Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T13:01:54.357Z Has data issue: false hasContentIssue false

Part II - Stroke syndromes

Published online by Cambridge University Press:  05 August 2016

Louis R. Caplan
Affiliation:
Department of Neurology, Beth Israel Deaconess Medical Center, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Caplan's Stroke
A Clinical Approach
, pp. 217 - 566
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Estol, CJ: Dr C Miller Fisher and the history of carotid artery disease. Stroke 1996;27:559566.Google Scholar
Fisher, CM: Occlusion of the internal carotid artery. Arch Neurol Psychiatry 1951;65:346377.Google Scholar
Fisher, CM: Occlusion of the carotid arteries. Arch Neurol Psychiatry 1954;72:187204.CrossRefGoogle ScholarPubMed
Thompson, JE: The evolution of surgery for the treatment and prevention of stroke: The Willis lecture. Stroke 1996;27:14271434.CrossRefGoogle ScholarPubMed
Dyken, M: Carotid endarterectomy studies: A glimmering of science. Stroke 1986;17:355358.Google Scholar
Barnett, HJ, Plum, F, Walton, J: Carotid endarterectomy – an expression of concern. Stroke 1984;15:941943.CrossRefGoogle ScholarPubMed
NASCET Collaborators: Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991;325:445453.CrossRefGoogle Scholar
European Carotid Surgery Trialists Collaborative Group: Interim results for symptomatic patients with severe (70–99%) or with mild (0–19%) carotid stenosis. Lancet 1991;337:12351243.CrossRefGoogle Scholar
Barnett, HJM, Taylor, DW, Eliasziw, M, et al: Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 1998;339:14151425.Google Scholar
European Carotid Surgery Trialists’ Collaborative Group: Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998;351:13791387.CrossRefGoogle Scholar
Executive Committee for the Asymptomatic Carotid Atherosclerosis Study: Endarterectomy for symptomatic carotid artery stenosis. JAMA 1995;273:14211428.Google Scholar
Halliday, A, Mansfield, A, Marro, J, et al: Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363:14911502.Google ScholarPubMed
Wennberg, DE, Lucas, FL, Birkmeyer, JD, et al: Variation in carotid endarterectomy mortality in the Medicare population. JAMA 1998;279:12781281.CrossRefGoogle ScholarPubMed
Kempczinski, RF, Brott, TG, Labutta, RJ: The influence of surgical specialist and caseload on the results of carotid endarterectomy. J Vasc Surg 1986;3:911916.CrossRefGoogle Scholar
Meyers, PM, Schumacher, C, Higashida, RT, et al: Use of stents to treat extracranial cerebrovascular disease. Ann Rev Med 2006;57:437454.CrossRefGoogle ScholarPubMed
Caplan, LR, Meyers, PM, Schumacher, HC: Angioplasty and stenting to treat occlusive vascular disease. Rev Neurol Dis 2006;3:818.Google ScholarPubMed
Abbott, AL: Medical (nonsurgical) intervention alone is now best for prevention of stroke associated with asymptomatic severe carotid stenosis: Results of a systematic review and analysis. Stroke 2009;40:e573e583.Google Scholar
Marquardt, L, Geraghty, OC, Mehta, Z, Rothwell, PM: Low risk of ipsilateral stroke in patients with asymptomatic carotid stenosis on best medical treatment: A prospective, population-based study. Stroke 2010;41:e11e17.CrossRefGoogle ScholarPubMed
Gorelick, PB, Caplan, LR, Hier, DB, et al: Racial differences in the distribution of anterior circulation occlusive disease. Neurology 1984;34:5459.Google Scholar
Caplan, LR, Gorelick, PB, Hier, DB: Race, sex, and occlusive cerebrovascular disease: A review. Stroke 1986;17:648655.Google Scholar
Mohr, JP, Caplan, LR, Melski, J, et al: The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;28:752754.Google Scholar
Furlan, A, Whisnant, J, Kearns, T: Unilateral visual loss in bright light. Arch Neurol 1979;36:675676.Google Scholar
Caplan, LR, Sergay, S: Positional cerebral ischemia. J Neurol Neurosurg Psychiatry 1976;39:385391.CrossRefGoogle Scholar
Reed, C, Toole, J: Clinical technique for identification of external carotid bruits. Neurology 1981;31:744746.CrossRefGoogle ScholarPubMed
