frankel, MR, Olson, D, et al. Race/ethnicity, quality of care, and outcomes in ischemic stroke. Circulation. 2010;121:14921501Google Scholar
Alberts, MJ, Latchaw, RE, Jagoda, A, Wechsler, LR, Crocco, T, George, MG, et al. Revised and updated recommendations for the establishment of primary stroke centers: A summary statement from the brain attack coalition. Stroke. 2011;42:26512665Google Scholar
LaMonte, MP, Bahouth, MN, Hu, P, Pathan, MY, Yarbrough, KL, Gunawardane, R, et al. Telemedicine for acute stroke: Triumphs and pitfalls. Stroke. 2003;34:725728Google Scholar
Audebert, HJ, Kukla, C, Clarmann von Claranau, S, Kuhn, J, Vatankhah, B, Schenkel, J, et al. Telemedicine for safe and extended use of thrombolysis in stroke: The telemedic pilot project for integrative stroke care (TEMPIS) in Bavaria. Stroke. 2005;36:287291Google Scholar
Audebert, HJ, Kukla, C, Vatankhah, B, Gotzler, B, Schenkel, J, Hofer, S, et al. Comparison of tissue plasminogen activator administration management between telestroke network hospitals and academic stroke centers: The telemedical pilot project for integrative stroke care in Bavaria/Germany. Stroke. 2006;37:18221827Google Scholar
Meyer, BC, Raman, R, Hemmen, T, Obler, R, Zivin, JA, Rao, R, et al. Efficacy of site-independent telemedicine in the stroke doc trial: A randomised, blinded, prospective study. Lancet Neurol. 2008;7:787795Google Scholar
Silva, GS, Farrell, S, Shandra, E, Viswanathan, A, Schwamm, LH. The status of telestroke in the United States: A survey of currently active stroke telemedicine programs. Stroke. 2012;43:20782085Google Scholar
Alberts, MJ, Wechsler, LR, Jensen, ME, Latchaw, RE, Crocco, TJ, George, MG, et al. Formation and function of acute stroke-ready hospitals within a stroke system of care recommendations from the brain attack coalition. Stroke. 2013;44:33823393Google Scholar
Hachinski, V, Donnan, GA, Gorelick, PB, Hacke, W, Cramer, SC, Kaste, M, et al. Stroke: Working toward a prioritized world agenda. Int J Stroke. 2010;5:238256Google Scholar
Moynihan, B, Davis, D, Pereira, A, Cloud, G, Markus, HS. Delivering regional thrombolysis via a hub-and-spoke model. J R Soc Med. 2010;103:363369Google Scholar
Gladstone, DJ, Rodan, LH, Sahlas, DJ, Lee, L, Murray, BJ, Ween, JE, et al. A citywide prehospital protocol increases access to stroke thrombolysis in Toronto. Stroke. 2009;40:38413844Google Scholar
Song, S, Saver, J. Growth of regional stroke systems of care in the United States in the first decade of the 21st century. Stroke. 2011;42:e340Google Scholar
Schwamm, LH, Smith, E, Saver, JL, Reeves, M, Messe, S, Bhatt, D, et al. Temporal trends in the use of IV tPA among all ischemic stroke patients presenting to GWTG-stroke hospitals (abstract). Stroke. 2011;42:e104Google Scholar
Addo, J, Bhalla, A, Crichton, S, Rudd, AG, McKevitt, C, Wolfe, CDA. Provision of acute stroke care and associated factors in a multiethnic population: Prospective study with the South London Stroke Register. BMJ 2011;342:d744Google Scholar
Grau, AJ, Eicke, M, Biegler, MK, Faldum, A, Bamberg, C, Haass, A, et al. Quality monitoring of acute stroke care in Rhineland–Palatinate, Germany, 2001–2006. Stroke. 2010;41:14951500Google Scholar
Gumbinger, C, Reuter, B, Stock, C, Sauer, T, Wietholter, H, Bruder, I, et al. Time to treatment with recombinant tissue plasminogen activator and outcome of stroke in clinical practice: Retrospective analysis of hospital quality assurance data with comparison with results from randomised clinical trials. BMJ. 2014;348:g3429Google Scholar
Marler, JR, Winters Jones, P, EMR, M. The National Institute of Neurological Disorders and Stroke: Proceedings of National Symposium on Rapid Identification and Treatment of Acute Stroke. Bethesda, MD: National Institute of Neurological Disorders and Stroke; 1997Google Scholar
Summers, D, Leonard, A, Wentworth, D, Saver, JL, Simpson, J, Spilker, JA, et al. Comprehensive overview of nursing and interdisciplinary care of the acute ischemic stroke patient: A scientific statement from the American Heart Association. Stroke. 2009;40:29112944Google Scholar
Xian, Y, Smith, EE, Zhao, X, Peterson, ED, Olson, DM, Hernandez, AF, et al. Strategies used by hospitals to improve speed of tissue-type plasminogen activator treatment in acute ischemic stroke. Stroke. 2014;45:13871395Google Scholar
Ford, AL, Williams, JA, Spencer, M, McCammon, C, Khoury, N, Sampson, TR, et al. Reducing door-to-needle times using Toyota’s lean manufacturing principles and value stream analysis. Stroke. 2012;43:33953398Google Scholar
Fonarow, GC, Zhao, X, Smith, EE, Saver, JL, Reeves, MJ, Bhatt, DL, et al. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. JAMA. 2014;311:16321640Google Scholar
Qureshi, AI, Suri, MF, Nasar, A, He, W, Kirmani, JF, Divani, AA, et al. Thrombolysis for ischemic stroke in the United States: Data from national hospital discharge survey 1999–2001. Neurosurgery. 2005;57:647654Google Scholar
Albers, GW, Bates, VE, Clark, WM, Bell, R, Verro, P, Hamilton, SA. Intravenous tissue-type plasminogen activator for treatment of acute stroke: The Standard Treatment with Alteplase to Reverse Stroke (STARS) Study. JAMA. 2000;283:11451150Google Scholar
Demchuk, AM, Tanne, D, Hill, MD, Kasner, SE, Hanson, S, Grond, M, et al. Predictors of good outcome after intravenous tPA for acute ischemic stroke. Neurology. 2001;57:474480Google Scholar
Katzan, IL, Furlan, AJ, Lloyd, LE, Frank, JI, Harper, DL, Hinchey, JA, et al. Use of tissue-type plasminogen activator for acute ischemic stroke: The Cleveland area experience. JAMA. 2000;283:11511158Google Scholar
Katzan, IL, Hammer, MD, Furlan, AJ, Hixson, ED, Nadzam, DM. Quality improvement and tissue-type plasminogen activator for acute ischemic stroke: A Cleveland update. Stroke. 2003;34:799800Google Scholar
Weimar, C, Kraywinkel, K, Maschke, M, Diener, HC. Intravenous thrombolysis in German stroke units before and after regulatory approval of recombinant tissue plasminogen activator. Cerebrovasc Dis. 2006;22:429431Google Scholar
Heuschmann, PU, Berger, K, Misselwitz, B, Hermanek, P, Leffmann, C, Adelmann, M, et al. Frequency of thrombolytic therapy in patients with acute ischemic stroke and the risk of in-hospital mortality: The German Stroke Registers Study Group. Stroke. 2003;34:11061113Google Scholar
Sobesky, J, Frackowiak, M, Zaro Weber, O, Hahn, M, Moller-Hartmann, W, Rudolf, J, et al. The Cologne stroke experience: Safety and outcome in 450 patients treated with intravenous thrombolysis. Cerebrovasc Dis. 2007;24:5665Google Scholar
Toni, D, Lorenzano, S, Puca, E, Prencipe, M. The SITS-MOST Registry. Neurol Sci. 2006;27 Suppl 3:S260262Google Scholar
Lisboa, RC, Jovanovic, BD, Alberts, MJ. Analysis of the safety and efficacy of intra-arterial thrombolytic therapy in ischemic stroke. Stroke. 2002;33:28662871Google Scholar
Qureshi, AI, Ali, Z, Suri, MF, Kim, SH, Shatla, AA, Ringer, AJ, et al. Intra-arterial third-generation recombinant tissue plasminogen activator (reteplase) for acute ischemic stroke. Neurosurgery. 2001;49:4148;discussion 4850Google Scholar
Arnold, M, Schroth, G, Nedeltchev, K, Loher, T, Remonda, L, Stepper, F, et al. Intra-arterial thrombolysis in 100 patients with acute stroke due to middle cerebral artery occlusion. Stroke. 2002;33:18281833Google Scholar
Edwards, MT, Murphy, MM, Geraghty, JJ, Wulf, JA, Konzen, JP. Intra-arterial cerebral thrombolysis for acute ischemic stroke in a community hospital. AJNR Am J Neuroradiol. 1999;20:16821687Google Scholar
Suarez, JI, Sunshine, JL, Tarr, R, Zaidat, O, Selman, WR, Kernich, C, et al. Predictors of clinical improvement, angiographic recanalization, and intracranial hemorrhage after intra-arterial thrombolysis for acute ischemic stroke. Stroke. 1999;30:20942100Google Scholar
Molina, CA, Saver, JL. Extending reperfusion therapy for acute ischemic stroke: Emerging pharmacological, mechanical, and imaging strategies. Stroke. 2005;36:23112320Google Scholar
Rajajee, V, Saver, J. Prehospital care of the acute stroke patient. Tech Vasc Interv Radiol. 2005;8:7480Google Scholar
Crocco, T, Gullett, T, Davis, SM, Flores, N, Sauerbeck, L, Jauch, E, et al. Feasibility of neuroprotective agent administration by prehospital personnel in an urban setting. Stroke. 2003;34:19181922Google Scholar
Saver, JL, Starkman, S, Eckstein, M, Stratton, SJ, Franklin, D, Pratt, TM, et al. for the FAST-MAG Investigators and Coordinators. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med 2015;372:528536Google Scholar
Saver, JL. The 2012 Feinberg lecture: Treatment swift and treatment sure. Stroke. 2013;44:270277Google Scholar
Ankolekar, S, Fuller, M, Cross, I, Renton, C, Cox, P, Sprigg, N, et al. Feasibility of an ambulance-based stroke trial, and safety of glyceryl trinitrate in ultra-acute stroke: The Rapid Intervention with Glyceryl Trinitrate in Hypertensive Stroke Trial. Stroke. 2013;44:31203128Google Scholar
Hougaard, KD, Hjort, N, Zeidler, D, Sorensen, L, Norgaard, A, Hansen, TM, et al. Remote ischemic preconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: A randomized trial. Stroke. 2014;45:159167Google Scholar
Walter, S, Kostopoulos, P, Haass, A, Keller, I, Lesmeister, M, Schlechtriemen, T, et al. Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: A randomised controlled trial. Lancet Neurol. 2012;11:397404Google Scholar
Weber, JE, Ebinger, M, Rozanski, M, Waldschmidt, C, Wendt, M, Winter, B, et al. Prehospital thrombolysis in acute stroke: Results of the PHANTOM-S pilot study. Neurology. 2013;80:163168Google Scholar
Ebinger, M, Winter, B, Wendt, M, Weber, JE, Waldschmidt, C, Rozanski, M, et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: A randomized clinical trial. JAMA. 2014;311:16221631Google Scholar
Rajan, S, Baraniuk, S, Parker, S, Wu, T-C, Bowry, R, Grotta, JC. Implementing a mobile stroke unit program in the United States. Why, how and how much? JAMA Neurology 2015;72(2):229234Google Scholar
del Zoppo, GJ, Poeck, K, Pessin, MS, Wolpert, SM, Furlan, AJ, Ferbert, A, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol. 1992;32:7886Google Scholar
Wolpert, SM, Bruckmann, H, Greenlee, R, Wechsler, L, Pessin, MS, del Zoppo, GJ. Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. AJNR Am J Neuroradiol. 1993;14:313Google Scholar
Montavont, A, Nighoghossian, N, Derex, L, Hermier, M, Honnorat, J, Philippeau, F, et al. Intravenous rt-PA in vertebrobasilar acute infarcts. Neurology. 2004;62:18541856Google Scholar
Lindsberg, PJ, Soinne, L, Tatlisumak, T, Roine, RO, Kallela, M, Happola, O, et al. Long-term outcome after intravenous thrombolysis of basilar artery occlusion. JAMA. 2004;292:18621866Google Scholar
Kent, DM, Selker, HP, Ruthazer, R, Bluhmki, E, Hacke, W. Can multivariable risk–benefit profiling be used to select treatment-favorable patients for thrombolysis in stroke in the 3 -to 6-hour time window? Stroke. 2006;37:29632969Google Scholar
Davis, SM, Donnan, GA, Parsons, MW, Levi, C, Butcher, KS, Peeters, A, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): A placebo-controlled randomised trial. Lancet Neurol. 2008;7:299309Google Scholar
Fink, JN, Kumar, S, Horkan, C, Linfante, I, Selim, MH, Caplan, LR, et al. The stroke patient who woke up: Clinical and radiological features, including diffusion and perfusion MRI. Stroke. 2002;33:988993Google Scholar
Manawadu, D, Bodla, S, Keep, J, Jarosz, J, Kalra, L. An observational study of thrombolysis outcomes in wake-up ischemic stroke patients. Stroke. 2013;44:427431Google Scholar
Barber, PA, Zhang, J, Demchuk, AM, Hill, MD, Buchan, AM. Why are stroke patients excluded from tPA therapy? An analysis of patient eligibility. Neurology. 2001;56:10151020Google Scholar
Smith, EE, Abdullah, AR, Petkovska, I, Rosenthal, E, Koroshetz, WJ, Schwamm, LH. Poor outcomes in patients who do not receive intravenous tissue plasminogen activator because of mild or improving ischemic stroke. Stroke. 2005;36:24972499Google Scholar
Rajajee, V, Kidwell, C, Starkman, S, Ovbiagele, B, Alger, JR, Villablanca, P, et al. Early MRI and outcomes of untreated patients with mild or improving ischemic stroke. Neurology. 2006;67:980984Google Scholar
Urra, X, Ariño, H, Llull, L, Amaro, S, Obach, V, Cervera, Á, et al. The outcome of patients with mild stroke improves after treatment with systemic thrombolysis. PLoS One. 2013;8:e59420Google Scholar
Selim, M, Kumar, S, Fink, J, Schlaug, G, Caplan, LR, Linfante, I. Seizure at stroke onset: Should it be an absolute contraindication to thrombolysis? Cerebrovasc Dis. 2002;14:5457Google Scholar
Saqqur, M, Uchino, K, Demchuk, AM, Molina, CA, Garami, Z, Calleja, S, et al. Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke. 2007;38:948954Google Scholar
Schellinger, PD, Fiebach, JB, Jansen, O, Ringleb, PA, Mohr, A, Steiner, T, et al. Stroke magnetic resonance imaging within 6 hours after onset of hyperacute cerebral ischemia. Ann Neurol. 2001;49:460469Google Scholar
Koroshetz, WJ, Lev, MH. Contrast computed tomography scan in acute stroke: “You can’t always get what you want but … You get what you need”. Ann Neurol. 2002;51:415416Google Scholar
Wintermark, M, Reichhart, M, Thiran, JP, Maeder, P, Chalaron, M, Schnyder, P, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51:417432Google Scholar
Kidwell, CS, Alger, JR, Saver, JL. Beyond mismatch: Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34:27292735Google Scholar
Sanak, D, Nosal, V, Horak, D, Bartkova, A, Zelenak, K, Herzig, R, et al. Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology. 2006;48:632639Google Scholar
Kohrmann, M, Juttler, E, Fiebach, JB, Huttner, HB, Siebert, S, Schwark, C, et al. MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: A cohort study. Lancet Neurol. 2006;5:661667Google Scholar
Davis, SM, Donnan, GA, Butcher, KS, Parsons, M. Selection of thrombolytic therapy beyond 3 h using magnetic resonance imaging. Curr Opin Neurol. 2005;18:4752Google Scholar
Prosser, J, Butcher, K, Allport, L, Parsons, M, MacGregor, L, Desmond, P, et al. Clinical–diffusion mismatch predicts the putative penumbra with high specificity. Stroke. 2005;36:17001704Google Scholar
Butcher, KS, Parsons, M, MacGregor, L, Barber, PA, Chalk, J, Bladin, C, et al. Refining the perfusion–diffusion mismatch hypothesis. Stroke. 2005;36:11531159Google Scholar
Hacke, W, Albers, G, Al-Rawi, Y, Bogousslavsky, J, Davalos, A, Eliasziw, M, et al. The Desmoteplase In Acute Ischemic Stroke Trial (DIAS): A phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 2005;36:6673Google Scholar
Hjort, N, Butcher, K, Davis, SM, Kidwell, CS, Koroshetz, WJ, Rother, J, et al. Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke. 2005;36:388397Google Scholar
Schellinger, PD, Thomalla, G, Fiehler, J, Kohrmann, M, Molina, CA, Neumann-Haefelin, T, et al. MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: An analysis of 1210 patients. Stroke. 2007;38:26402645Google Scholar
Lansberg, MG, Thijs, VN, Bammer, R, Kemp, S, Wijman, CA, Marks, MP, et al. Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke. 2007;38:22752278Google Scholar