Fisher, CM: Facial pulses in internal carotid artery occlusion. Neurology 1970;20:476478.CrossRefGoogle ScholarPubMed
Caplan, LR: The frontal artery sign. N Engl J Med 1973;288:10081009.CrossRefGoogle ScholarPubMed
Hollenhorst, R: Ocular manifestations of insufficiency or thrombosis of the internal carotid artery. Am J Ophthalmol 1959;47:753767.Google Scholar
Fisher, CM: Observations of the fundus oculi in transient monocular blindness. Neurology 1959;9:333347.CrossRefGoogle ScholarPubMed
Kearns, T, Hollenhorst, R: Venous stasis retinopathy of occlusive disease of the carotid artery. Mayo Clin Proc 1963;38:304312.Google Scholar
Carter, JE: Chronic ocular ischemia and carotid vascular disease. In Bernstein, EF (ed): Amaurosis Fugax. New York: Springer, 1988, pp 118134.Google Scholar
Caplan, LR, Babikian, V, Helgason, C, et al: Occlusive disease of the middle cerebral artery. Neurology 1985;35:975982.Google Scholar
Neau, J-P, Bogousslavsky, J: Superficial middle cerebral artery syndromes. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes, 2nd ed. Cambridge: Cambridge University Press, 2001, pp 405427.CrossRefGoogle Scholar
Caplan, LR, Bogousslavsky, J: Abnormalities of the right cerebral hemisphere. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes. Cambridge: Cambridge University Press, 1995, pp 162168.Google Scholar
Hier, DB, Mondlock, J, Caplan, LR: Behavioral abnormalities after right hemisphere stroke. Neurology 1983;33:337344.Google Scholar
Pessin, MS, Kwan, E, Scott, RM, Hedges, TR: Occipital infarction with hemianopsia from carotid occlusive disease. Stroke 1989;20:409411.CrossRefGoogle ScholarPubMed
Linn, FH, Chang, H-M, Caplan, LR: Carotid artery disease: A rare cause of posterior cerebral artery territory infarction. J Neurovasc Dis 1997;2:3134.Google Scholar
Townsend, TC, Saloner, D, Pan, XM, Rapp, JH: Contrast material-enhanced MRA overestimates severity of carotid stenosis, compared with 3D time-of-flight MRA. J Vasc Surg 2003;38:3640.CrossRefGoogle ScholarPubMed
Pessin, M, Duncan, G, Davis, K, et al: Angiographic appearance of carotid occlusion in acute stroke. Stroke 1980;11:485487.Google Scholar
Barnett, HJM, Peerless, S, Kaufmann J: “Stump” of internal carotid artery: A source for further cerebral embolic ischemia. Stroke 1978;9:448452.Google Scholar
Ringelstein, E, Zeumer, H, Angelou, D: The pathogenesis of strokes from internal carotid artery occlusion: Diagnostic and therapeutic implications. Stroke 1983;14:867875.Google Scholar
Orlandi, G, Parenti, G, Bertolucci, A, Murri, L: Silent cerebral microembolism in asymptomatic and symptomatic carotid artery stenoses of low and high degree. Eur Neurol 1997;38:3943.CrossRefGoogle ScholarPubMed
Droste, DW, Dittrich, R, Kerveny, V, et al: Prevalence and frequency of microembolic signals in 105 patients with extracranial carotid artery occlusive disease. J Neurol Neurosurg Psychiatry 1999;67:525528.CrossRefGoogle ScholarPubMed
Caplan, LR, Hennerici, M: Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol 1998;55:14751482.Google Scholar
Caplan, LR, Wong, K-S, Gao, S, et al: Is hypoperfusion an important cause of strokes? If so, how? Cerebrovasc Dis 2006;21:145153.Google Scholar
Marder, VJ, Chute, DJ, Starkman, S, et al: Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 2006;37:20862093.Google Scholar
Liebeskind, D, Sanossian, N, Young, WH et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 2011;42:12371243.Google Scholar
Sundt, T, Sandok, BA, Whisnant, JP: Carotid endarterectomy: Complications and preoperative assessment. Mayo Clin Proc 1975;50:301306.Google Scholar
Brott, TG, Hobson, RW 2nd, Howard, G, et al. and the CREST Investigators: Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 2010;63:1123.Google Scholar
Caplan, LR, Brott, TG: Of horse races, trials, meta-analyses, and carotid artery stenosis. (Editorial). Arch Neurol 2011;68:157159.CrossRefGoogle Scholar
Aghaebrahim, A, Jovin, T, Jadhav, AP, Noorian, A, Gupta, R, Nogueira, RG: Endovascular recanalization of complete subacute to chronic atherosclerotic occlusions of intracranial arteries. J Neurointerv Surg 2014;6:645648.Google Scholar
Broderick, JP, Palesch, YY, Demchuk, AM, et al. for the Interventional Management of Stroke (IMS) III Investigators: Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med 2013;368:893903.Google Scholar
Demchuk, AM, Goyal, M, Yeatts, SD, et al. for the interventional Management of Stroke (IMS) III Investigators: Recanalization and clinical outcome of occlusion sites at baseline CT angiography in the Interventional Management of Stroke III trial. Radiology 2014;273:202210.Google Scholar
Sekhar, L, Heros, R: Atheromatous pseudo-occlusion of the internal carotid artery. J Neurosurg 1980;52:782789.Google Scholar
Steinke, W, Kloetzsch, C, Hennerici, M: Symptomatic and asymptomatic high-grade carotid stenosis in Doppler color-flow imaging. Neurology 1992;42:131138.CrossRefGoogle ScholarPubMed
Riles, T, Posner, M, Cohen, W, et al: Rapid sequential CT scanning of the occluded internal carotid artery. Stroke 1982;13:124.Google Scholar
Morganstern, LB, Fox, AJ, Sharpe, BL, et al: The risks and benefits of carotid endarterectomy in patients with near occlusion of the carotid artery. Neurology 1997;48:911915.Google Scholar
Baron, JC: Stroke research in the modern era: Images versus dogma. Cerebrovasc Dis 2005;20:154163.Google Scholar
Baquis, GD, Pessin, MS, Scott, RM: Limb shaking – a carotid TIA. Stroke 1985;16:444448.CrossRefGoogle ScholarPubMed
Yanigahara, T, Piepgras, DG, Klass, DW: Repetitive involuntary movement associated with episodic cerebral ischemia. Ann Neurol 1985;18:244250.Google Scholar
Powers, WJ, Clarke, WR, Grubb, RL Jr, Videen, TO, Adams, HP Jr, Derdeyn, CP, and the COSS. Investigators: Extracranial–intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: The Carotid Occlusion Surgery Study randomized trial. JAMA 2011;306:19831992.Google Scholar
Caplan, LR: Bypassing trouble. Arch Neurol 2012;69:518520.Google Scholar
Can, U, Furie, K, Suwanwela, N, et al: Transcranial Doppler ultrasound criteria for hemodynamically significant internal carotid artery stenosis based on residual lumen diameter calculated from en bloc endarterectomy specimens. Stroke 1997;28:19661971.Google Scholar
Fisher, CM, Ojemann, RG: A clinico-pathological study of carotid endarterectomy plaques. Rev Neurol (Paris) 1986;39:273299.Google Scholar
Fisher, M, Paganini-Hill, A, Martin, A, et al: Carotid plaque pathology: Thrombosis, ulceration, and stroke pathogenesis. Stroke 2005;36:253257.Google Scholar
Caplan, LR, Skillman, J, Ojemann, R, et al: Intracerebral hemorrhage following carotid endarterectomy: A hypertensive complication. Stroke 1978;9:457460.Google Scholar
Piepgras, DG, Morgan, MK, Sundt, TM, et al: Intracerebral hemorrhage after carotid endarterectomy. J Neurosurg 1988;68:532536.CrossRefGoogle ScholarPubMed
Wade, J, Larson, C, Hickey, R, et al: Effect of carotid endarterectomy on carotid chemoreceptor and baroreceptor function in man. N Engl J Med 1970;282:823829.Google Scholar
Reigel, MM, Hollier, LH, Sundt, TM, et al: Cerebral hyperperfusion syndrome: A cause of neurologic dysfunction after carotid endarterectomy. J Vasc Surg 1987;5:628634.Google Scholar
Breen, JC, Caplan, LR, DeWitt, LD, et al: Brain edema after carotid surgery. Neurology 1996;46:175181.Google Scholar
Abou-Chebl, A, Yadav, JS, Reginelli, JP, et al: Intracranial hemorrhage and hyperperfusion syndrome following carotid artery stenting: Risk factors, prevention, and treatment. J Am Coll Cardiol 2004;43:15961561.Google Scholar
Hennerici, M, Rautenberg, W, Struck, R: Spontaneous clinical course of asymptomatic vascular processes of the extracranial cerebral arteries. Klin Wochenschr 1984;62:570576.Google Scholar