Fiehler, J, Albers, GW, Boulanger, JM, Derex, L, Gass, A, Hjort, N, et al. Bleeding risk analysis in stroke imaging before thrombolysis (BRASIL): Pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007;38:27382744Google Scholar
Lee, SJ, Saver, JL, Liebeskind, DS, Ali, L, Ovbiagele, B, Kim, D, et al. Safety of intravenous fibrinolysis in imaging-confirmed single penetrator artery infarcts. Stroke. 2010;41:25872591Google Scholar
Lansberg, MG, Lee, J, Christensen, S, Straka, M, De Silva, DA, Mlynash, M, et al. Rapid automated patient selection for reperfusion therapy: A pooled analysis of the echoplanar imaging thrombolytic evaluation trial (EPITHET) and the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Stroke. 2011;42:16081614Google Scholar
Scalzo, F, Alger, JR, Hu, X, Saver, JL, Dani, KA, Muir, KW, et al. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features. Magn Reson Imaging. 2013;31:961969Google Scholar
Warach, S, Al-Rawi, Y, Furlan, AJ, Fiebach, JB, Wintermark, M, Lindstén, A, et al. Refinement of the magnetic resonance diffusion-perfusion mismatch concept for thrombolytic patient selection: Insights from the desmoteplase in acute stroke trials. Stroke. 2012;43:23132318Google Scholar
Furlan, AJ, Eyding, D, Albers, GW, Al-Rawi, Y, Lees, KR, Rowley, HA, et al. Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): Evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke. 2006;37:12271231Google Scholar
Hacke, W, Furlan, AJ, Al-Rawi, Y, Davalos, A, Fiebach, JB, Gruber, F, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion–diffusion weighted imaging or perfusion CT (DIAS-2): A prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2009;8:141150Google Scholar
Liberatore, GT, Samson, A, Bladin, C, Schleuning, WD, Medcalf, RL. Vampire bat salivary plasminogen activator (desmoteplase): A unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke. 2003;34:537543Google Scholar
Wintermark, M, Reichhart, M, Cuisenaire, O, Maeder, P, Thiran, JP, Schnyder, P, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke. 2002;33:20252031Google Scholar
Obach, V, Oleaga, L, Urra, X, Macho, J, Amaro, S, Capurro, S, et al. Multimodal CT-assisted thrombolysis in patients with acute stroke: A cohort study. Stroke. 2011;42:11291131Google Scholar
Parsons, M, Spratt, N, Bivard, A, Campbell, B, Chung, K, Miteff, F, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366:10991107Google Scholar
Hu, HH, Teng, MM, Hsu, LC, Wong, WJ, Wang, LM, Luk, YO, et al. A pilot study of a new thrombolytic agent for acute ischemic stroke in Taiwan within a five-hour window. Stroke. 2006;37:918919Google Scholar
Alexandrov, AV, Demchuk, AM, Burgin, WS, Robinson, DJ, Grotta, JC. Ultrasound-enhanced thrombolysis for acute ischemic stroke: Phase l. Findings of the CLOTBUST trial. J Neuroimaging. 2004;14:113117Google Scholar
Barlinn, K, Barreto, AD, Sisson, A, Liebeskind, DS, Schafer, ME, Alleman, J, et al. Clotbust-hands free: Initial safety testing of a novel operator-independent ultrasound device in stroke-free volunteers. Stroke. 2013;44:16411646Google Scholar
Lewandowski, CA, Frankel, M, Tomsick, TA, Broderick, J, Frey, J, Clark, W, et al. Combined intravenous and intra-arterial r-tPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) Bridging Trial. Stroke. 1999;30:25982605Google Scholar
Ernst, R, Pancioli, A, Tomsick, T, Kissela, B, Woo, D, Kanter, D, et al. Combined intravenous and intra-arterial recombinant tissue plasminogen activator in acute ischemic stroke. Stroke. 2000;31:25522557Google Scholar
The IMS II Trial Investigators. Combined intravenous and intra-arterial recanalization for acute ischemic stroke: The Interventional Management of Stroke Study. Stroke. 2004;35:904911Google Scholar
The IMS Study Investigators. Hemorrhage in the Interventional Management of Stroke Study. Stroke. 2006;37:847851Google Scholar
Sekoranja, L, Loulidi, J, Yilmaz, H, Lovblad, K, Temperli, P, Comelli, M, et al. Intravenous versus combined (intravenous and intra-arterial) thrombolysis in acute ischemic stroke: A transcranial color-coded duplex sonography – guided pilot study. Stroke. 2006;37:18051809Google Scholar
The IMS II Trial Investigators. The Interventional Management of Stroke (IMS) II Study. Stroke. 2007;38:21272135Google Scholar
Keris, V, Rudnicka, S, Vorona, V, Enina, G, Tilgale, B, Fricbergs, J. Combined intraarterial/intravenous thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol. 2001;22:352358Google Scholar
Butcher, K, Shuaib, A, Saver, J, Donnan, G, Davis, SM, Norrving, B, et al. Thrombolysis in the developing world: Is there a role for streptokinase? Int J Stroke. 2013;8:560565Google Scholar
Ducrocq, X, Bracard, S, Taillandier, L, Anxionnat, R, Lacour, JC, Guillemin, F, et al. Comparison of intravenous and intra-arterial urokinase thrombolysis for acute ischaemic stroke. J Neuroradiol. 2005;32:2632Google Scholar
Sugg, RM, Noser, EA, Shaltoni, HM, Gonzales, NR, Campbell, MS, Weir, R, et al. Intra-arterial reteplase compared to urokinase for thrombolytic recanalization in acute ischemic stroke. AJNR Am J Neuroradiol. 2006;27:769773Google Scholar
Macleod, MR, Davis, SM, Mitchell, PJ, Gerraty, RP, Fitt, G, Hankey, GJ, et al. Results of a multicentre, randomised controlled trial of intra-arterial urokinase in the treatment of acute posterior circulation ischaemic stroke. Cerebrovasc Dis. 2005;20:1217Google Scholar
Inoue, T, Kimura, K, Minematsu, K, Yamaguchi, T. A case-control analysis of intra-arterial urokinase thrombolysis in acute cardioembolic stroke. Cerebrovasc Dis. 2005;19:225228Google Scholar
Tirschwell, DL, Coplin, WM, Becker, KJ, Vogelzang, P, Eskridge, J, Haynor, D, et al. Intra-arterial urokinase for acute ischemic stroke: Factors associated with complications. Neurology. 2001;57:11001103Google Scholar
Fanale, PL. Thrombolytic Therapy for Acute Ischemic Stroke in Acute Stroke, Bench to Bedside. New York, NY: Informa Healthcare; 2007Google Scholar
The Ancrod Stroke Study Investigators. Ancrod for the treatment of acute ischemic brain infarction. Stroke. 1994;25:17551759Google Scholar
Sherman, DG, Atkinson, RP, Chippendale, T, Levin, KA, Ng, K, Futrell, N, et al. Intravenous ancrod for treatment of acute ischemic stroke: The STAT study: A randomized controlled trial. Stroke Treatment with Ancrod Trial. JAMA. 2000;283:23952403Google Scholar
Hossmann, V, Heiss, WD, Bewermeyer, H, Wiedemann, G. Controlled trial of ancrod in ischemic stroke. Arch Neurol. 1983;40:803808Google Scholar
Olinger, CP, Brott, TG, Barsan, WG, Hedges, JR, Glas-Greenwalt, P, Pollak, VE, et al. Use of ancrod in acute or progressing ischemic cerebral infarction. Ann Emerg Med. 1988;17:12081209Google Scholar
Hennerici, MG, Kay, R, Bogousslavsky, J, Lenzi, GL, Verstraete, M, Orgogozo, JM. Intravenous ancrod for acute ischaemic stroke in the European Stroke Treatment with Ancrod Trial: A randomised controlled trial. Lancet. 2006;368:18711878Google Scholar
Van De Werf, F, Adgey, J, Ardissino, D, Armstrong, PW, Aylward, P, Barbash, G, et al. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: The ASSENT-2 double-blind randomised trial. Lancet. 1999;354:716722Google Scholar
Haley, EC, Thompson, JLP, Grotta, JC, Lyden, PD, Hemmen, TG, Brown, DL, et al. Phase IIB/III trial of tenecteplase in acute ischemic stroke: Results of a prematurely terminated randomized clinical trial. Stroke. 2010;41:707711Google Scholar
Parsons, M, Spratt, N, Bivard, A, Campbell, B, Chung, K, Miteff, F, et al. A randomized trial of tenecteplase versus alteplace for acute ischemic stroke. N Engl J Med 2012;366:10991107Google Scholar
Leary, MC, Saver, JL, Gobin, YP, Jahan, R, Duckwiler, GR, Vinuela, F, et al. Beyond tissue plasminogen activator: Mechanical intervention in acute stroke. Ann Emerg Med. 2003;41:838846Google Scholar
Saver, JL. Improving reperfusion therapy for acute ischaemic stroke. J Thromb Haemost. 2011;9 Suppl 1:333343Google Scholar
Baltsavias, G, Yella, S, Al Shameri, RA, Luft, A, Valvanis, A. Intra-arterial administration of papaverine during mechanical thrombectomy for acute ischemic stroke. J Stroke Cerebrovasc Dis 2015;24:4147Google Scholar
Rha, JH, Saver, JL. The impact of recanalization on ischemic stroke outcome: A meta-analysis. Stroke. 2007;38:967973Google Scholar
Levy, EI, Siddiqui, AH, Crumlish, A, Snyder, KV, Hauck, EF, Fiorella, DJ, et al. First food and drug administration-approved prospective trial of primary intracranial stenting for acute stroke: SARIS (Stent-Assisted Recanalization in acute Ischemic Stroke). Stroke. 2009;40:35523556Google Scholar
Velat, GJ, Hoh, BL, Levy, EI, Mocco, J. Primary intracranial stenting in acute ischemic stroke. Curr Cardiol Rep. 2010;12:1419Google Scholar
The Penumbra Pivotal Stroke Trial Investigators. The Penumbra Pivotal Stroke Trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009;40:27612768Google Scholar
Kulcsár, Z, Bonvin, C, Pereira, VM, Altrichter, S, Yilmaz, H, Lövblad, KO, et al. Penumbra system: A novel mechanical thrombectomy device for large-vessel occlusions in acute stroke. Am J Neuroradiol. 2010;31:628633Google Scholar
Psychogios, M-N, Kreusch, A, Wasser, K, Mohr, A, Gröschel, K, Knauth, M. Recanalization of large intracranial vessels using the penumbra system: A single-center experience. Am J Neuroradiol. 2012;33:14881493Google Scholar
Jankowitz, B, Grandhi, R, Horev, A, Aghaebrahim, A, Jadhav, A, Linares, G, et al. Primary manual aspiration thrombectomy (MAT) for acute ischemic stroke: Safety, feasibility and outcomes in 112 consecutive patients. J NeuroIntervent Surg. 2014; doi:10.1136/neurintsurg-2013–011024Google Scholar
Turk, AS, Frei, D, Fiorella, D, Mocco, J, Baxter, B, Siddiqui, A, et al. Adapt FAST study: A direct aspiration first pass technique for acute stroke thrombectomy. J NeuroIntervent Surg. 2014;6:260264Google Scholar
Smith, WS, Sung, G, Starkman, S, Saver, JL, Kidwell, CS, Gobin, YP, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: Results of the MERCI trial. Stroke. 2005;36:14321438Google Scholar
Smith, WS, Sung, G, Saver, J, Budzik, R, Duckwiler, G, Liebeskind, DS, et al. Mechanical thrombectomy for acute ischemic stroke: Final results of the Multi MERCI trial. Stroke. 2008;39:12051212Google Scholar
Smith, WS. Safety of mechanical thrombectomy and intravenous tissue plasminogen activator in acute ischemic stroke. Results of the Multi Mechanical Embolus Removal In Cerebral Ischemia (MERCI) trial, part I. AJNR Am J Neuroradiol. 2006;27:11771182Google Scholar
Jahan, R. Solitaire flow-restoration device for treatment of acute ischemic stroke: Safety and recanalization efficacy study in a swine vessel occlusion model. AJNR Am J Neuroradiol. 2010;31:19381943Google Scholar
Hausegger, K, Hauser, M, Kau, T. Mechanical thrombectomy with stent retrievers in acute ischemic stroke. Cardiovasc Intervent Radiol. 2014;37:863874Google Scholar
Saver, JL, Jahan, R, Levy, EI, Jovin, TG, Baxter, B, Nogueira, RG, et al. Solitaire flow restoration device versus the MERCI retriever in patients with acute ischaemic stroke (SWIFT): A randomised, parallel-group, non-inferiority trial. Lancet. 2012;380:12411249Google Scholar
Nogueira, RG, Lutsep, HL, Gupta, R, Jovin, TG, Albers, GW, Walker, GA, et al. TREVO versus MERCI retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): A randomised trial. Lancet. 2012;380:12311240Google Scholar
Ciccone, A, Valvassori, L. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368:24332434Google Scholar
Broderick, JP, Palesch, YY, Demchuk, AM, Yeatts, SD, Khatri, P, Hill, MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368:893903Google Scholar
Kidwell, CS, Jahan, R, Gornbein, J, Alger, JR, Nenov, V, Ajani, Z, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368:914923Google Scholar
Berkheimer, OA, Fransen, PSS, Beumer, D, van den Berg, LA, Lingsma, HF, Yoo, AJ, et al. for the Mr CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:1120Google Scholar
Goyal, M, Demchuk, AM, Menon, BK, Eesa, M, Rempel, JL, Thronton, J, et al. for the ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:10191030Google Scholar
Saver, J, Goyal, M, Bonafe, A, Diener, H-C, Levy, EI, Pereira, VM, et al. for the SWIFT PRIME Investigators. SolitaireTM with the intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke (SWIFT PRIME) trial: protocol for randomized, controlled, multicenter study comparing the SolitaireTM revascularization device with IV tPA with IV tPA alone in acute ischemic stroke. Int J Stroke. 2015;10:439448Google Scholar
Campbell, BC. EXTEND-IA: Endovascular therapy after intravenous t-PA versus t-PA alone for ischemic stroke using CT perfusion imaging selection. International Stroke Conference, 2015: http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_471810.pdfGoogle Scholar
Delgado-Mederos, R, Rovira, A, Alvarez-Sabin, J, Ribo, M, Munuera, J, Rubiera, M, et al. Speed of tPA-induced clot lysis predicts DWI lesion evolution in acute stroke. Stroke. 2007;38:955960Google Scholar
Mazighi, M, Chaudhry, SA, Ribo, M, Khatri, P, Skoloudik, D, Mokin, M, et al. Impact of onset-to-reperfusion time on stroke mortality: A collaborative pooled analysis. Circulation. 2013;127:19801985Google Scholar
Wunderlich, MT, Goertler, M, Postert, T, Schmitt, E, Seidel, G, Gahn, G, et al. Recanalization after intravenous thrombolysis: Does a recanalization time window exist? Neurology. 2007;68:13641368Google Scholar
Uchino, K, Anderson, DC. Better late than never?: The story of arterial recanalization in acute ischemic stroke. Neurology. 2007;68:13351336Google Scholar
Sacco, RL, Chong, JY, Prabhakaran, S, Elkind, MS. Experimental treatments for acute ischaemic stroke. Lancet. 2007;369:331341Google Scholar
Hemmen, TM, Raman, R, Guluma, KZ, Meyer, BC, Gomes, JA, Cruz-Flores, S, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTUS-l): Final results. Stroke. 2010;41:22652270Google Scholar
Lyden, PD, Hemmen, TM, Grotta, J, Rapp, K, Raman, R. Endovascular therapeutic hypothermia for acute ischemic stroke: ICTUS 2/3 protocol. Int J Stroke. 2014;9:117125Google Scholar
Steiner, T, Hacke, W. Combination therapy with neuroprotectants and thrombolytics in acute ischaemic stroke. Eur Neurol. 1998;40:18Google Scholar
Alexandrov, AV, Grotta, JC. Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator. Neurology. 2002;59:862867Google Scholar
Qureshi, AI, Saad, M, Zaidat, OO, Suarez, JI, Alexander, MJ, Fareed, M, et al. Intracerebral hemorrhages associated with neurointerventional procedures using a combination of antithrombotic agents including abciximab. Stroke. 2002;33:19161919Google Scholar
Abciximab Emergent Stroke Treatment Trial (ABESTT) Investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: Results of a randomized phase 2 trial. Stroke. 2005;36:880890Google Scholar
Mangiafico, S, Cellerini, M, Nencini, P, Gensini, G, Inzitari, D. Intravenous glycoprotein IIB/IIIA inhibitor (tirofiban) followed by intra-arterial urokinase and mechanical thrombolysis in stroke. AJNR Am J Neuroradiol. 2005;26:25952601Google Scholar
Straub, S, Junghans, U, Jovanovic, V, Wittsack, HJ, Seitz, RJ, Siebler, M. Systemic thrombolysis with recombinant tissue plasminogen activator and tirofiban in acute middle cerebral artery occlusion. Stroke. 2004;35:705709Google Scholar
Seitz, RJ, Meisel, S, Moll, M, Wittsack, HJ, Junghans, U, Siebler, M. The effect of combined thrombolysis with rtPA and tirofiban on ischemic brain lesions. Neurology. 2004;62:21102112Google Scholar
Pancioli, AM, Broderick, J, Brott, T, Tomsick, T, Khoury, J, Bean, J, et al. The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: The CLEAR Stroke Trial. Stroke. 2008;39:32683276Google Scholar
Pancioli, AM, Adeoye, O, Schmit, PA, Khoury, J, Levine, SR, Tomsick, TA, et al. Combined approach to lysis utilizing eptifibatide and recombinant tissue plasminogen activator in Acute Ischemic Stroke-Enhanced Regimen Stroke Trial. Stroke. 2013;44:23812387Google Scholar
Adams, HP Jr., Effron, MB, Torner, J, Davalos, A, Frayne, J, Teal, P, et al. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: Results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (ABESTT-II). Stroke. 2008;39:8799Google Scholar
Sugg, RM, Pary, JK, Uchino, K, Baraniuk, S, Shaltoni, HM, Gonzales, NR, et al. Argatroban tPA stroke study: Study design and results in the first treated cohort. Arch Neurol. 2006;63:10571062Google Scholar
Barreto, AD, Alexandrov, AV, Lyden, P, Lee, J, Martin-Schild, S, Shen, L, et al. The argatroban and tissue-type plasminogen activator stroke study: Final results of a pilot safety study. Stroke. 2012;43:770775Google Scholar
Diener, HC, Foerch, C, Riess, H, Rother, J, Schroth, G, Weber, R. Treatment of acute ischaemic stroke with thrombolysis or thrombectomy in patients receiving anti-thrombotic treatment. Lancet Neurol. 2013;12:677688Google Scholar
Grond, M, Rudolf, J, Neveling, M, Stenzel, C, Heiss, WD. Risk of immediate heparin after rt-PA therapy in acute ischemic stroke. Cerebrovascular Diseases. 1997;7:318323Google Scholar
Schmulling, S, Rudolf, J, Strotmann-Tack, T, Grond, M, Schneweis, S, Sobesky, J, et al. Acetylsalicylic acid pretreatment, concomitant heparin therapy and the risk of early intracranial hemorrhage following systemic thrombolysis for acute ischemic stroke. Cerebrovasc Dis. 2003;16:183190Google Scholar
Zinkstok, SM, Roos, YB. Early administration of aspirin in patients treated with alteplase for acute ischaemic stroke: A randomised controlled trial. Lancet. 2012;380:731737Google Scholar
Alexandrov, AV, Demchuk, AM, Felberg, RA, Grotta, JC, Krieger, DW. Intracranial clot dissolution is associated with embolic signals on transcranial Doppler. J Neuroimaging. 2000;10:2732Google Scholar
Alexandrov, AV, Demchuk, AM, Felberg, RA, Christou, I, Barber, PA, Burgin, WS, et al. High rate of complete recanalization and dramatic clinical recovery during tpa infusion when continuously monitored with 2-Mhz transcranial Doppler monitoring. Stroke. 2000;31:610614Google Scholar
Eggers, J, Koch, B, Meyer, K, Konig, I, Seidel, G. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann Neurol. 2003;53:797800Google Scholar
Tsivgoulis, G, Eggers, J, Ribo, M, Perren, F, Saqqur, M, Rubiera, M, et al. Safety and efficacy of ultrasound-enhanced thrombolysis: A comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke. 2010;41:280287Google Scholar
Alexandrov, AV, Molina, CA, Grotta, JC, Garami, Z, Ford, SR, Alvarez-Sabin, J, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004;351:21702178Google Scholar
Molina, CA, Barreto, AD, Tsivgoulis, G, Sierzenski, P, Malkoff, MD, Rubiera, M, et al. Transcranial Ultrasound in Clinical Sonothrombolysis (TUCSON) Trial. Ann Neurol. 2009;66:2838Google Scholar
Polak, JF. Ultrasound energy and the dissolution of thrombus. N Engl J Med. 2004;351:21542155Google Scholar
Eggers, J, Seidel, G, Koch, B, Konig, IR. Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA. Neurology. 2005;64:10521054Google Scholar
Molina, CA, Ribo, M, Rubiera, M, Montaner, J, Santamarina, E, Delgado-Mederos, R, et al. Microbubble administration accelerates clot lysis during continuous 2-Mhz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke. 2006;37:425429Google Scholar
Furlan, AJ, Little, JR, Dohn, DF. Arterial occlusion following anastomosis of the superficial temporal artery to middle cerebral artery. Stroke. 1980;11:9195Google Scholar
Gumerlock, MK, Ono, H, Neuwelt, EA. Can a patent extracranial–intracranial bypass provoke the conversion of an intracranial arterial stenosis to a symptomatic occlusion? Neurosurgery. 1983;12:391400Google Scholar
The EC/IC bypass study group. Failure of extracranial–intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med. 1985; 313:11911200Google Scholar
Caplan, LR, Piepgras, DG, Quest, DO, Toole, JF, Samson, D, Futrell, N, et al. EC-IC bypass 10 years later: Is it valuable? Surg Neurol. 1996;46:416423Google Scholar
Przybylski, GJ, Yonas, H, Smith, HA. Reduced stroke risk in patients with compromised cerebral blood flow reactivity treated with superficial temporal artery to distal middle cerebral artery bypass surgery. J Stroke Cerebrovasc Dis. 1998;7:302309Google Scholar
Diaz, FG, Umansky, F, Mehta, B, Montoya, S, Dujovny, M, Ausman, JI, et al. Cerebral revascularization to a main limb of the middle cerebral artery in the sylvian fissure. An alternative approach to conventional anastomosis. J Neurosurg. 1985;63:2129Google Scholar
Diaz, F. Technique for extracranial–intracranial bypass grafting. In Moore, W, ed. Surgery for Cerebrovascular Disease. Philadelphia, PA: W B Saunders; 1996:638654Google Scholar
Tulleken, CA, Verdaasdonk, RM, Beck, RJ, Mali, WP. The modified Excimer laser-assisted high-flow bypass operation. Surg Neurol. 1996;46:424429Google Scholar
Klijn, CJ, Kappelle, LJ, van der Zwan, A, van Gijn, J, Tulleken, CA. Excimer laser-assisted high-flow extracranial/intracranial bypass in patients with symptomatic carotid artery occlusion at high risk of recurrent cerebral ischemia: Safety and long-term outcome. Stroke. 2002;33:24512458Google Scholar
Derdeyn, CP, Grubb, RL Jr., Powers, WJ. Cerebral hemodynamic impairment: Methods of measurement and association with stroke risk. Neurology. 1999;53:251259Google Scholar
Grubb, RL Jr., Derdeyn, CP, Fritsch, SM, Carpenter, DA, Yundt, KD, Videen, TO, et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998;280:10551060Google Scholar
Powers, WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231240Google Scholar
Yokota, C, Hasegawa, Y, Minematsu, K, Yamaguchi, T. Effect of acetazolamide reactivity on long-term outcome in patients with major cerebral artery occlusive diseases. Stroke. 1998;29:640644Google Scholar
Vernieri, F, Pasqualetti, P, Passarelli, F, Rossini, PM, Silvestrini, M. Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity. Stroke. 1999;30:593598Google Scholar
Grubb, RL Jr., Powers, WJ, Derdeyn, CP, Adams, HP Jr., Clarke, WR. The carotid occlusion surgery study. Neurosurg Focus. 2003;14:e9Google Scholar
Grubb, RL Jr. Extracranial–intracranial arterial bypass for treatment of occlusion of the internal carotid artery. Curr Neurol Neurosci Rep. 2004;4:2330Google Scholar
Adams, HP Jr., Powers, WJ, Grubb, RL Jr., Clarke, WR, Woolson, RF. Preview of a new trial of extracranial-to-intracranial arterial anastomosis: The carotid occlusion surgery study. Neurosurg Clin N Am. 2001;12:613624Google Scholar
Dusick, JR, Liebeskind, DS, Saver, JL, Martin, NA, Gonzalez, NR. Indirect revascularization for nonmoyamoya intracranial arterial stenoses: Clinical and angiographic outcomes. J Neurosurg. 2012;117:94102Google Scholar
Garg, BP, Biller, J. Moyamoya disease and cerebral ischemia. In Batjer, HH, Friberg, L, Greenlee, RG Jr, Kopitnik, TA, Young, WL, eds. Cerebrovascular Disease. Philadelphia, PA: Lippincott-Raven; 1997:489499Google Scholar
Scott, RM, Smith, JL, Robertson, RL, Madsen, JR, Soriano, SG, Rockoff, MA. Long-term outcome in children with moyamoya syndrome after cranial revascularization by pial synangiosis. J Neurosurg. 2004;100:142149Google Scholar
Miyamoto, S, Yoshimoto, T, Hashimoto, N, Okada, Y, Tsuji, I, Tominaga, T, et al. Effects of extracranial–intracranial bypass for patients with hemorrhagic moyamoya disease: Results of the Japan adult moyamoya trial. Stroke. 2014;45:14151421Google Scholar
Miyamoto, S. Study design for a prospective randomized trial of extracranial–intracranial bypass surgery for adults with moyamoya disease and hemorrhagic onset - the Japan adult moyamoya trial group. Neurol Med Chir (Tokyo). 2004;44:218219Google Scholar
Caplan, L. Use of vasodilating drugs for cerebral symptomatology. In Miller, R, Greenblatt, D, eds. Drug Therapy Reviews. Amsterdam: Elsevier; 1979:305317Google Scholar
Golino, P, Piscione, F, Willerson, JT, Cappelli-Bigazzi, M, Focaccio, A, Villari, B, et al. Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med. 1991;324:641648Google Scholar
Piepgras, A, Schmiedek, P, Leinsinger, G, Haberl, RL, Kirsch, CM, Einhaupl, KM. A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide. Stroke. 1990;21:13061311Google Scholar
Mette, D, Strunk, R, Zuccarello, M. Cerebral blood flow measurement in neurosurgery. Transl Stroke Res. 2011;2:152158Google Scholar
Hojer-Pedersen, E. Effect of acetazolamide on cerebral blood flow in subacute and chronic cerebrovascular disease. Stroke. 1987;18:887891Google Scholar
Braunwald, E. Mechanism of action of calcium-channel-blocking agents. N Engl J Med. 1982;307:16181627Google Scholar
Gorelick, PB, Caplan, LR. Calcium, hypercalcemia and stroke. Current concepts in cerebrovascular disease. Stroke. 1985:20:1317Google Scholar
Allen, GS, Ahn, HS, Preziosi, TJ, Battye, R, Boone, SC, Boone, SC, et al. Cerebral arterial spasm – a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med. 1983;308:619624Google Scholar
Philippon, J, Grob, R, Dagreou, F, Guggiari, M, Rivierez, M, Viars, P. Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochir (Wien). 1986;82:110114Google Scholar
Jan, M, Buchheit, F, Tremoulet, M. Therapeutic trial of intravenous nimodipine in patients with established cerebral vasospasm after rupture of intracranial aneurysms. Neurosurgery. 1988;23:154157Google Scholar
Pickard, JD, Murray, GD, Illingworth, R, Shaw, MD, Teasdale, GM, Foy, PM, et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ. 1989;298:636642Google Scholar
Trust Study Group. Randomised, double-blind, placebo-controlled trial of nimodipine in acute stroke. Lancet. 1990;336:12051209Google Scholar
The American Nimodipine Study Group. Clinical trial of nimodipine in acute ischemic stroke. Stroke. 1992;23:38Google Scholar
Pandey, P, Steinberg, GK, Dodd, R, Do, HM, Marks, MP. A simplified method for administration of intra-arterial nicardipine for vasospasm with cervical catheter infusion. Neurosurgery. 2012;71:7785Google Scholar
Yancy, H, Lee-Iannotti, JK, Schwedt, TJ, Dodick, DW. Reversible cerebral vasoconstriction syndrome. Headache. 2013;53:570576Google Scholar
Heros, RC, Korosue, K. Hemodilution for cerebral ischemia. Stroke. 1989;20:423427Google Scholar
Huh, PW, Belayev, L, Zhao, W, Busto, R, Saul, I, Ginsberg, MD. The effect of high-dose albumin therapy on local cerebral perfusion after transient focal cerebral ischemia in rats. Brain Res. 1998;804:105113Google Scholar
Ginsberg, MD, Palesch, YY, Hill, MD, Martin, RH, Moy, CS, Barsan, WG, et al. High-dose albumin treatment for acute ischaemic stroke (ALIAS) part 2: A randomised, double-blind, phase 3, placebo-controlled trial. Lancet Neurol. 2013;12:10491058Google Scholar
Dhar, R, Scalfani, MT, Zazulia, AR, Videen, TO, Derdeyn, CP, Diringer, MN. Comparison of induced hypertension, fluid bolus, and blood transfusion to augment cerebral oxygen delivery after subarachnoid hemorrhage. J Neurosurg. 2012;116:648656Google Scholar
Thomas, DJ. Hemodilution in acute stroke. Stroke. 1985;16:763764Google Scholar
Thomas, DJ, Marshall, J, Russell, RW, Wetherley-Mein, G, du Boulay, GH, Pearson, TC, et al. Effect of haematocrit on cerebral blood-flow in man. Lancet. 1977;2:941943Google Scholar
Wood, JH, Kee, DB Jr. Hemorheology of the cerebral circulation in stroke. Stroke. 1985;16:765772Google Scholar
Chittiboina, P, Guthikonda, B, Wollblad, C, Conrad, SA. A computational simulation of the effect of hemodilution on oxygen transport in middle cerebral artery vasospasm. J Cereb Blood Flow Metab. 2011;31:22092217Google Scholar
Strand, T, Asplund, K, Eriksson, S, Hagg, E, Lithner, F, Wester, PO. A randomized controlled trial of hemodilution therapy in acute ischemic stroke. Stroke. 1984;15:980989Google Scholar
Staedt, U, Schlierf, G, Oster, P. Hypervolemic hemodilution with 10% HES 200/0.5 and 10% dextran 40 in patients with ischemic stroke. In Hartmann, A, Kuschinsky, E, eds. Cerebral Ischemia and Hemorheology. New York, NY: Springer; 1987:429435Google Scholar
Scandinavian Stroke Study Group. Multicenter trial of hemodilution in acute ischemic stroke. Results of subgroup analyses. Stroke. 1988;19:464471Google Scholar
Aichner, FT, Fazekas, F, Brainin, M, Polz, W, Mamoli, B, Zeiler, K. Hypervolemic hemodilution in acute ischemic stroke: The Multicenter Austrian Hemodilution Stroke Trial (MAHST). Stroke. 1998;29:743749Google Scholar
Grotta, J, Ackerman, R, Correia, J, Fallick, G, Chang, J. Whole blood viscosity parameters and cerebral blood flow. Stroke. 1982;13:296301Google Scholar
Coull, BM, Beamer, N, de Garmo, P, Sexton, G, Nordt, F, Knox, R, et al. Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke. 1991;22:162168Google Scholar
Beamer, N, Coull, BM, Sexton, G, de Garmo, P, Knox, R, Seaman, G. Fibrinogen and the albumin–globulin ratio in recurrent stroke. Stroke. 1993;24:11331139Google Scholar
Ernst, E, Resch, KL. Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med. 1993;118:956963Google Scholar
Rothwell, PM, Howard, SC, Power, DA, Gutnikov, SA, Algra, A, van Gijn, J, et al. Fibrinogen concentration and risk of ischemic stroke and acute coronary events in 5113 patients with transient ischemic attack and minor ischemic stroke. Stroke. 2004;35:23002305Google Scholar
Liu, M, Counsell, C, Wardlaw, J, Sandercock, P. A systematic review of randomized evidence for fibrinogen-depleting agents in acute ischemic stroke. J Stroke Cerebrovasc Dis. 1998;7:6369Google Scholar
Schuff-Werner, P, Schutz, E, Seyde, WC, Eisenhauer, T, Janning, G, Armstrong, VW, et al. Improved haemorheology associated with a reduction in plasma fibrinogen and LDL in patients being treated by heparin-induced extracorporeal LDL precipitation (HELP). Eur J Clin Invest. 1989;19:3037Google Scholar
Walzl, M, Lechner, H, Walzl, B, Schied, G. Improved neurological recovery of cerebral infarctions after plasmapheretic reduction of lipids and fibrinogen. Stroke. 1993;24:14471451Google Scholar
Bambauer, R, Schiel, R, Latza, R. Low-density lipoprotein apheresis: An overview. Ther Apher Dial. 2003;7:382390Google Scholar
Wieland, E, Schettler, V, Armstrong, VW. Highly effective reduction of c-reactive protein in patients with coronary heart disease by extracorporeal low density lipoprotein apheresis. Atherosclerosis. 2002;162:187191Google Scholar
Radack, K, Deck, C, Huster, G. Dietary supplementation with low-dose fish oils lowers fibrinogen levels: A randomized, double-blind controlled study. Ann Intern Med. 1989;111:757758Google Scholar