Hennerici, M, Hulsbower, HB, Hefter, K, et al: Natural history of asymptomatic extracranial disease: Results of a long-term prospective study. Brain 1987;110:777791.CrossRefGoogle ScholarPubMed
Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators: High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 2006;355:549559.Google Scholar
Johnson, ES, Lanes, SF, Wentworth, CE 3rd, Satterfield, MH, Abebe, BL, Dicker, W: A metaregression analysis of the dose-response effect of aspirin on stroke. Arch Intern Med 1999;159:12481253.Google Scholar
Caplan, LR, Stein, R, Patel, D, et al: Intraluminal clot of the carotid artery detected angiographically. Neurology 1984;34:11751181.CrossRefGoogle Scholar
Pessin, MS, Abbott, BF, Prager, R, et al: Clinical and angiographic features of carotid circulation thrombus. Neurology 1986;36:518523.Google Scholar
Buchan, A, Gates, P, Pelz, D, Barnett, HJM: Intraluminal thrombus in the cerebral circulation. Implications for surgical management. Stroke 1988;19:681687.CrossRefGoogle ScholarPubMed
Nadareishvili, ZG, Rothwell, PM, Beletsky, V, et al: Long-term risk of stroke and other vascular events in patients with asymptomatic carotid artery stenosis. Arch Neurol 2002;59:11621166.Google Scholar
Hadar, N, Raman, G, Moorthy, D et al: Asymptomatic carotid artery stenosis treated with medical therapy alone: Temporal trends and implications for risk assessment and the design of future studies. Cerebrovasc Dis 2014;38:163173.Google Scholar
Markus, HS, King, A, Shipley, M et al: Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): A prospective observational study. Lancet Neurol 2010;9:663671.Google Scholar
Spence, JD, Coates, V, Li, H, et al: Effects of intensive medical therapy on microemboli and cardiovascular risk in asymptomatic carotid stenosis. Arch Neurol 2010;67:180186.Google Scholar
Humphries, A, Young, J, Santilli, P, et al: Unoperated asymptomatic significant carotid artery stenosis: A review of 182 instances. Surgery 1976;80:694698.Google ScholarPubMed
Durward, Q, Ferguson, G, Barr, H: The natural history of asymptomatic carotid bifurcation plaques. Stroke 1982;13:459464.Google Scholar
Ropper, A, Wechsler, L, Wilson, L: Carotid bruits and the risk of stroke in elective surgery. N Engl J Med 1982;307:13871390.CrossRefGoogle ScholarPubMed
Caplan, LR: A 79-year-old musician with asymptomatic carotid artery disease. JAMA 1995;274:13831389.Google Scholar
Chambers, BR, Norris, JW: Outcome in patients with asymptomatic neck bruits. N Engl J Med 1986;315:860865.Google Scholar
Executive Committee for the Asymptomatic Carotid Atherosclerosis Study (ACAS): Endarterectomy for asymptomatic carotid artery stenosis. JAMA 1995;273:14211428.Google Scholar
Halliday, A, Mansfield, A, Marro, J, et al: Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363:14911502.Google Scholar
Brott, T, Toole, J: Medical compared with surgical treatment of asymptomatic carotid artery stenosis. Ann Intern Med 1995;123:720722.Google Scholar
Warlow, C: Surgical treatment of asymptomatic carotid stenosis. Cerebrovasc Dis 1996;6(Suppl 1):714.Google Scholar
Perry, JR, Szalai, JP, Norris, JW: Consensus against both endarterectomy and routine screening for asymptomatic carotid artery stenosis. Canadian Stroke Consortium. Arch Neurol 1997;54:2528.CrossRefGoogle ScholarPubMed
Gray, WA, Verta, P: The impact of regulatory approval and Medicare coverage on outcomes of carotid stenting. Catheter Cardiovasc Interv 2014;83:11581166.Google Scholar
Caplan, LR: Dissections of brain-supplying arteries. Nat Clin Pract Neurol 2008;4:3442.Google Scholar
Debette, S, Leys, D: Cervical-artery dissections: Predisposing factors, diagnosis, and outcome. Lancet Neurol. 2009;8:668678.Google Scholar
Biousse, V, D’Anglejan-Chatillon, , Toboul, P-J, et al: Time course of symptoms in extracranial carotid artery dissections. A series of 80 patients. Stroke 1995;26:235239.Google Scholar