Kobayashi, S, Hirai, A, Terano, T, Hamazaki, T, Tamura, Y, Kumagai, A. Reduction in blood viscosity by eicosapentaenoic acid. Lancet. 1981;2:197Google Scholar
Vanschoonbeek, K, Feijge, MA, Paquay, M, Rosing, J, Saris, W, Kluft, C, et al. Variable hypocoagulant effect of fish oil intake in humans: Modulation of fibrinogen level and thrombin generation. Arterioscler Thromb Vasc Biol. 2004;24:17341740Google Scholar
Kwak, SM, Myung, SK, Lee, YJ, Seo, HG. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: A meta-analysis of randomized, double-blind, placebo-controlled trials. Arch Intern Med. 2012;172:686694Google Scholar
Geyer, RP. Oxygen transport in vivo by means of perfluorochemical preparations. N Engl J Med. 1982;307:304305Google Scholar
Tremper, KK, Friedman, AE, Levine, EM, Lapin, R, Camarillo, D. The preoperative treatment of severely anemic patients with a perfluorochemical oxygen-transport fluid, Fluosol-DA. N Engl J Med. 1982;307:277283Google Scholar
Gould, SA, Rosen, AL, Sehgal, LR, Sehgal, HL, Langdale, LA, Krause, LM, et al. Fluosol-DA as a red-cell substitute in acute anemia. N Engl J Med. 1986;314:16531656Google Scholar
Bose, B, Osterholm, JL, Triolo, A. Focal cerebral ischemia: Reduction in size of infarcts by ventriculo-subarachnoid perfusion with fluorocarbon emulsion. Brain Res. 1985;328:223231Google Scholar
Bell, RD, Frazer, GD, Osterholm, JL, Duckett, SW. A novel treatment for ischemic intracranial hypertension in cats. Stroke. 1991;22:8083Google Scholar
Bell, RD, Powers, BL, Brock, D, Provencio, JJ, Flanders, A, Benetiz, R, et al. Ventriculo-lumbar perfusion in acute ischemic stroke. Neurocrit Care. 2006;5:2129Google Scholar
Hammer, M, Jovin, T, Wahr, J, Heiss, WD. Partial occlusion of the descending aorta increases cerebral blood flow in a non-stroke porcine model. Cerebrovasc Dis. 2009;28:406410Google Scholar
Liebeskind, DS. Aortic occlusion for cerebral ischemia: From theory to practice. Curr Cardiol Rep. 2008;10:3136Google Scholar
Lylyk, P, Vila, JF, Miranda, C, Ferrario, A, Romero, R, Cohen, JE. Partial aortic obstruction improves cerebral perfusion and clinical symptoms in patients with symptomatic vasospasm. Neurol Res. 2005;27(Suppl 1):S129S135Google Scholar
Emery, DJ, Schellinger, PD, Selchen, D, Douen, A, Chan, R, Shuaib, A, et al. Safety and feasibility of collateral blood flow augmentation following intravenous thrombolysis. Stroke. 2011;42:11351137Google Scholar
Shuaib, A, Bornstein, NM, Diener, H-C, et al. Partial aortic occlusion for cerebral perfusion augmentation: safety and efficacy of Neuroflo in acute ischemic stroke. Stroke. 2011;42:16801690Google Scholar
Han, JH, Leung, TW, Lam, WL et al. Preliminary findings of external counterpulsation for ischemic stroke patients with large artery occlusions. Stroke. 2008;39:13401343Google Scholar
Bonetti, PO, Holmes, DR Jr, Lerman, A, Barsness, GW. Enhanced external counterpulsation for ischemic heart disease: What’s behind the curtain? J Am Coll Cardiol. 2003;41;19181925Google Scholar
del Zoppo, GJ. Vascular hemostasis and brain embolism In Caplan, LR Manning, WJ, eds. Brain Embolism. New York, NY: Informa Healthcare; 2006:243258Google Scholar
Weksler, B. Antithrombotic therapies in the management of cerebral ischemia. In Plum, F, Pulsinelli, W, eds. Cerebrovascular Diseases: Proceedings of the Fourteenth Princeton Conference. New York, NY: Raven Press, 1985:211223Google Scholar
Caplan, LR. Antiplatelet therapy in stroke prevention: Present and future. Cerebrovasc Dis. 2006;21 Suppl 1:16Google Scholar
Bloom, AL, Thomas, DP. Haemostasis and Thrombosis. Edinburgh: Churchill-Livingstone; 1987Google Scholar
Deykin, D. Thrombogenesis. N Engl J Med. 1967;276:622628Google Scholar
Hemker, HC, Lindhout, T. Interaction of platelet activation and coagulation. In Fuster, V, Topol, EN, Nabel, EG, eds. Atherothrombosiss and Coronary Artery Disease. Philadelphia, PA: Lippincott–Williams & Wilkins; 2005:569581Google Scholar
Marder, VJ, Chute, DJ, Starkman, S, Abolian, AM, Kidwell, C, Liebeskind, D, et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. 2006;37:20862093Google Scholar
Liebeskind, DS, Sanossian, N, Yong, WH, Starkman, S, Tsang, MP, Moya, AL, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke. 2011;42:12371243Google Scholar
Francis, CW, Kaplan, KL. Principles of antithrombotic therapy. In Lichtman, MA, Kipps, TJ, Kaushansky, K, eds. Williams Hematology, 7th ed. New York, NY: McGraw-Hill; 2006:283300Google Scholar
Caplan, LR. Anticoagulation for cerebral ischemia. Clin Neuropharmacol. 1986;9:399414Google Scholar
Damus, PS, Hicks, M, Rosenberg, RD. Anticoagulant action of heparin. Nature. 1973;246:355357Google Scholar
Wu, KK. New pharmacologic approaches to thromboembolic disorders. Hosp Pract (Off Ed). 1985;20:101104, 107108, 117120Google Scholar
Hirsh, J. Heparin. N Engl J Med. 1991;324:15651574Google Scholar
Salzman, EW, Deykin, D, Shapiro, RM, Rosenberg, R. Management of heparin therapy: Controlled prospective trial. N Engl J Med. 1975;292:10461050Google Scholar
Warkentin, TE, Levine, MN, Hirsh, J, Horsewood, P, Roberts, RS, Gent, M, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med. 1995;332:13301335Google Scholar
Becker, PS, Miller, VT. Heparin-induced thrombocytopenia. Stroke. 1989;20:14491459Google Scholar
Arepally, GM, Ortel, TL. Clinical practice. Heparin-induced thrombocytopenia. N Engl J Med. 2006;355:809817Google Scholar
Das, P, Ziada, K, Steinhubl, SR, Moliterno, DJ, Hamdalla, H, Jozic, J, et al. Heparin-induced thrombocytopenia and cardiovascular diseases. Am Heart J. 2006;152:1926Google Scholar
Lovecchio, F. Heparin-induced thrombocytopenia. Clinical Toxicology. 2014;52:579583Google Scholar
Phelan, BK. Heparin-associated thrombosis without thrombocytopenia. Ann Intern Med. 1983;99:637638Google Scholar
Weitz, JI. Low-molecular-weight heparins. N Engl J Med. 1997;337:688698Google Scholar
Gordon, DL, Linhardt, R, Adams, HP Jr. Low-molecular-weight heparins and heparinoids and their use in acute or progressing ischemic stroke. Clin Neuropharmacol. 1990;13:522543Google Scholar
Rosenberg, RD, Lam, L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A. 1979;76:12181222Google Scholar
Bick, RL, Frenkel, EP, Walenga, J, Fareed, J, Hoppensteadt, DA. Unfractionated heparin, low molecular weight heparins, and pentasaccharide: Basic mechanism of actions, pharmacology, and clinical use. Hematol Oncol Clin North Am. 2005; 19:151, vGoogle Scholar
Sherman, DG, Albers, GW, Bladin, C, Fieschi, C, Gabbai, AA, Kase, CS, et al. The efficacy and safety of enoxaparin versus unfractionated heparin for the prevention of venous thromboembolism after acute ischaemic stroke (PREVAIL study): An open-label randomised comparison. Lancet. 2007;369:13471355Google Scholar
Wessler, S, Gitel, SN. Warfarin. From bedside to bench. N Engl J Med. 1984;311:645652Google Scholar
Deykin, D. Warfarin therapy. 1. N Engl J Med. 1970;283:691694Google Scholar
Hull, R, Hirsh, J, Jay, R, Carter, C, England, C, Gent, M, et al. Different intensities of oral anticoagulant therapy in the treatment of proximal-vein thrombosis. N Engl J Med. 1982;307:16761681Google Scholar
Taberner, DA, Poller, L, Burslem, RW, Jones, JB. Oral anticoagulants controlled by the British comparative thromboplastin versus low-dose heparin in prophylaxis of deep vein thrombosis. Br Med J. 1978;1:272274Google Scholar
Francis, CW, Marder, VJ, Evarts, CM, Yaukoolbodi, S. Two-step warfarin therapy. Prevention of postoperative venous thrombosis without excessive bleeding. JAMA. 1983;249:374378Google Scholar
Hirsh, J, Poller, L, Deykin, D, Levine, M, Dalen, JE. Optimal therapeutic range for oral anticoagulants. Chest. 1989;95:5s11sGoogle Scholar
The Boston Area Anticogulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med. 1991;325:129132Google Scholar
The Stroke Prevention In Reversible Ischemia Trial (SPIRIT) Study Group. A randomized trial of anticoagulants versus aspirin after cerebral ischemia of presumed arterial origin. Ann Neurol. 1997;42:857865Google Scholar
Sconce, EA, Khan, TI, Wynne, HA, Avery, P, Monkhouse, L, King, BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: Proposal for a new dosing regimen. Blood. 2005;106:23292333Google Scholar
Rieder, MJ, Reiner, AP, Gage, BF, Nickerson, DA, Eby, CS, McLeod, HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:22852293Google Scholar
Yin, T, Miyata, T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 – rationale and perspectives. Thromb Res. 2007;120:110Google Scholar
Ingelman-Sundberg, M. Pharmacogenomic biomarkers for prediction of severe adverse drug reactions. N Engl J Med. 2008;358:637639Google Scholar
Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994;154:14491457Google Scholar
Hart, RG. Oral anticoagulants for secondary prevention of stroke. Cerebrovascular Diseases. 1997;7(Suppl 6):2429Google Scholar
Hylek, EM, Skates, SJ, Sheehan, MA, Singer, DE. An analysis of the lowest effective intensity of prophylactic anticoagulation for patients with nonrheumatic atrial fibrillation. N Engl J Med. 1996;335:540546Google Scholar
Fleming, HA, Bailey, SM. Mitral valve disease, systemic embolism and anticoagulants. Postgrad Med J. 1971;47:599604Google Scholar
Adams, GF, Merrett, JD, Hutchinson, WM, Pollock, AM. Cerebral embolism and mitral stenosis: Survival with and without anticoagulants. J Neurol Neurosurg Psychiatry. 1974;37:378383Google Scholar
Carter, AB. Prognosis of cerebral embolism. Lancet. 1965;2:514519Google Scholar
Caplan, LR. Brain embolism. In Caplan, LR, Hurst, JW, Chimowitz, MI, eds. Clinical Neurocardiology. New York, NY: Marcel Dekker; 1999:35185Google Scholar
The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med. 1990;323:15051511Google Scholar
The European Atrial Fibrillation Trial (EAFT) Study Group. Silent brain infarction in nonrheumatic atrial fibrillation. Neurology. 1996;46:159165Google Scholar
European Atrial Fibrillation Trial Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet. 1993;342:12551262Google Scholar
Petersen, P, Boysen, G, Godtfredsen, J, Andersen, ED, Andersen, B. Placebo-controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet. 1989;1:175179Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. Stroke Prevention in Atrial Fibrillation Study. Final results. Circulation. 1991;84:527539Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. Lancet. 1994;343:687691Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet. 1996;348:633638Google Scholar
Albers, GW. Atrial fibrillation and stroke. Three new studies, three remaining questions. Arch Intern Med. 1994;154:14431448Google Scholar
Manning, W. Cardiac Source of Embolism: Treatment in Brain Embolism. New York, NY: Informa Healthcare; 2006Google Scholar
Lip, GY. Can we predict stroke in atrial fibrillation? Clin Cardiol. 2012;35 Suppl 1:2127Google Scholar
The Publications Committee for the Trial of Org 10172 in Acute Stroke Treatment (TOAST) Investigators. Low molecular weight heparinoid, Org 10172 (Danaparoid), and outcome after acute ischemic stroke: A randomized controlled trial. JAMA. 1998;279:12651272Google Scholar
Saxena, R, Lewis, S, Berge, E, Sandercock, PA, Koudstaal, PJ. Risk of early death and recurrent stroke and effect of heparin in 3169 patients with acute ischemic stroke and atrial fibrillation in the International Stroke Trial. Stroke. 2001;32:23332337Google Scholar
Berge, E, Abdelnoor, M, Nakstad, PH, Sandset, PM. Low molecular-weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: A double-blind randomised study. HAEST Study Group. Heparin in Acute Embolic Stroke Trial. Lancet. 2000;355:12051210Google Scholar
Cerebral Embolism Study Group. Immediate anticoagulation of embolic stroke: A randomized trial. Stroke. 1983;14:668676Google Scholar
Chamorro, A, Vila, N, Saiz, A, Alday, M, Tolosa, E. Early anticoagulation after large cerebral embolic infarction: A safety study. Neurology. 1995;45:861865Google Scholar
Chamorro, A, Vila, N, Ascaso, C, Blanc, R. Heparin in acute stroke with atrial fibrillation: Clinical relevance of very early treatment. Arch Neurol. 1999;56:10981102Google Scholar
Cerebral Embolism Task Force. Cardiogenic brain embolism. Arch Neurol. 1986;43:7184Google Scholar
Cerebral Embolism Task Force. Cardiogenic brain embolism. The second report of the Cerebral Embolism Task Force. Arch Neurol. 1989;46:727743Google Scholar
Cerebral Embolism Study Group. Immediate anticoagulation of embolic stroke: Brain hemorrhage and management options. Stroke. 1984;15:779789Google Scholar
Furlan, AJ, Cavalier, SJ, Hobbs, RE, Weinstein, MA, Modic, MT. Hemorrhage and anticoagulation after nonseptic embolic brain infarction. Neurology. 1982;32:280282Google Scholar
Pessin, MS, Estol, CJ, Lafranchise, F, Caplan, LR. Safety of anticoagulation after hemorrhagic infarction. Neurology. 1993;43:12981303Google Scholar
Cabanes, L, Mas, JL, Cohen, A, Amarenco, P, Cabanes, PA, Oubary, P, et al. Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age. A study using transesophageal echocardiography. Stroke. 1993;24:18651873Google Scholar
Mas, JL, Arquizan, C, Lamy, C, Zuber, M, Cabanes, L, Derumeaux, G, et al. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med. 2001;345:17401746Google Scholar
Thaler, DE, Saver, JL. Cryptogenic stroke and patent foramen ovale. Curr Opin Cardiol. 2008;23:537544Google Scholar
Kent, DM, Ruthazer, R, Weimar, C, Mas, JL, Serena, J, Homma, S, et al. An index to identify stroke-related vs. incidental patent foramen ovale in cryptogenic stroke. Neurology. 2013;81:619625Google Scholar
Grosgogeat, Y, Lhermitte, F, Carpentier, A, Facquet, J, Alhomme, P, Tran, T. [Aneurysm of the interauricular septum revealed by a cerebral embolism]. Arch Mal Coeur Vaiss. 1973;66:169177Google Scholar
Silver, MD, Dorsey, JS. Aneurysms of the septum primum in adults. Arch Pathol Lab Med. 1978;102:6265Google Scholar
Bogousslavsky, J, Garazi, S, Jeanrenaud, X, Aebischer, N, Van Melle, G. Stroke recurrence in patients with patent foramen ovale: The Lausanne Study. Lausanne Stroke with Paradoxal Embolism Study Group. Neurology. 1996;46:13011305Google Scholar
Mas, JL, Zuber, M. Recurrent cerebrovascular events in patients with patent foramen ovale, atrial septal aneurysm, or both and cryptogenic stroke or transient ischemic attack. French Study Group on Patent Foramen Ovale and Atrial Septal Aneurysm. Am Heart J. 1995;130:10831088Google Scholar
Bridges, ND, Hellenbrand, W, Latson, L, Filiano, J, Newburger, JW, Lock, JE. Transcatheter closure of patent foramen ovale after presumed paradoxical embolism. Circulation. 1992;86:19021908Google Scholar
Homma, S, Sacco, RL, Di Tullio, MR, Sciacca, RR, Mohr, JP. Effect of medical treatment in stroke patients with patent foramen ovale: Patent Foramen Ovale in Cryptogenic Stroke Study. Circulation. 2002;105:26252631Google Scholar
Mohr, JP, Thompson, JL, Lazar, RM, Levin, B, Sacco, RL, Furie, KL, et al. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med. 2001;345:14441451Google Scholar
Furlan, AJ, Reisman, M, Massaro, J, Mauri, L, Adams, H, Albers, GW, et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med. 2012;366:991999Google Scholar