Bogousslavsky, J, Despland, PA, Regli, F: Spontaneous carotid dissection with acute stroke. Arch Neurol 1987;44:137140.CrossRefGoogle ScholarPubMed
Baumagartner, RW, Bogousslavsky, J: Clinical manifestations of carotid dissection. In Baumgartner, RW, Bogousslavsky, J, Caso, V, Paciaroni, M (eds): Handbook on Cerebral Artery Dissection. Basel: Karger, 2005, pp 7076.Google Scholar
Caplan, LR, Gonzalez, RG, Buonanno, FS: Case 18–2012: A 35-year-old man with neck pain, hoarseness, and dysphagia. N Engl J Med 2012;366:23062313.Google Scholar
Sturznegger, M: Ultrasound findings in spontaneous carotid artery dissection: The value of Duplex sonography. Arch Neurol 1991;48:10571063.CrossRefGoogle Scholar
Engelter, ST, Lyrer, PA, Kirsch, EC, Steck, AJ: Long-term follow-up after extracranial internal carotid artery dissection. Eur Neurol 2000;44:199204.Google Scholar
Touze, E, Gauvrit, J-Y, Moulin, T, et al: Risk of stroke and recurrent dissection after a cervical artery dissection. A multicenter study. Neurology 2003;61:13471351.CrossRefGoogle ScholarPubMed
Kennedy, F, Lanfranconi, S, Hicks, C, and the Cervical Artery Dissection in Stroke Study (CADISS-NR) Investigators: Antiplatelets vs. anticoagulation for dissection: CADISS nonrandomized arm and meta-analysis Neurology 2012;79:686689.Google Scholar
Dreier, JP, Lurtzing, F, Kappmeier, M, et al: Delayed occlusion after internal carotid artery dissection under heparin. Cerebrovasc Dis 2004;18:296303.Google Scholar
Kadkhodayan, Y, Jeck, DT, Moran, CJ, et al: Angioplasty and stenting in carotid dissection with and without pseudoaneurysm. AJNR Am J Neuroradiol 2005;26:23282335.Google ScholarPubMed
Lavallée, PC, Mazighi, M, Saint-Maurice, J-P, et al. Stent-assisted endovascular thrombolysis versus intravenous thrombolysis in internal carotid artery dissections with tandem internal carotid and middle cerebral artery occlusion. Stroke 2007;38:22702274.Google Scholar
Fisher, CM, Gore, I, Okabe, N, et al: Calcification of the carotid siphon. Circulation 1965;32:538548.Google Scholar
Marzewski, D, Furlan, A, St Louis, P, et al: Intracranial internal carotid artery stenosis: Long-term prognosis. Stroke 1982;13:821824.Google Scholar
Craig, D, Meguro, K, Watridge, G, et al: Intracranial internal carotid artery stenosis. Stroke 1982;13:825828.Google Scholar
Wechsler, LR, Kistler, JP, Davis, KR, et al: The prognosis of carotid siphon stenosis. Stroke 1986;17:714718.Google Scholar
Caplan, LR: Cerebrovascular disease: Larger artery occlusive disease. In Appel, S (ed): Current Neurology, vol 8. Chicago: Yearbook Medical, 1988, pp 179226.Google Scholar
Borozan, PG, Schuler, JJ, LaRosa, MP, et al: The natural history of isolated carotid siphon stenosis. TJ Vasc Surg 1984;1:744749.Google Scholar
Bogousslavsky, J: Prognosis of carotid siphon stenosis. Stroke 1987;18:537.Google Scholar
Castaigne, P, Lhermitte, F, Gautier, JC, et al: Internal carotid artery occlusion: A study of 61 instances in 50 patients with postmortem data. Brain 1970;93:231258.Google Scholar
Ley-Pozo, J, Ringelstein, EB: Noninvasive detection of occlusive disease of the carotid siphon and middle cerebral artery. Ann Neurol 1990;28:640647.Google Scholar
Sloan, MA, Alexandrov, AV, Tegeler, CH, et al: Assessment: Transcranial Doppler ultrasonography: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2004;62:14681481.Google Scholar
Thijs, VN, Albers, GW: Symptomatic intracranial atherosclerosis: outcome of patients who fail antithrombotic therapy. Neurology 2000;55:490497.Google Scholar
Akins, PT, Pilgram, TK, Cross, DT, Moran, CJ: Natural history of stenosis from intracranial atherosclerosis by serial angiography. Stroke 1998;29:433438.Google Scholar
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, et al: Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 2005;352:13051316.Google Scholar
Kasner, SE, Chimowitz, MI, Lynn, MJ, et al: Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis. Warfarin Aspirin Symptomatic Intracranial Disease Trial Investigators. Circulation 2006;113:555563.Google Scholar
Kasner, SE, Lynn, MJ, Chimowitz, MI, et al: Warfarin vs. aspirin for symptomatic intracranial stenosis: Subgroup analyses from WASID. Neurology 2006;67:12751278.Google Scholar
Callahan, AS III, Berger, BL: Balloon angioplasty of intracranial arteries for stroke prevention. J Neuroimaging 1997;7:232235.Google Scholar
Marks, MP, Marcellus, M, Norbash, AM, et al: Outcome of angioplasty for atherosclerotic intracranial stenosis. Stroke 1999;30:10651069.Google Scholar
Connors, JJ 3rd, Wojak, JC: Percutaneous transluminal angioplasty for intracranial atherosclerotic lesions: Evolution of technique and short-term results. J Neurosurg 1999;91:415423.Google Scholar
Marks, MP, Marcellus, ML, Do, HM, et al: Intracranial angioplasty without stenting for symptomatic atherosclerotic stenosis: Long-term follow-up. AJNR Am J Neuroradiol 2005;26:525530.Google Scholar
Chimowitz, MI, Lynn, MJ, Derdeyn, CP, et al. for the SAMMPRIS Investigators: Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med 2011;365:9931003.Google Scholar
Day, A, Rhoton, A, Quisling, R: Resolving siphon stenosis following endarterectomy. Stroke 1980;11:278281.Google Scholar
Bladin, PF, Berkovic, SF: Striatocapsular infarction. Neurology 1984;34:14231430.Google Scholar
Jansen, O, von Kummer, R, Forsting, M, et al: Thrombolytic therapy in acute occlusion of the intracranial internal carotid artery bifurcation. AJNR Am J Neuroradiol 1995;16:19771986.Google Scholar
Zaidat, OO, Suarez, JI, Santillan, C, et al: Response to intra-arterial and combined intravenous and intra-arterial thrombolytic therapy in patients with distal internal carotid artery occlusion. Stroke 2002;33:18211827.Google Scholar
Fisher, U, Mono, ML, Schroth, G, et al: Endovascular therapy in 201 patients with acute symptomatic occlusion of the internal carotid artery. Eur J Neurol 2013;20:10171024.Google Scholar
Galimanis, A, Jung, S, Mono, M-L, et al: Endovascular therapy of 623 patients with anterior circulation stroke. Stroke 2012;43:10521057.Google Scholar
Lansberg, MG, Straka, M, Kemp, S, et al: MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 2012;11:860867.Google Scholar
Lemmens, R, Mlvnash, M, Straka, M, et al: Comparison of the response to endovascular reperfusion in relation to site of arterial occlusion. Neurology. 2013;81:614618.Google Scholar
Chaves, C, Estol, C, Esnaola, MM, et al: Spontaneous intracranial internal carotid artery dissection: Report of 10 patients. Arch Neurol 2002;59:977981.Google Scholar
Pelkonen, O, Tikkakoski, T, Leinonen, S, et al: Intracranial arterial dissection. Neuroradiology 1998;40:442447.Google Scholar
Estol, C, Caplan, LR: Intracranial arterial dissections. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge, UK: Cambridge University Press, 2012, pp 566573.Google Scholar
Russo, L: Carotid system transient ischemic attacks: Clinical, racial, and angiographic correlations. Stroke 1981;12:470473.Google Scholar
Bauer, R, Sheehan, S, Wechsler, N, et al: Arteriographic study of sites, incidence, and treatment of arteriosclerotic cerebrovascular lesions. Neurology 1962;12:698711.Google Scholar
Kieffer, S, Takeya, Y, Resch, J, et al: Racial differences in cerebrovascular disease: Angiographic evaluation of Japanese and American populations. AJR Am J Roentgenol 1967;101:9499.Google Scholar
Brust, R: Patterns of cerebrovascular disease in Japanese and other population groups in Hawaii: An angiographic study. Stroke 1975;6:539542.Google Scholar
Kubo, H: Transient cerebral ischemic attacks: An arteriographic study. Naika 1968;22:969978.Google Scholar
Feldmann, E, Daneault, N, Kwan, E, et al: Chinese–white differences in the distribution of occlusive cerebrovascular disease. Neurology 1990;40:15411545.Google Scholar
Bogousslavsky, J, Barnett, JHM, Fox, AJ, et al: Atherosclerotic disease of the middle cerebral artery. EC-IC Bypass Study Group. Stroke 1986;17:11121120.Google Scholar