Carroll, JD, Saver, JL, Thaler, DE, Smalling, RW, Berry, S, MacDonald, LA, et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med. 2013;368:10921100Google Scholar
Meier, B, Kalesan, B, Mattle, HP, Khattab, AA, Hildick-Smith, D, Dudek, D, et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med. 2013;368:10831091Google Scholar
Li, Y, Zhou, K, Hua, Y, Wang, C, Xie, L, Fang, J, et al. Amplatzer occluder versus cardioSEAL/STARFlex occluder: A meta-analysis of the efficacy and safety of transcatheter occlusion for patent foramen ovale and atrial septal defect. Cardiol Young. 2013;23:582596Google Scholar
Bousser, M-G, Ross Russell, R. Cerebral Venous Thrombosis. Philadelphia, PA: W B Saunders; 1997Google Scholar
Ameri, A, Bousser, M-G. Cerebral venous thrombosis. Neurol Clin. 1992;10:87111Google Scholar
Jacewicz, M, Plum, F. Aseptic cerebral venous thrombosis. In Einhaupl, K, Kempski, O, Baethmann, A, eds. Cerebral Sinus Thrombosis. Experimental and Clinical Aspects. New York, NY: Plenum; 1990:157170Google Scholar
Einhaupl, KM, Villringer, A, Meister, W, Mehraein, S, Garner, C, Pellkofer, M, et al. Heparin treatment in sinus venous thrombosis. Lancet. 1991;338:597600Google Scholar
Meister, W, Einhaupl, K, Villringer, A. Treatment of patients with cerebral sinus and vein thrombosis with heparin. In Einhaupl, K, Kempski, O, Baethmann, A, eds. Cerebral Sinus Thrombosis. Experimental and Clinical Aspects. New York, NY: Plenum; 1990:225230Google Scholar
de Bruijn, SF, Stam, J. Randomized, placebo-controlled trial of anticoagulant treatment with low-molecular-weight heparin for cerebral sinus thrombosis. Stroke. 1999;30:484488Google Scholar
Caplan, LR. Venous and dural sinus thrombosis. In Caplan, LR, ed. Posterior Circulation Disease. Clinical Findings, Diagnosis, and Management. Boston, MA: Blackwell Science; 1996:569592Google Scholar
Diaz, JM, Schiffman, JS, Urban, ES, Maccario, M. Superior sagittal sinus thrombosis and pulmonary embolism: A syndrome rediscovered. Acta Neurol Scand. 1992;86:390396Google Scholar
Caplan, LR. Resolved: Heparin may be useful in selected patients with brain ischemia. Stroke. 2003;34:230231Google Scholar
Caplan, LR. Anticoagulants to prevent stroke occurrence and worsening. Isr Med Assoc J. 2006;8:773778Google Scholar
Caplan, LR. Worsening in ischemic stroke patients: Is it time for a new strategy? Stroke. 2002;33:14431445Google Scholar
International Stroke Trial Collaborative Group. The International Stroke Trial (IST): A randomised trial of aspirin, subcutaneous heparin, both, or neither among 19 435 patients with acute ischaemic stroke. Lancet. 1997;349:15691581Google Scholar
Kay, R, Wong, KS, Yu, YL, Chan, YW, Tsoi, TH, Ahuja, AT, et al. Low-molecular-weight heparin for the treatment of acute ischemic stroke. N Engl J Med. 1995;333:15881593Google Scholar
Adams, HP Jr., Bendixen, BH, Leira, E, Chang, KC, Davis, PH, Woolson, RF, et al. Antithrombotic treatment of ischemic stroke among patients with occlusion or severe stenosis of the internal carotid artery: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology. 1999;53:122125Google Scholar
Wong, KS, Chen, C, Ng, PW, Tsoi, TH, Li, HL, Fong, WC, et al. Low-molecular-weight heparin compared with aspirin for the treatment of acute ischaemic stroke in asian patients with large artery occlusive disease: A randomised study. Lancet Neurol. 2007;6:407413Google Scholar
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, Stern, BJ, Hertzberg, VS, Frankel, MR, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005;352:13051316Google Scholar
Koroshetz, WJ. Warfarin, aspirin, and intracranial vascular disease. N Engl J Med. 2005;352:13681370Google Scholar
Georgiadis, D, Arnold, M, von Buedingen, HC, Valko, P, Sarikaya, H, Rousson, V, et al. Aspirin vs. anticoagulation in carotid artery dissection: A study of 298 patients. Neurology. 2009;72:18101815Google Scholar
Samsa, GP, Matchar, DB, Goldstein, LB, Bonito, AJ, Lux, LJ, Witter, DM, et al. Quality of anticoagulation management among patients with atrial fibrillation: Results of a review of medical records from two communities. Arch Intern Med. 2000;160:967973Google Scholar
Chiquette, E, Amato, MG, Bussey, HI. Comparison of an anticoagulation clinic with usual medical care: Anticoagulation control, patient outcomes, and health care costs. Arch Intern Med. 1998;158:16411647Google Scholar
Kucher, N, Connolly, S, Beckman, JA, Cheng, LH, Tsilimingras, KV, Fanikos, J, et al. International normalized ratio increase before warfarin-associated hemorrhage: Brief and subtle. Arch Intern Med. 2004;164:21762179Google Scholar
Kobayashi, S, Tazaki, Y. Effect of the thrombin inhibitor argatroban in acute cerebral thrombosis. Semin Thromb Hemost. 1997;23:531534Google Scholar
Lewis, BE, Wallis, DE, Leya, F, Hursting, MJ, Kelton, JG. Argatroban anticoagulation in patients with heparin-induced thrombocytopenia. Arch Intern Med. 2003;163:18491856Google Scholar
LaMonte, MP, Nash, ML, Wang, DZ, Woolfenden, AR, Schultz, J, Hursting, MJ, et al. Argatroban anticoagulation in patients with acute ischemic stroke (ARGIS-1): A randomized, placebo-controlled safety study. Stroke. 2004;35:16771682Google Scholar
Fiessinger, JN, Huisman, MV, Davidson, BL, Bounameaux, H, Francis, CW, Eriksson, H, et al. Ximelagatran vs. low-molecular-weight heparin and warfarin for the treatment of deep vein thrombosis: A randomized trial. JAMA. 2005;293:681689Google Scholar
Olsson, SB. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): Randomised controlled trial. Lancet. 2003;362:16911698Google Scholar
Albers, GW, Diener, HC, Frison, L, Grind, M, Nevinson, M, Partridge, S, et al. Ximelagatran vs. warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: A randomized trial. JAMA. 2005;293:690698Google Scholar
Akins, PT, Feldman, HA, Zoble, RG, Newman, D, Spitzer, SG, Diener, HC, et al. Secondary stroke prevention with ximelagatran versus warfarin in patients with atrial fibrillation: Pooled analysis of SPORTIF III and V clinical trials. Stroke. 2007;38:874880Google Scholar
Ahmed, S, Levin, V, Malacoff, R, Martinez, MW. Dabigatran: A new chapter in anticoagulation. Cardiovasc Hematol Agents Med Chem. 2012;10:116123Google Scholar
Di Nisio, M, Middeldorp, S, Buller, HR. Direct thrombin inhibitors. N Engl J Med. 2005;353:10281040Google Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, Eikelboom, J, Oldgren, J, Parekh, A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:11391151Google Scholar
Yeh, CH, Fredenburgh, JC, Weitz, JI. Oral direct factor Xa inhibitors. Circ Res. 2012;111:10691078Google Scholar
Connolly, SJ, Eikelboom, J, Joyner, C, Diener, HC, Hart, R, Golitsyn, S, et al. Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364:806817Google Scholar
Granger, CB, Alexander, JH, McMurray, JJ, Lopes, RD, Hylek, EM, Hanna, M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981992Google Scholar
Patel, MR, Mahaffey, KW, Garg, J, Pan, G, Singer, DE, Hacke, W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883891Google Scholar
Giugliano, RP, Ruff, CT, Braunwald, E, Murphy, SA, Wiviott, SD, Halperin, JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369:20932104Google Scholar
Bauer, KA. New anticoagulants: Anti IIa vs. anti Xa – is one better? J Thromb Thrombolysis. 2006;21:6772Google Scholar
Turpie, AG, Bauer, KA, Eriksson, BI, Lassen, MR. Fondaparinux vs. enoxaparin for the prevention of venous thromboembolism in major orthopedic surgery: A meta-analysis of four randomized double-blind studies. Arch Intern Med. 2002;162:18331840Google Scholar
Cohen, AT, Davidson, BL, Gallus, AS, Lassen, MR, Prins, MH, Tomkowski, W, et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: Randomised placebo controlled trial. BMJ. 2006;332:325329Google Scholar
Yusuf, S, Mehta, SR, Chrolavicius, S, Afzal, R, Pogue, J, Granger, CB, et al. Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med. 2006;354:14641476Google Scholar
Yusuf, S, Mehta, SR, Chrolavicius, S, Afzal, R, Pogue, J, Granger, CB, et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: The OASIS-6 randomized trial. JAMA. 2006;295:15191530Google Scholar
Rajagopal, V, Bhatt, DL. Factor Xa inhibitors in acute coronary syndromes: Moving from mythology to reality. J Thromb Haemost. 2005;3:436438Google Scholar
Fields, WS, Lemak, NA. A History of Stroke: Its Recognition and Treatment. New York, NY: Oxford University Press; 1989Google Scholar
Craven, LL. Experiences with aspirin (acetylsalicylic acid) in the nonspecific prophylaxis of coronary thrombosis. Miss Valley Med J. 1953;75:3844Google Scholar
Craven, LL. Prevention of coronary and cerebral thrombosis. Miss Valley Med J. 1956;78:213215Google Scholar
Mundall, J, Quintero, P, Von Kaulla, KN, Harmon, R, Austin, J. Transient monocular blindness and increased platelet aggregability treated with aspirin. A case report. Neurology. 1972;22:280285Google Scholar
Harrison, MJ, Marshall, J, Meadows, JC, Russell, RW. Effect of aspirin in amaurosis fugax. Lancet. 1971;2:743744Google Scholar
Fields, WS, Lemak, NA, Frankowski, RF, Hardy, RJ. Controlled trial of aspirin in cerebral ischemia. Stroke. 1977;8:301314Google Scholar
The Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in threatened stroke. N Engl J Med. 1978; 299:5359Google Scholar
Moncada, S, Vane, JR. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. N Engl J Med. 1979;300:11421147Google Scholar
Nurden, AT, Guyonnet Duperat, V, Nurden, P. Platelet function and pharmacology of antiplatelet drugs. Cerebrovasc Dis. 1997;7 Suppl 6:29Google Scholar
Moncada, S. Biology and therapeutic potential of prostacyclin. Stroke. 1983;14:157168Google Scholar
Preston, FE, Whipps, S, Jackson, CA, French, AJ, Wyld, PJ, Stoddard, CJ. Inhibition of prostacyclin and platelet thromboxane A2 after low-dose aspirin. N Engl J Med. 1981;304:7679Google Scholar
Weksler, BB, Pett, SB, Alonso, D, Richter, RC, Stelzer, P, Subramanian, V, et al. Differential inhibition by aspirin of vascular and platelet prostaglandin synthesis in atherosclerotic patients. N Engl J Med. 1983;308:800805Google Scholar
United Kingdom Transient Ischaemic Attack (UK-TIA) aspirin trial: Interim results. UK-TIA study group. Br Med J (Clin Res Ed). 1988;296:316320Google Scholar
The SALT Collaborative Group. Swedish Aspirin Low-Dose Trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischaemic events. Lancet. 1991;338:13451349Google Scholar
The Dutch TIA Trial Study Group. A comparison of two doses of aspirin (30 mg vs. 283 mg a day) in patients after a transient ischemic attack or minor ischemic stroke. N Engl J Med. 1991;325:12611266Google Scholar
Schwartz, KA. Aspirin resistance: A review of diagnostic methodology, mechanisms, and clinical utility. Adv Clin Chem. 2006;42:81110Google Scholar
Helgason, CM, Hoff, JA, Kondos, GT, Brace, LD. Platelet aggregation in patients with atrial fibrillation taking aspirin or warfarin. Stroke. 1993;24:14581461Google Scholar
Helgason, CM, Tortorice, KL, Winkler, SR, Penney, DW, Schuler, JJ, McClelland, TJ, et al. Aspirin response and failure in cerebral infarction. Stroke. 1993;24:345350Google Scholar
Dalen, JE. Aspirin resistance: Is it real? Is it clinically significant? Am J Med. 2007;120:14Google Scholar
Chen, WH, Cheng, X, Lee, PY, Ng, W, Kwok, JY, Tse, HF, et al. Aspirin resistance and adverse clinical events in patients with coronary artery disease. Am J Med. 2007;120:631635Google Scholar
Hohlfeld, T, Weber, AA, Junghans, U, Schumacher, M, Boucher, M, Schror, K, et al. Variable platelet response to aspirin in patients with ischemic stroke. Cerebrovasc Dis. 2007;24:4350Google Scholar
Gaglia, MA Jr., Clavijo, L. Cardiovascular pharmacology core reviews: Aspirin. J Cardiovasc Pharmacol Ther. 2013;18:505513Google Scholar
FitzGerald, GA. Dipyridamole. N Engl J Med. 1987;316:12471257Google Scholar
Honour, AJ, Hockaday, TD, Mann, JI. The synergistic effect of aspirin and dipyridamole upon platelet thrombi in living blood vessels. Br J Exp Pathol. 1977;58:268272Google Scholar
Sullivan, JM, Harken, DE, Gorlin, R. Pharmacologic control of thromboembolic complications of cardiac-valve replacement. N Engl J Med. 1971;284:13911394Google Scholar
The American–Canadian Co-operative Study Group. Persantine aspirin trial in cerebral ischemia. Stroke. 1983;14:99103Google Scholar
Bousser, M-G, Eschwege, E, Haguenau, M, Lefaucconnier, JM, Thibult, N, Touboul, D, et al. “AICLA” controlled trial of aspirin and dipyridamole in the secondary prevention of athero-thrombotic cerebral ischemia. Stroke. 1983;14:514Google Scholar
The ESPS Group. The European Stroke Prevention Study (ESPS). Principal end-points. Lancet. 1987;2:13511354Google Scholar
Diener, HC, Cunha, L, Forbes, C, Sivenius, J, Smets, P, Lowenthal, A. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci. 1996;143:113Google Scholar
Leonardi-Bee, J, Bath, PM, Bousser, M-G, Davalos, A, Diener, HC, Guiraud-Chaumeil, B, et al. Dipyridamole for preventing recurrent ischemic stroke and other vascular events: A meta-analysis of individual patient data from randomized controlled trials. Stroke. 2005;36:162168Google Scholar
Sacco, RL, Sivenius, J, Diener, HC. Efficacy of aspirin plus extended-release dipyridamole in preventing recurrent stroke in high-risk populations. Arch Neurol. 2005;62:403408Google Scholar
Halkes, PH, van Gijn, J, Kappelle, LJ, Koudstaal, PJ, Algra, A. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): Randomised controlled trial. Lancet. 2006;367:16651673Google Scholar
Verro, P, Gorelick, PB, Nguyen, D. Aspirin plus dipyridamole versus aspirin for prevention of vascular events after stroke or TIA: A meta-analysis. Stroke. 2008;39:13581363Google Scholar
Ikeda, Y, Kikuchi, M, Murakami, H, Satoh, K, Murata, M, Watanabe, K, et al. Comparison of the inhibitory effects of cilostazol, acetylsalicylic acid and ticlopidine on platelet functions ex vivo. Randomized, double-blind cross-over study. Arzneimittelforschung. 1987;37:563566Google Scholar
Tanaka, T, Ishikawa, T, Hagiwara, M, Onoda, K, Itoh, H, Hidaka, H. Effects of cilostazol, a selective camp phosphodiesterase inhibitor on the contraction of vascular smooth muscle. Pharmacology. 1988;36:313320Google Scholar
Gotoh, F, Tohgi, H, Hirai, S, Terashi, A, Fukuuchi, Y, Otomo, E, et al. Cilostazol stroke prevention study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J Stroke Cerebrovasc Dis. 2000;9:147157Google Scholar
Shinohara, Y, Katayama, Y, Uchiyama, S, Yamaguchi, T, Handa, S, Matsuoka, K, et al. Cilostazol for prevention of secondary stroke (CSPS 2): An aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol. 2010;9:959968Google Scholar
Ameriso, SF, Lagos, R, Ferreira, LM, Fernandez Cisneros, L, La Mura, AR. Cerebrovascular effects of cilostazol in patients with atherosclerotic disease. J Stroke Cerebrovasc Dis. 2006;15:273276Google Scholar
Kwon, SU, Cho, Y-J, Koo, J-S, Bae, H-J, Lee, Y-S, Hong, K-S, et al. Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: The multicenter double-blind placebo-controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke. 2005;36:782786Google Scholar
Sharis, PJ, Cannon, CP, Loscalzo, J. The antiplatelet effects of ticlopidine and clopidogrel. Ann Intern Med. 1998;129:394405Google Scholar
Hass, WK, Easton, JD, Adams, HP Jr., Pryse-Phillips, W, Molony, BA, Anderson, S, et al. A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients. Ticlopidine Aspirin Stroke Study Group. N Engl J Med. 1989;321:501507Google Scholar
Gent, M, Blakely, JA, Easton, JD, Ellis, DJ, Hachinski, VC, Harbison, JW, et al. The Canadian–American Ticlopidine Study (CATS) in thromboembolic stroke. Lancet. 1989;1:12151220Google Scholar
Bennett, CL, Weinberg, PD, Rozenberg-Ben-Dror, K, Yarnold, PR, Kwaan, HC, Green, D. Thrombotic thrombocytopenic purpura associated with ticlopidine. A review of 60 cases. Ann Intern Med. 1998;128:541544Google Scholar
CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996;348:13291339Google Scholar
Bennett, CL, Connors, JM, Carwile, JM, Moake, JL, Bell, WR, Tarantolo, SR, et al. Thrombotic thrombocytopenic purpura associated with clopidogrel. N Engl J Med. 2000;342:17731777Google Scholar
Diener, HC, Bogousslavsky, J, Brass, LM, Cimminiello, C, Csiba, L, Kaste, M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): Randomised, double-blind, placebo-controlled trial. Lancet. 2004;364:331337Google Scholar
Hankey, GJ, Eikelboom, JW. Adding aspirin to clopidogrel after TIA and ischemic stroke: Benefits do not match risks. Neurology. 2005;64:11171121Google Scholar
Bhatt, DL, Fox, KA, Hacke, W, Berger, PB, Black, HR, Boden, WE, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006;354:17061717Google Scholar
Wang, Y, Zhao, X, Liu, L, Wang, D, Wang, C, Li, H, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013;369:1119Google Scholar
Johnston, SC, Easton, JD, Farrant, M, Barsan, W, Battenhouse, H, Conwit, R, et al. Platelet-oriented inhibition in new TIA and minor ischemic stroke (POINT) trial: Rationale and design. Int J Stroke. 2013;8:479483Google Scholar
Steinhubl, SR, Berger, PB, Mann, JT 3rd, Fry, ET, DeLago, A, Wilmer, C, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: A randomized controlled trial. JAMA. 2002;288:24112420Google Scholar
Chaturvedi, S, Yadav, JS. The role of antiplatelet therapy in carotid stenting for ischemic stroke prevention. Stroke. 2006;37:15721577Google Scholar
Weksler, BB. Antiplatelet agents in stroke prevention. Combination therapy: Present and future. Cerebrovasc Dis. 2000;10 Suppl 5:4148Google Scholar
Tcheng, JE. Differences among the parenteral platelet glycoprotein IIB/IIIA inhibitors and implications for treatment. Am J Cardiol. 1999;83:7e11eGoogle Scholar
Lefkovits, J, Plow, EF, Topol, EJ. Platelet glycoprotein IIB/IIIA receptors in cardiovascular medicine. N Engl J Med. 1995;332:15531559Google Scholar
Wallace, RC, Furlan, AJ, Moliterno, DJ, Stevens, GH, Masaryk, TJ, Perl, J 2nd. Basilar artery rethrombosis: Successful treatment with platelet glycoprotein IIB/IIIA receptor inhibitor. AJNR Am J Neuroradiol. 1997;18:12571260Google Scholar
The Abciximab in Ischemic Stroke Investigators. Abciximab in acute ischemic stroke. A randomized, double-blind, placebo-controlled, dose-escalation study. Stroke. 2000;31:601609Google Scholar
Qureshi, AI, Harris-Lane, P, Kirmani, JF, Janjua, N, Divani, AA, Mohammad, YM, et al. Intra-arterial reteplase and intravenous abciximab in patients with acute ischemic stroke: An open-label, dose-ranging, phase I study. Neurosurgery. 2006;59:789796;discussion 796787Google Scholar
Eckert, B, Koch, C, Thomalla, G, Kucinski, T, Grzyska, U, Roether, J, et al. Aggressive therapy with intravenous abciximab and intra-arterial rtPA and additional PTA/stenting improves clinical outcome in acute vertebrobasilar occlusion: Combined local fibrinolysis and intravenous abciximab in acute vertebrobasilar stroke treatment (FAST): Results of a multicenter study. Stroke. 2005;36:11601165Google Scholar
Velat, GJ, Burry, MV, Eskioglu, E, Dettorre, RR, Firment, CS, Mericle, RA. The use of abciximab in the treatment of acute cerebral thromboembolic events during neuroendovascular procedures. Surg Neurol. 2006;65:352358, discussion 358359Google Scholar
Heer, T, Zeymer, U, Juenger, C, Gitt, AK, Wienbergen, H, Zahn, R, et al. Beneficial effects of abciximab in patients with primary percutaneous intervention for acute STsegment elevation myocardial infarction in clinical practice. Heart. 2006;92:14841489Google Scholar
De Luca, G, Suryapranata, H, Stone, GW, Antoniucci, D, Tcheng, JE, Neumann, FJ, et al. Abciximab as adjunctive therapy to reperfusion in acute ST-segment elevation myocardial infarction: A meta-analysis of randomized trials. JAMA. 2005;293:17591765Google Scholar
Coller, BS. Anti-gpIIB/IIIA drugs: Current strategies and future directions. Thromb Haemost. 2001;86:427443Google Scholar
Topol, EJ, Easton, D, Harrington, RA, Amarenco, P, Califf, RM, Graffagnino, C, et al. Randomized, double-blind, placebo-controlled, international trial of the oral IIB/IIIA antagonist lotrafiban in coronary and cerebrovascular disease. Circulation. 2003;108:399406Google Scholar
Antiplatelet Trialists’ Collaboration. Secondary prevention of vascular disease by prolonged antiplatelet treatment. Br Med J (Clin Res Ed). 1988;296:320331Google Scholar
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy – I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Antiplatelet Trialists’ Collaboration. BMJ. 1994;308:81106Google Scholar
Antiplatelet Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:7186Google Scholar
Gubitz, G, Sandercock, P, Counsell, C. Antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst Rev. 2000:Cd000029Google Scholar
Tran, H, Anand, SS. Oral antiplatelet therapy in cerebrovascular disease, coronary artery disease, and peripheral arterial disease. JAMA. 2004;292:18671874Google Scholar
Diener, HC. Secondary stroke prevention with antiplatelet drugs: Have we reached the ceiling? Int J Stroke. 2006;1:48Google Scholar
Amarenco, P, Davis, S, Jones, EF, Cohen, AA, Heiss, WD, Kaste, M, et al. for The Aortic Arch Related Cerebral Hazard Trial Investigators. Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke. 2014;45:12481257Google Scholar
The SPS 3 Investigators. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N Engl J Med. 2012;367:817825Google Scholar
Miller, A, Lees, RS. Simultaneous therapy with antiplatelet and anticoagulant drugs in symptomatic cardiovascular disease. Stroke. 1985;16:668675Google Scholar
Chesebro, JH, Fuster, V, Elveback, LR, McGoon, DC, Pluth, JR, Puga, FJ, et al. Trial of combined warfarin plus dipyridamole or aspirin therapy in prosthetic heart valve replacement: Danger of aspirin compared with dipyridamole. Am J Cardiol. 1983;51:15371541Google Scholar
O’Collins, VE, Macleod, MR, Donnan, GA, Horky, LL, van der Worp, BH, Howells, DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467477Google Scholar
Macleod, MR, Fisher, M, O’Collins, V, Sena, ES, Dirnagl, U, Bath, PM, et al. Good laboratory practice: Preventing introduction of bias at the bench. Stroke. 2009;40:e5052Google Scholar
Ovbiagele, B, Kidwell, CS, Starkman, S, Saver, JL. Neuroprotective agents for the treatment of acute ischemic stroke. Curr Neurol Neurosci Rep. 2003;3:920Google Scholar
Garcia, J. Mechanisms of cell death in ischemia. In Caplan, LR, ed. Brain Ischemia, Basic Concepts and Clinical Relevance. London: Springer; 1995:718Google Scholar
Plum, F. What causes infarction in ischemic brain?: The Robert Wartenberg lecture. Neurology. 1983;33:222233Google Scholar
Myers, R. Lactic acid accumulation as a cause of brain edema and cerebral necrosis resulting from oxygen deprivation. In Korobkin, R, Guilleminault, C, eds. Advances in Perinatal Neurology. New York: Spectrum; 1979:88114Google Scholar
McCord, JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312:159163Google Scholar
Floyd, R. Production of free radicals. In Welch, KMA Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B, eds. Primer on Cerebrovascular Diseases. San Diego, CA: Academic Press; 1997:165169Google Scholar
Kontos, HA. Oxygen radicals in cerebral ischemia: The 2001 Thomas Willis lecture. Stroke. 2001;32:27122716Google Scholar
Ginsberg, MD. Adventures in the pathophysiology of brain ischemia: Penumbra, gene expression, neuroprotection: The 2002 Thomas Willis lecture. Stroke. 2003;34:214223Google Scholar
Busto, R, Dietrich, WD, Globus, MY, Ginsberg, MD. The importance of brain temperature in cerebral ischemic injury. Stroke. 1989;20:11131114Google Scholar
WD Dietrich, RB. Hyperthermia and brain ischemia. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B, eds. Primer on Cerebrovascular Diseases. San Diego, CA: Academic Press; 1997:165169Google Scholar
Siesjo, BK, Bengtsson, F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J Cereb Blood Flow Metab. 1989;9:127140Google Scholar
Tymianski, M, Sattler, RG. Is calcium involved in excitotoxic or ischemic neuronal damage? In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B, eds. Primer on Cerebrovascular Diseases. San Diego, CA: Academic Press; 1997:190192Google Scholar
Siesjo, BK. Historical overview. Calcium, ischemia, and death of brain cells. Ann N Y Acad Sci. 1988;522:638661Google Scholar
Siesjo, B, Smith, M-L. Mechanism of acidosis-related damage. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B, eds. Primer on Cerebrovascular Diseases. San Diego, CA: Academic Press; 1997:223226Google Scholar
Adams, HP Jr., Olinger, CP, Marler, JR, Biller, J, Brott, TG, Barsan, WG, et al. Comparison of admission serum glucose concentration with neurologic outcome in acute cerebral infarction. A study in patients given naloxone. Stroke. 1988;19:455458Google Scholar
Woo, J, Lam, CW, Kay, R, Wong, AH, Teoh, R, Nicholls, MG. The influence of hyperglycemia and diabetes mellitus on immediate and 3-month morbidity and mortality after acute stroke. Arch Neurol. 1990;47:11741177Google Scholar
Alvarez-Sabin, J, Molina, CA, Montaner, J, Arenillas, JF, Huertas, R, Ribo, M, et al. Effects of admission hyperglycemia on stroke outcome in reperfused tissue plasminogen activator-treated patients. Stroke. 2003;34:12351241Google Scholar
Passero, S, Ciacci, G, Ulivelli, M. The influence of diabetes and hyperglycemia on clinical course after intracerebral hemorrhage. Neurology. 2003;61:13511356Google Scholar
Choi, D. The excitotoxic concept. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B, eds. Primer on Cerebrovascular Diseases. San Diego, CA: Academic Press; 1997:187190Google Scholar
Choi, D. Excitotoxicity and stroke. In Caplan, LR, ed. Brain Ischemia, Basic Concepts and Clinical Relevance. London: Springer; 1995:2936Google Scholar
Olney, JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719721Google Scholar
Meldrum, B. Excitotoxicity in ischemia: An overview. In Ginsberg, MD, Dietrich, WD, eds. Cerebrovascular Diseases. New York, NY: Raven Press; 1989:4760Google Scholar
Lai, TW, Zhang, S, Wang, YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157188Google Scholar
Small, DL, Buchan, AM. NMDA and AMPA receptor antagonists in global and focal ischemia. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B, eds. Primer on Cerebrovascular Diseases. San Diego, CA: Academic Press; 1997:244247Google Scholar
Onai, MZ, Fisher, M. Thrombolytic and cytoprotective therapies for acute ischemic stoke: A clinical overview. Drugs Today. 1996;32:573592Google Scholar
Lees, KR. Cerestat and other NMDA antagonists in ischemic stroke. Neurology. 1997;49:S66S69Google Scholar
Lees, KR, Zivin, JA, Ashwood, T, Davalos, A, Davis, SM, Diener, HC, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354:588600Google Scholar
Hess, DC. NXY-059: A hopeful sign in the treatment of stroke. Stroke. 2006;37:26492650Google Scholar
Fisher, M. NXY-059 for acute ischemic stroke: The promise of neuroprotection is finally realized? Stroke. 2006;37:26512652Google Scholar
Shuaib, A, Lees, KR, Lyden, P, Grotta, J, Davalos, A, Davis, SM, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357:562571Google Scholar
Overgaard, K, Meden, P. Citicoline – the first effective neuroprotectant to be combined with thrombolysis in acute ischemic stroke? J Neurol Sci. 2006;247:119120Google Scholar
Clark, WM, Wechsler, LR, Sabounjian, LA, Schwiderski, UE. A phase III randomized efficacy trial of 2000 mg citicoline in acute ischemic stroke patients. Neurology. 2001;57:15951602Google Scholar
Warach, S, Pettigrew, LC, Dashe, JF, Pullicino, P, Lefkowitz, DM, Sabounjian, L, et al. Effect of citicoline on ischemic lesions as measured by diffusion-weighted magnetic resonance imaging. Citicoline 010 investigators. Ann Neurol. 2000;48:713722Google Scholar
Davalos, A, Alvarez-Sabin, J, Castillo, J, Diez-Tejedor, E, Ferro, J, Martinez-Vila, E, et al. Citicoline in the treatment of acute ischaemic stroke: An international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet. 2012;380:349357Google Scholar
Alonso de Lecinana, M, Gutierrez, M, Roda, JM, Carceller, F, Diez-Tejedor, E. Effect of combined therapy with thrombolysis and citicoline in a rat model of embolic stroke. J Neurol Sci. 2006;247:121129Google Scholar
Nighoghossian, N, Trouillas, P, Adeleine, P, Salord, F. Hyperbaric oxygen in the treatment of acute ischemic stroke. A double-blind pilot study. Stroke. 1995;26:13691372Google Scholar
Rusyniak, DE, Kirk, MA, May, JD, Kao, LW, Brizendine, EJ, Welch, JL, et al. Hyperbaric oxygen therapy in acute ischemic stroke: Results of the hyperbaric oxygen in acute ischemic stroke trial pilot study. Stroke. 2003;34:571574Google Scholar
Ronning, OM, Guldvog, B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. Stroke. 1999;30:20332037Google Scholar
Hughes, S. SO2S: No benefit of routine oxygen in acute stroke. XXIII European Stroke Conference. Presented May 7, 2014Google Scholar
Kim, HY, Singhal, AB, Lo, EH. Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann Neurol. 2005;57:571575Google Scholar
Singhal, AB, Benner, T, Roccatagliata, L, Koroshetz, WJ, Schaefer, PW, Lo, EH, et al. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke. 2005;36:797802Google Scholar
Ginsberg, M. Hypothermic neuroprotection in cerebral ischemia. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B, eds. Primer on Cerebrovascular Diseases. San Diego, CA: Academic Press; 1997:272275Google Scholar
Bernard, SA, Gray, TW, Buist, MD, Jones, BM, Silvester, W, Gutteridge, G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557563Google Scholar
Mayer, SA. Hypothermia for neuroprotection after cardiac arrest. Curr Neurol Neurosci Rep. 2002;2:525526Google Scholar
Schwab, S, Schwarz, S, Spranger, M, Keller, E, Bertram, M, Hacke, W. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke. 1998;29:24612466Google Scholar
Schwab, S, Georgiadis, D, Berrouschot, J, Schellinger, PD, Graffagnino, C, Mayer, SA. Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke. 2001;32:20332035Google Scholar
Georgiadis, D, Schwarz, S, Aschoff, A, Schwab, S. Hemicraniectomy and moderate hypothermia in patients with severe ischemic stroke. Stroke. 2002;33:15841588Google Scholar
Abou-Chebl, A, DeGeorgia, MA, Andrefsky, JC, Krieger, DW. Technical refinements and drawbacks of a surface cooling technique for the treatment of severe acute ischemic stroke. Neurocrit Care. 2004;1:131143Google Scholar