Gorelick, P, Han, J, Huang, Y, Wong, K-SL: Epidemiology. In Kim, J, Caplan, LR, Wong, K-SL (eds): Intracranial Atherosclerosis. Oxford: Wiley–Blackwell, 2008, pp 3344.Google Scholar
Mazighi, M, Labreuche, J, Gongora-Rivera, F, et al: Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke 2008;39:11421147.Google Scholar
Yoo, K-M, Shin, H-K, Chang, H-M, Caplan, LR: Middle cerebral artery occlusive disease: The New England Medical Center Stroke Registry. J Stroke Cerebrovasc Dis 1998;7:344351.Google Scholar
Chen, XY, Wong, KS, Lam, WWM, et al: Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study. Cerebrovasc Dis 2008;25:7480.Google Scholar
Ogata, J, Yutani, C, Otsubo, R, et al: Heart and vessel pathology underlying brain infarction in 142 stroke patients. Ann Neurol 2008;63:770781.Google Scholar
Hinton, R, Mohr, JP, Ackerman, R, et al: Symptomatic middle cerebral artery stenosis. Ann Neurol 1979;5:152157.Google Scholar
Corston, RN, Kendall, BE, Marshall, J: Prognosis in middle cerebral artery stenosis. Stroke 1984;15:237241.Google Scholar
Moulin, DE, Lo, R, Chiang, J, et al: Prognosis in middle cerebral artery occlusion. Stroke 1985;16:282284.Google Scholar
Feldmeyer, JJ, Merendaz, C, Regli, F: Stenosis symptomatiques de l’artère cerebrale moyenne. Rev Neurol (Paris) 1983;139:725736.Google Scholar
Naritomi, H, Sawada, T, Kuriyama, Y, et al: Effect of chronic middle cerebral artery stenosis on the local cerebral hemodynamics. Stroke 1985;16:214219.Google Scholar
Segura, T, Serena, J, Molins, A, Davalos, A: Clusters of microembolic signals: A new form of cerebral microembolism in a patient with middle cerebral artery stenosis. Stroke 1998;29:722724.Google Scholar
Wong, KS, Gao, S, Chan, YL, et al: Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis: A diffusion-weighted imaging and microemboli monitoring study. Ann Neurol 2002;52:7481.Google Scholar
Gao, S, Wong, KS, Hansberg, T, et al: Microembolic signal predicts recurrent cerebral ischemic events in acute stroke patients with middle cerebral artery stenosis. Stroke 2004;35:28322836.Google Scholar
Mohr, JP, Kedja-Scharlein, J: Middle cerebral artery syndromes. In Caplan, LR, van Gijn, (eds): Stroke Syndromes, 3rd ed. Cambridge, UK: Cambridge University Press, 2012, pp 344363.Google Scholar
Jain, K: Some observations on the anatomy of the middle cerebral artery. Can J Surg 1964;7:134139.Google Scholar
Kaplan, H: Anatomy and embryology of the arterial system of the forebrain. In Vinken, P, Bruyn, G (eds): Handbook of Clinical Neurology, vol 11. Amsterdam: North Holland, 1972, pp 123.Google Scholar
Hier, DB, Gorelick, PB, Shindler, AG: Topics in Behavioral Neurology and Neuropsychology. Boston: Butterworth, 1987.Google Scholar
Fisher, CM: Left hemiplegia and motor impersistence. J Nerv Ment Dis 1956;123:201218.Google Scholar
Hier, DB, Mohr, JP: Incongruous oral and written naming: Evidence for a subdivision of the syndromes of Wernicke’s aphasia. Brain Lang 1977;4:115126.CrossRefGoogle ScholarPubMed
Sevush, S, Roeltgen, D, Campanella, D, et al: Preserved oral reading in Wernicke’s aphasia. Neurology 1983;33:916920.Google Scholar
Awada, A, Poncet, M, Signoret, J: Confrontation de la Salpêtrière 4 Mai 1983: Troubles des compartement soudains avec agitation chez un homme de 68 ans. Rev Neurol (Paris) 1984;140:446451.Google Scholar
Schmidley, J, Messing, R: Agitated confusional states in patients with right hemisphere infarctions. Stroke 1984:15;883885.Google Scholar
Caplan, LR, Kelly, M, Kase, CS, et al: Infarcts of the inferior division of the right middle cerebral artery. Neurology 1986;36:10151020.Google Scholar
Kim, JS, Yoon, Y: Single subcortical infarction associated with parental arterial disease: important yet neglected sub-type of atherothrombotic stroke. Int J Stroke 2013;8:197203.Google Scholar