Krieger, DW, De Georgia, MA, Abou-Chebl, A, Andrefsky, JC, Sila, CA, Katzan, IL, et al. Cooling for acute ischemic brain damage (COOL AID): An open pilot study of induced hypothermia in acute ischemic stroke. Stroke. 2001;32:18471854Google Scholar
Lyden, MP, Colbourne, PF, Lyden, P, Schwab, S. Preclinical and clinical studies targeting therapeutic hypothermia in cerebral ischemia and stroke. Ther Hypothermia Temp Manag. 2013;3:36Google Scholar
Safar, P. Amelioration of post-ischemic brain damage with barbiturates. Stroke. 1980;11:565568Google Scholar
Black, KL, Weidler, DJ, Jallad, NS, Sodeman, TM, Abrams, GD. Delayed pentobarbital therapy of acute focal cerebral ischemia. Stroke. 1978;9:245249Google Scholar
Wu, TC, Grotta, JC. Hypothermia for acute ischaemic stroke. Lancet Neurol. 2013;12:275284Google Scholar
Stroke Therapy Academic Industry Roundtable 11 (STAIR-11). Recommendations for clinical trial evaluation of acute stroke therapies. Stroke. 2001;32:15981606Google Scholar
Fisher, M. Recommendations for advancing development of acute stroke therapies: Stroke Therapy Academic Industry Roundtable 3. Stroke. 2003;34:15391546Google Scholar
Fisher, M, Albers, GW, Donnan, GA, Furlan, AJ, Grotta, JC, Kidwell, CS, et al. Enhancing the development and approval of acute stroke therapies: Stroke Therapy Academic Industry Roundtable. Stroke. 2005;36:18081813Google Scholar
Shepherd, J, Cobbe, SM, Ford, I, Isles, CG, Lorimer, AR, MacFarlane, PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333:13011307Google Scholar
Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:13831389Google Scholar
Sacks, FM, Pfeffer, MA, Moye, LA, Rouleau, JL, Rutherford, JD, Cole, TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events trial investigators. N Engl J Med. 1996;335:10011009Google Scholar
Hebert, PR, Gaziano, JM, Chan, KS, Hennekens, CH. Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials. JAMA. 1997;278:313321Google Scholar
Blauw, GJ, Lagaay, AM, Smelt, AH, Westendorp, RG. Stroke, statins, and cholesterol. A meta-analysis of randomized, placebo-controlled, double-blind trials with HMG-CoA reductase inhibitors. Stroke. 1997;28:946950Google Scholar
Bucher, HC, Griffith, LE, Guyatt, GH. Effect of HMG CoA reductase inhibitors on stroke. A meta-analysis of randomized, controlled trials. Ann Intern Med. 1998;128:8995Google Scholar
Nissen, SE, Tuzcu, EM, Schoenhagen, P, Crowe, T, Sasiela, WJ, Tsai, J, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352:2938Google Scholar
Furberg, CD, Adams, HP Jr., Applegate, WB, Byington, RP, Espeland, MA, Hartwell, T, et al. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation. 1994;90:16791687Google Scholar
Crouse, JR 3rd, Byington, RP, Bond, MG, Espeland, MA, Craven, TE, Sprinkle, JW, et al. Pravastatin, lipids, and atherosclerosis in the carotid arteries (PLAC-II). Am J Cardiol. 1995;75:455459Google Scholar
Hodis, HN, Mack, WJ, LaBree, L, Selzer, RH, Liu, C, Liu, C, et al. Reduction in carotid arterial wall thickness using lovastatin and dietary therapy: A randomized controlled clinical trial. Ann Intern Med. 1996;124:548556Google Scholar
Amarenco, P, Bogousslavsky, J, Callahan, A 3rd, Goldstein, LB, Hennerici, M, Rudolph, AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355:549559Google Scholar
Amarenco, P, Goldstein, LB, Szarek, M, Sillesen, H, Rudolph, AE, Callahan, A 3rd, et al. Effects of intense low-density lipoprotein cholesterol reduction in patients with stroke or transient ischemic attack: The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Trial. Stroke. 2007;38:31983204Google Scholar
Vergouwen, MD, de Haan, RJ, Vermeulen, M, Roos, YB. Statin treatment and the occurrence of hemorrhagic stroke in patients with a history of cerebrovascular disease. Stroke. 2008;39:497502Google Scholar
Sanossian, N, Ovbiagele, B. Drug insight: Translating evidence on statin therapy into clinical benefits. Nat Clin Pract Neurol. 2008;4:4349Google Scholar
Schwartz, GG, Olsson, AG, Ezekowitz, MD, Ganz, P, Oliver, MF, Waters, D, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: The MIRACL study: A randomized controlled trial. JAMA. 2001;285:17111718Google Scholar
Elkind, MS, Flint, AC, Sciacca, RR, Sacco, RL. Lipid-lowering agent use at ischemic stroke onset is associated with decreased mortality. Neurology. 2005;65:253258Google Scholar
Amarenco, P, Moskowitz, MA. The dynamics of statins: From event prevention to neuroprotection. Stroke. 2006;37:294296Google Scholar
Fisher, M, Moonis, M. Neuroprotective effects of statins: Evidence from preclinical and clinical studies. Curr Treat Options Cardiovasc Med. 2012;14:252259Google Scholar
Endres, M, Laufs, U, Huang, Z, Nakamura, T, Huang, P, Moskowitz, MA, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998;95:88808885Google Scholar
Endres, M, Laufs, U, Liao, JK, Moskowitz, MA. Targeting eNOS for stroke protection. Trends Neurosci. 2004;27:283289Google Scholar
Ridker, PM, Rifai, N, Rose, L, Buring, JE, Cook, NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:15571565Google Scholar
Eikelboom, JW, Hankey, GJ, Baker, RI, McQuillan, A, Thom, J, Staton, J, et al. C-reactive protein in ischemic stroke and its etiologic subtypes. J Stroke Cerebrovasc Dis. 2003;12:7481Google Scholar
Arenillas, JF, Alvarez-Sabin, J, Molina, CA, Chacon, P, Montaner, J, Rovira, A, et al. C-reactive protein predicts further ischemic events in first-ever transient ischemic attack or stroke patients with intracranial large-artery occlusive disease. Stroke. 2003;34:24632468Google Scholar
Rosenson, RS, Tangney, CC. Antiatherothrombotic properties of statins: Implications for cardiovascular event reduction. JAMA. 1998;279:16431650Google Scholar
Carod-Artal, FJ. Statins and cerebral vasomotor reactivity: Implications for a new therapy? Stroke. 2006;37:24462448Google Scholar
Pretnar-Oblak, J, Sabovic, M, Sebestjen, M, Pogacnik, T, Zaletel, M. Influence of atorvastatin treatment on l-arginine cerebrovascular reactivity and flow-mediated dilatation in patients with lacunar infarctions. Stroke. 2006;37:25402545Google Scholar
Kirkpatrick, PJ, Turner, CL, Smith, C, Hutchinson, PJ, Murray, GD. Simvastatin in aneurysmal subarachnoid haemorrhage (STACH): A multicentre randomised phase 3 trial. Lancet Neurol. 2014;13:666675Google Scholar
Ovbiagele, B, Kidwell, CS, Saver, JL. Expanding indications for statins in cerebral ischemia: A quantitative study. Arch Neurol. 2005;62:6772Google Scholar
Elkind, MS, Sacco, RL, Macarthur, RB, Peerschke, E, Neils, G, Andrews, H, et al. High-dose lovastatin for acute ischemic stroke: Results of the phase I dose escalation neuroprotection with statin therapy for acute recovery trial (NEUSTART). Cerebrovasc Dis. 2009;28:266275Google Scholar
Biffi, A, Devan, WJ, Anderson, CD, Cortellini, L, Furie, KL, Rosand, J, et al. Statin treatment and functional outcome after ischemic stroke: Case-control and meta-analysis. Stroke. 2011;42:13141319Google Scholar
Endres, M, Laufs, U. Discontinuation of statin treatment in stroke patients. Stroke. 2006;37:26402643Google Scholar
Colivicchi, F, Bassi, A, Santini, M, Caltagirone, C. Discontinuation of statin therapy and clinical outcome after ischemic stroke. Stroke. 2007;38:26522657Google Scholar
Blanco, M, Nombela, F, Castellanos, M, Rodriguez-Yanez, M, Garcia-Gil, M, Leira, R, et al. Statin treatment withdrawal in ischemic stroke: A controlled randomized study. Neurology. 2007;69:904910Google Scholar
Dale, KM, White, CM, Henyan, NN, Kluger, J, Coleman, CI. Impact of statin dosing intensity on transaminase and creatine kinase. Am J Med. 2007;120:706712Google Scholar
Radcliffe, KA, Campbell, WW. Statin myopathy. Curr Neurol Neurosci Rep. 2008;8:6672Google Scholar
Ropper, A, Gress, D, Diringer, M, Green, D, Mayer, S. Neurological and Neurosurgical Intensive Care. New York, NY: Raven Press; 2003Google Scholar
Kazui, S, Naritomi, H, Yamamoto, H, Sawada, T, Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke. 1996;27:17831787Google Scholar
Brott, T, Broderick, J, Kothari, R, Barsan, W, Tomsick, T, Sauerbeck, L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:15Google Scholar
Qureshi, AI, Tuhrim, S, Broderick, JP, Batjer, HH, Hondo, H, Hanley, DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:14501460Google Scholar
Davis, SM, Broderick, J, Hennerici, M, Brun, NC, Diringer, MN, Mayer, SA, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66:11751181Google Scholar
Delgado Almandoz, JE, Yoo, AJ, Stone, MJ, Schaefer, PW, Goldstein, JN, Rosand, J, et al. Systematic characterization of the computed tomography angiography spot sign in primary intracerebral hemorrhage identifies patients at highest risk for hematoma expansion: The spot sign score. Stroke. 2009;40:29943000Google Scholar
Huynh, TJ, Demchuk, AM, Dowlatshahi, D, Gladstone, DJ, Krischek, O, Kiss, A, et al. Spot sign number is the most important spot sign characteristic for predicting hematoma expansion using first-pass computed tomography angiography: Analysis from the predict study. Stroke. 2013;44:972977Google Scholar
Gebel, JM Jr., Jauch, EC, Brott, TG, Khoury, J, Sauerbeck, L, Salisbury, S, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002;33:26362641Google Scholar
Anderson, CS, Huang, Y, Wang, JG, Arima, H, Neal, B, Peng, B, et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): A randomised pilot trial. Lancet Neurol. 2008;7:391399Google Scholar
Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH) Investigators. Antihypertensive treatment of acute cerebral hemorrhage. Crit Care Med. 2010;38:637648Google Scholar
Arima, H, Huang, Y, Wang, JG, Heeley, E, Delcourt, C, Parsons, M, et al. Earlier blood pressure-lowering and greater attenuation of hematoma growth in acute intracerebral hemorrhage: Interact pilot phase. Stroke. 2012;43:22362238Google Scholar
Anderson, CS, Heeley, E, Huang, Y, Wang, J, Stapf, C, Delcourt, C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368:23552365Google Scholar
Mayer, SA. Ultra-early hemostatic therapy for intracerebral hemorrhage. Stroke. 2003;34:224229Google Scholar
Mayer, SA, Brun, NC, Broderick, J, Davis, S, Diringer, MN, Skolnick, BE, et al. Safety and feasibility of recombinant factor VIIa for acute intracerebral hemorrhage. Stroke. 2005;36:7479Google Scholar
Mayer, SA, Brun, NC, Begtrup, K, Broderick, J, Davis, S, Diringer, MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352:777785Google Scholar
Mayer, SA, Brun, NC, Begtrup, K, Broderick, J, Davis, S, Diringer, MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358:21272137Google Scholar
Sugg, RM, Gonzales, NR, Matherne, DE, Ribo, M, Shaltoni, HM, Baraniuk, S, et al. Myocardial injury in patients with intracerebral hemorrhage treated with recombinant factor VIIa. Neurology. 2006;67:10531055Google Scholar
Kase, CS, Cromwell, RM. Prognosis and treatment of patients with intracerebral hemorrhage. In Kase, CS, Caplan, LR, eds. Intracerebral Hemorrhage. Boston, MA: Butterworth–Heinemann; 1994:467489Google Scholar
Kase, CS, Caplan, LR. Therapy of intracerebral hemorrhage. In Brandt, T, Caplan, LR, Dichgans, J, Diener, HC, Kennard, C, eds. Neurological Disorders, Course and Treatment. San Diego, CA: Academic Press; 1996:277288Google Scholar
Rabinstein, AA, Wijdicks, EF. Surgery for intracerebral hematoma: The search for the elusive right candidate. Rev Neurol Dis. 2006;3:163172Google Scholar
Prasad, K, Browman, G, Srivastava, A, Menon, G. Surgery in primary supratentorial intracerebral hematoma: A meta-analysis of randomized trials. Acta Neurol Scand. 1997;95:103110Google Scholar
Prasad, K, Shrivastava, A. Surgery for primary supratentorial intracerebral haemorrhage. Cochrane Database Syst Rev. 2000:Cd000200Google Scholar
Mendelow, AD, Gregson, BA, Fernandes, HM, Murray, GD, Teasdale, GM, Hope, DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the international surgical trial in intracerebral haemorrhage (STICH): A randomised trial. Lancet. 2005;365:387397Google Scholar
Mendelow, AD, Gregson, BA, Rowan, EN, Murray, GD, Gholkar, A, Mitchell, PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet. 2013;382:397408Google Scholar
Prasad, KS, Gregson, BA, Bhattathiri, PS, Mitchell, P, Mendelow, AD. The significance of crossovers after randomization in the STICH trial. Acta Neurochir Suppl. 2006;96:6164Google Scholar
Bhattathiri, PS, Gregson, B, Prasad, KS, Mendelow, AD. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: Results from the STICH trial. Acta Neurochir Suppl. 2006;96:6568Google Scholar
Morgenstern, LB, Demchuk, AM, Kim, DH, Frankowski, RF, Grotta, JC. Rebleeding leads to poor outcome in ultra-early craniotomy for intracerebral hemorrhage. Neurology. 2001;56:12941299Google Scholar
Shields, CB, Friedman, WA. The role of stereotactic technology in the management of intracerebral hemorrhage. Neurosurg Clin N Am. 1992;3:685702Google Scholar
Niizuma, H, Shimizu, Y, Yonemitsu, T, Nakasato, N, Suzuki, J. Results of stereotactic aspiration in 175 cases of putaminal hemorrhage. Neurosurgery. 1989;24:814819Google Scholar
Marquardt, G, Wolff, R, Sager, A, Janzen, RW, Seifert, V. Subacute stereotactic aspiration of haematomas within the basal ganglia reduces occurrence of complications in the course of haemorrhagic stroke in non-comatose patients. Cerebrovasc Dis. 2003;15:252257Google Scholar
Thiex, R, Rohde, V, Rohde, I, Mayfrank, L, Zeki, Z, Thron, A, et al. Frame-based and frameless stereotactic hematoma puncture and subsequent fibrinolytic therapy for the treatment of spontaneous intracerebral hemorrhage. J Neurol. 2004;251:14431450Google Scholar
Cho, DY, Chen, CC, Chang, CS, Lee, WY, Tso, M. Endoscopic surgery for spontaneous basal ganglia hemorrhage: Comparing endoscopic surgery, stereotactic aspiration, and craniotomy in noncomatose patients. Surg Neurol. 2006;65:547555;discussion 555546Google Scholar
Miller, CM, Vespa, P, Saver, JL, Kidwell, CS, Carmichael, ST, Alger, J, et al. Image-guided endoscopic evacuation of spontaneous intracerebral hemorrhage. Surg Neurol. 2008;69:441446;discussion 446Google Scholar
Mould, WA, Carhuapoma, JR, Muschelli, J, Lane, K, Morgan, TC, McBee, NA, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627634Google Scholar
Naff, NJ, Hanley, DF, Keyl, PM, Tuhrim, S, Kraut, M, Bederson, J, et al. Intraventricular thrombolysis speeds blood clot resolution: Results of a pilot, prospective, randomized, double-blind, controlled trial. Neurosurgery. 2004;54:577583;discussion 583574Google Scholar
Webb, AJ, Ullman, NL, Mann, S, Muschelli, J, Awad, IA, Hanley, DF. Resolution of intraventricular hemorrhage varies by ventricular region and dose of intraventricular thrombolytic: The clot lysis: Evaluating accelerated resolution of IVH (CLEAR IVH) program. Stroke. 2012;43:16661668Google Scholar
Zervas, NT, Hedley-Whyte, J. Successful treatment of cerebral herniation in five patients. N Engl J Med. 1972;286:10751077Google Scholar
Krieger, D, Hacke, W. The Intensive Care of the Stroke Patient. Stroke Pathophysiology, Diagnosis, and Management. New York, NY: Churchill Livingstone; 1998:11331154Google Scholar
O’Brien, M. Ischemic cerebral edema. In Caplan, LR, ed. Brain Ischemia, Basic Concepts and Clinical Relevance. London: Springer; 1995:4350Google Scholar
Klatzo, I. Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol. 1967;26:114Google Scholar
Newkirk, TA, Tourtellotte, WW, Reinglass, JL. Prolonged control of increased intracranial pressure with glycerin. Arch Neurol. 1972;27:9596Google Scholar
Buckell, M, Walsh, L. Effect of glycerol by mouth on raised intracranial pressure in man. Lancet. 1964;2:11511152Google Scholar
Frank, MS, Nahata, MC, Hilty, MD. Glycerol: A review of its pharmacology, pharmacokinetics, adverse reactions, and clinical use. Pharmacotherapy. 1981;1:147160Google Scholar
Marshall, LF, Smith, RW, Rauscher, LA, Shapiro, HM. Mannitol dose requirements in brain-injured patients. J Neurosurg. 1978;48:169172Google Scholar
Qureshi, AI, Suarez, JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28:33013313Google Scholar
Koenig, MA, Bryan, M, Lewin, JL 3rd, Mirski, MA, Geocadin, RG, Stevens, RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70:10231029Google Scholar
Wagner, I, Hauer, EM, Staykov, D, Volbers, B, Dorfler, A, Schwab, S, et al. Effects of continuous hypertonic saline infusion on perihemorrhagic edema evolution. Stroke. 2011;42:15401545Google Scholar
Fink, ME. Osmotherapy for intracranial hypertension: Mannitol versus hypertonic saline. Continuum (Minneap Minn). 2012;18:640654Google Scholar
Feigin, VL, Anderson, N, Rinkel, GJ, Algra, A, van Gijn, J, Bennett, DA. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev. 2005:CD004583Google Scholar
Sheth, KN, Kimberly, WT, Elm, JJ, Kent, TA, Mandava, P, Yoo, AJ, et al. Pilot study of intravenous glyburide in patients with a large ischemic stroke. Stroke. 2014;45:281283Google Scholar
Kuroiwa, T, Shibutani, M, Okeda, R. Blood–brain barrier disruption and exacerbation of ischemic brain edema after restoration of blood flow in experimental focal cerebral ischemia. Acta Neuropathol. 1988;76:6270Google Scholar
Mulley, G, Wilcox, RG, Mitchell, JR. Dexamethasone in acute stroke. Br Med J. 1978;2:994996Google Scholar
O’Brien, MD. Ischemic cerebral edema. A review. Stroke. 1979;10:623628Google Scholar
Poungvarin, N, Bhoopat, W, Viriyavejakul, A, Rodprasert, P, Buranasiri, P, Sukondhabhant, S, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med. 1987;316:12291233Google Scholar
Bardutzky, J, Schwab, S. Antiedema therapy in ischemic stroke. Stroke. 2007;38:30843094Google Scholar
Shackford, SR, Bourguignon, PR, Wald, SL, Rogers, FB, Osler, TM, Clark, DE. Hypertonic saline resuscitation of patients with head injury: A prospective, randomized clinical trial. J Trauma. 1998;44:5058Google Scholar
Suarez, JI, Qureshi, AI, Bhardwaj, A, Williams, MA, Schnitzer, MS, Mirski, M, et al. Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med. 1998;26:11181122Google Scholar
Schwarz, S, Georgiadis, D, Aschoff, A, Schwab, S. Effects of hypertonic (10%) saline in patients with raised intracranial pressure after stroke. Stroke. 2002;33:136140Google Scholar
Suarez, JI. Hypertonic saline for cerebral edema and elevated intracranial pressure. Cleve Clin J Med. 2004;71 Suppl 1:S913Google Scholar
Caplan, LR. Cerebellar infarcts. In Caplan, LR, ed. Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston, MA: Blackwell Science; 1996:492543Google Scholar
Lehrich, JR, Winkler, GF, Ojemann, RG. Cerebellar infarction with brain stem compression. Diagnosis and surgical treatment. Arch Neurol. 1970;22:490498Google Scholar
Feely, MP. Cerebellar infarction. Neurosurgery. 1979;4:711Google Scholar
Neugebauer, H, Witsch, J, Zweckberger, K, Juttler, E. Space-occupying cerebellar infarction: Complications, treatment, and outcome. Neurosurg Focus. 2013;34:E8Google Scholar
Delashaw, JB, Broaddus, WC, Kassell, NF, Haley, EC, Pendleton, GA, Vollmer, DG, et al. Treatment of right hemispheric cerebral infarction by hemicraniectomy. Stroke. 1990;21:874881Google Scholar
Schwab, S, Rieke, K, Aschoff, A, Albert, F, von Kummer, R, Hacke, W. Hemicraniotomy in space-occupying hemispheric infarction: Useful early intervention or desperate activism? Cerebrovasc Dis. 1996;6:325329Google Scholar
Schwab, S, Steiner, T, Aschoff, A, Schwarz, S, Steiner, HH, Jansen, O, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke. 1998;29:18881893Google Scholar
Vahedi, K, Vicaut, E, Mateo, J, Kurtz, A, Orabi, M, Guichard, JP, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL trial). Stroke. 2007;38:25062517Google Scholar
Vahedi, K, Hofmeijer, J, Juettler, E, Vicaut, E, George, B, Algra, A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6:215222Google Scholar
Mayer, SA. Hemicraniectomy: A second chance on life for patients with space-occupying MCA infarction. Stroke. 2007;38:24102412Google Scholar
Heinsius, T, Bogousslavsky, J, Van Melle, G. Large infarcts in the middle cerebral artery territory. Etiology and outcome patterns. Neurology. 1998;50:341350Google Scholar
Cruz-Flores, S, Berge, E, Whittle, IR. Surgical decompression for cerebral oedema in acute ischaemic stroke. Cochrane Database Syst Rev. 2012:CD003435Google Scholar
Wijdicks, EFM, Schievink, WI, McGough, PF. Dramatic reversal of the uncal syndrome and brain edema from infarction in the middle cerebral artery territory. Cerebrovasc Dis. 1997;7:349352Google Scholar
Lukovits, TG, Bernat, JL. Ethical approach to surrogate consent for hemicraniectomy in older pateints with extensive middle cerebral artery stroke. Stroke 2014;45:28332835Google Scholar
Graff-Radford, NR, Torner, J, Adams, HP Jr., Kassell, NF. Factors associated with hydrocephalus after subarachnoid hemorrhage. A report of the cooperative aneurysm study. Arch Neurol. 1989;46:744752Google Scholar
Greenberg, J, Skubick, D, Shenkin, H. Acute hydrocephalus in cerebellar infarct and hemorrhage. Neurology. 1979;29:409413Google Scholar
Khan, M, Polyzoidis, KS, Adegbite, AB, McQueen, JD. Massive cerebellar infarction: “Conservative” management. Stroke. 1983;14:745751Google Scholar
Rieke, K, Krieger, D, Adams, HP, Aschoff, A, Meyding-Lamade, U, Hacke, W. Therapeutic strategies in space-occupying cerebellar infarction based on clinical, neuroradiological and neurophysiological data. Cerebrovasc Dis. 1993;3:4555Google Scholar
Meairs, S, Wahlgren, N, Dirnagl, U, Lindvall, O, Rothwell, P, Baron, JC, et al. Stroke research priorities for the next decade – a representative view of the European scientific community. Cerebrovasc Dis. 2006;22:7582Google Scholar
Menken, M, Munsat, TL, Toole, JF. The global burden of disease study: Implications for neurology. Arch Neurol. 2000;57:418420Google Scholar
Ovbiagele, B, Goldstein, LB, Higashida, RT, Howard, VJ, Johnston, SC, Khavjou, OA, et al. Forecasting the future of stroke in the United States: A policy statement from the American Heart Association and American Stroke Association. Stroke. 2013;44:23612375Google Scholar
Caplan, LR. Treatment of patients with stroke. Arch Neurol. 2002;59:703707Google Scholar
Savitz, SI, Rosenbaum, DM, Dinsmore, JH, Wechsler, LR, Caplan, LR. Cell transplantation for stroke. Ann Neurol. 2002;52:266275Google Scholar
Cramer, SC. Brain repair after stroke. N Engl J Med. 2010;362:18271829Google Scholar
Cramer, SC, Sur, M, Dobkin, BH, O’Brien, C, Sanger, TD, Trojanowski, JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134:15911609Google Scholar
Kondziolka, D, Wechsler, L, Goldstein, S, Meltzer, C, Thulborn, KR, Gebel, J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55:565569Google Scholar
Bliss, T, Guzman, R, Daadi, M, Steinberg, GK. Cell transplantation therapy for stroke. Stroke. 2007;38:817826Google Scholar
Savitz, SI, Cramer, SC, Wechsler, L. Stem cells as an emerging paradigm in stroke 3: Enhancing the development of clinical trials. Stroke. 2014;45:634639Google Scholar
Kondziolka, D, Steinberg, GK, Wechsler, L, Meltzer, CC, Elder, E, Gebel, J, et al. Neurotransplantation for patients with subcortical motor stroke: A phase 2 randomized trial. J Neurosurg. 2005;103:3845Google Scholar
Savitz, SI, Dinsmore, J, Wu, J, Henderson, GV, Stieg, P, Caplan, LR. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: A preliminary safety and feasibility study. Cerebrovasc Dis. 2005;20:101107Google Scholar
Misra, V, Ritchie, MM, Stone, LL, Low, WC, Janardhan, V. Stem cell therapy in ischemic stroke: Role of IV and intra-arterial therapy. Neurology. 2012;79:S207212Google Scholar
Yavagal, DR, Lin, B, Raval, AP, Garza, PS, Dong, C, Zhao, W, et al. Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS One. 2014;9:e93735Google Scholar
Chopp, M, Li, Y. Transplantation of bone marrow stromal cells for treatment of central nervous system diseases. Adv Exp Med Biol. 2006;585:4964Google Scholar
Chen, J, Chopp, M. Neurorestorative treatment of stroke: Cell and pharmacological approaches. NeuroRx. 2006;3:466473Google Scholar
Chen, J, Sanberg, PR, Li, Y, Wang, L, Lu, M, Willing, AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:26822688Google Scholar
Shen, LH, Li, Y, Chen, J, Cui, Y, Zhang, C, Kapke, A, et al. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke. 2007;38:21502156Google Scholar
Sandrini, M, Cohen, LG. Noninvasive brain stimulation in neurorehabilitation. Handb Clin Neurol. 2013;116:499524Google Scholar
van der Lee, JH, Wagenaar, RC, Lankhorst, GJ, Vogelaar, TW, Deville, WL, Bouter, LM. Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke. 1999;30:23692375Google Scholar
Wolf, SL, Winstein, CJ, Miller, JP, Taub, E, Uswatte, G, Morris, D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. JAMA. 2006;296:20952104Google Scholar
Dobkin, BH. Interpreting the randomized clinical trial of constraint-induced movement therapy. Arch Neurol. 2007;64:336338Google Scholar
Feys, H, De Weerdt, W, Verbeke, G, Steck, GC, Capiau, C, Kiekens, C, et al. Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: A 5-year follow-up study of a randomized trial. Stroke. 2004;35:924929Google Scholar
Dannenbaum, RM, Dykes, RW. Sensory loss in the hand after sensory stroke: Therapeutic rationale. Arch Phys Med Rehabil. 1988;69:833839Google Scholar
Dobkin, B. Stroke. In: Dobkin, B, ed. Neurologic Rehabilitation. Philadelphia, PA: FA Davis Co.; 1996:157217Google Scholar
Teasell, RW, Kalra, L. What’s new in stroke rehabilitation. Stroke. 2004;35:383385Google Scholar
Takeuchi, N, Chuma, T, Matsuo, Y, Watanabe, I, Ikoma, K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke. 2005;36:26812686Google Scholar
Kobayashi, M, Hutchinson, S, Theoret, H, Schlaug, G, Pascual-Leone, A. Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology. 2004;62:9198Google Scholar
Khedr, EM, Ahmed, MA, Fathy, N, Rothwell, JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology. 2005;65:466468Google Scholar
Kim, YH, You, SH, Ko, MH, Park, JW, Lee, KH, Jang, SH, et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke. 2006;37:14711476Google Scholar
Kluger, BM, Triggs, WJ. Use of transcranial magnetic stimulation to influence behavior. Curr Neurol Neurosci Rep. 2007;7:491497Google Scholar
Wagner, T, Valero-Cabre, A, Pascual-Leone, A. Noninvasive human brain stimulation. Annual Rev Biomed Eng 2007;9:527565Google Scholar
Alonso-Alonso, M, Fregni, F, Pascuazl-Leone, A. Brain stimulation in post-stroke rehabilitation. Cerebrovasc Dis 2007; 24 Suppl 1:157166Google Scholar
Hummel, F, Celnik, P, Giraux, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005;128:490499Google Scholar
Catsman-Berrevoets, CE, von Harskamp, F. Compulsive pre-sleep behavior and apathy due to bilateral thalamic stroke: Response to bromocriptine. Neurology. 1988;38:647649Google Scholar
Albert, ML, Bachman, DL, Morgan, A, Helm-Estabrooks, N. Pharmacotherapy for aphasia. Neurology. 1988;38:877879Google Scholar
Sabe, L, Leiguarda, R, Starkstein, SE. An open-label trial of bromocriptine in nonfluent aphasia. Neurology. 1992;42:16371638Google Scholar
Fleet, WS, Valenstein, E, Watson, RT, Heilman, KM. Dopamine agonist therapy for neglect in humans. Neurology. 1987;37:17651770Google Scholar
Barrett, K. Treating organic abulia with bromocriptine and lisuride: Four case studies. J Neurol Neurosurg Psychiatry. 1991;54:718721Google Scholar
Feeney, DM, Gonzalez, A, Law, WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science. 1982;217:855857Google Scholar
Hovda, DA, Feeney, DM. Haloperidol blocks amphetamine induced recovery of binocular depth perception after bilateral visual cortex ablation in cat. Proc West Pharmacol Soc. 1985;28:209211Google Scholar
Davis, JN, Crisostomo, EA, Duncan, P. Amphetamine and physical therapy facilitate recovery of function from stroke: Correlative animal and human studies. In Raichle, ME, Powers, W, eds. Cerebrovascular Diseases. New York, NY: Raven Press; 1987:297304Google Scholar
Goldstein, L. Amphetamine-facilitated functional recovery after stroke. In Ginsberg, MD, Dietrich, WD, eds. Cerebrovascular Diseases. New York, NY: Raven Press; 1989:303308Google Scholar
Hurwitz, BE, Dietrich, WD, McCabe, PM, Alonso, O, Watson, BD, Ginsberg, MD, et al. Amphetamine promotes recovery from sensory-motor integration deficit after thrombotic infarction of the primary somatosensory rat cortex. Stroke. 1991;22:648654Google Scholar
Reding, MJ, Solomon, B, Borucki, S. The effect of dextroamphetamine on motor recovery after stroke. Neurology. 1995;45:A222Google Scholar
Sawaki, L, Cohen, LG, Classen, J, Davis, BC, Butefisch, CM. Enhancement of use-dependent plasticity by d-amphetamine. Neurology. 2002;59:12621264Google Scholar
Plewnia, C, Hoppe, J, Cohen, LG, Gerloff, C. Improved motor skill acquisition after selective stimulation of central norepinephrine. Neurology. 2004;62:21242126Google Scholar
Walker-Batson, D. Amphetamine and post-stroke rehabilitation: Indications and controversies. Eur J Phys Rehabil Med. 2013;49:251260Google Scholar
Hernandez, TC, Kiefel, J, Barth, TM. Disruption and facilitation of recovery of behavioral function: Implication of the gamma-aminobutyric acid/benzodiazepine receptor complex. In Ginsberg, MD, Dietrich, WD, eds. Cerebrovascular Diseases. New York, NY: Raven Press; 1989:327334Google Scholar
Goldstein, LB, Davis, JN. Physician prescribing patterns following hospital admission for ischemic cerebrovascular disease. Neurology. 1988;38:18061809Google Scholar
Goldstein, LB. Potential effects of common drugs on stroke recovery. Arch Neurol. 1998;55:454456Google Scholar
Goldstein, LB. Common drugs may influence motor recovery after stroke. The Sygen in acute stroke study investigators. Neurology. 1995;45:865871Google Scholar
Lee, B, Liu, CY, Apuzzo, ML. A primer on brain–machine interfaces, concepts, and technology: A key element in the future of functional neurorestoration. World Neurosurg. 2013;79:457471Google Scholar
Lee, B, Attenello, FJ, Liu, CY, McLoughlin, MP, Apuzzo, ML. Recapitulating flesh with silicon and steel: Advancements in upper extremity robotic prosthetics. World Neurosurg. 2014;81:730741Google Scholar
Yamamoto, H, Bogousslavsky, J. Mechanisms of second and further strokes. J Neurol Neurosurg Psychiatry. 1998;64:771776Google Scholar
Caplan, LR. Prevention of strokes and recurrent strokes. J Neurol Neurosurg Psychiatry. 1998;64:716Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×