Yoon, Y, Lee, DH, Kang, DW, Kwon, SU, Kim, JS: Single subcortical infarction and atherosclerotic plaques in the middle cerebral artery: High-resolution magnetic resonance imaging findings. Stroke 2013;44:24622467.Google Scholar
Adams, H, Damasio, H, Putnam, S, et al: Middle cerebral artery occlusion as a cause of isolated subcortical infarction. Stroke 1983;14:948952.Google Scholar
Weiller, C, Ringelstein, EB, Reiche, W, et al: The large striatocapsular infarct: A clinical and pathological entity. Arch Neurol 1990;47:10851091.Google Scholar
Caplan, LR: The large striato-capsular infarct: A clinical and pathophysiologic entity: Critique. Neurol Chronicle 1991;1:1213.Google Scholar
Damasio, A, Damasio, H, Rizzo, M, et al: Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol 1982;89:1520.Google Scholar
Naesser, M, Alexander, M, Estabrooks, N, et al: Aphasia with predominantly subcortical lesion sites. Arch Neurol 1982;39:214.Google Scholar
Heinsius, T, Bogousslavsky, J, van Melle, G: Large infarcts in the middle cerebral artery territory. Etiology and outcome patterns. Neurology 1998;50:341350.Google Scholar
Hier, DB, Mondlock, J, Caplan, LR: Recovery of behavioral abnormalities after right hemisphere stroke. Neurology 1983;33:345350.Google Scholar
Staykov, D, Gupta, R: Hemicraniectomy in malignant middle cerebral artery infarction. Stroke 2011; 42:513516.Google Scholar
Kolias, A, Kirkpatrick, PJ, Hutchinson, PJ: Decompressive craniectomy: Past, present and future. Nature Rev Neurol 2013;9:405415.Google Scholar
Jüttler, E, Unterberg, A, Woitzik, J, et al. for the Destiny II Investigators. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med 2014;370:10911100.Google Scholar
Fink, JN, Selim, MH, Kumar, S, et al: Insular cortex infarction in acute middle cerebral artery territory stroke: Predictor of stroke severity and vascular lesion. Arch Neurol 2005;62:10811085.Google Scholar
Oppenheimer, SM, Cechetto, DF, Hachinski, VC: Cerebrogenic cardiac arrythmias: Cerebral ECG influences and their role in sudden death. Arch Neurol 1990;47:513519.Google Scholar
Oppenheimer, SM, Wilson, JX, Guiraudon, C, Cechetto, DF: Insular cortex stimulation produces lethal cardiac arrhythmias: A mechanism of sudden death. Brain Res 1991;550:115121.Google Scholar
Yoon, R-W, Morillo, CA, Cechetto, DF, Hachinski, V: Cerebral hemispheric lateralization in cardiac autonomic control. Arch Neurol 1997;54:741744.Google Scholar
Hachinski, VC, Oppenheimer, SM, Wilson, JX, et al: Assymetry of sympathetic consequences of experimental stroke. Arch Neurol 1992;49:697702.Google Scholar
Giubilei, F, Strano, S, Lino, S, et al: Autonomic nervous system activity during sleep in middle cerebral artery infarction. Cerebrovasc Dis 1998;8:118123.Google Scholar
Tomsick, T, Brott, T, Barsan, W, et al: Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultra-early thrombolytic therapy. AJNR Am J Neuroradiol 1996;17:7985.Google Scholar
Alexandros, AV, Bladin, CF, Norris, JW: Intracranial blood flow velocities in acute ischemic stroke. Stroke 1994;25:13781383.Google Scholar
Molina, CA, Alexandrov, AV: Transcranial Doppler ultrasound. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 113128.Google Scholar
Segura, T, Serena, J, Molins, A, Davalos, A: Clusters of microembolic signals: A new form of cerebral microembolism presentation in a patient with middle cerebral artery stenosis. Stroke 1998;29:722724.Google Scholar
Masuda, J, Yutani, C, Miyashita, T, Yamaguchi, T: Artery-to-artery embolism from a thrombus formed in a stenotic middle cerebral artery. Report of an autopsy case. Stroke 1987;18:680684.Google Scholar
Wong, KS, Lam, WWM, Liang, E, et al: Variability of magnetic resonance angiography and computed tomography angiography in grading middle cerebral artery stenosis. Stroke 1996;27:10841087.Google Scholar
Bash, S, Villablanca, JP, Duckwiler, G, et al: Intracranial vascular stenosis and occlusive disease. Evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:10121021.Google Scholar
Nederkoorn, PJ, van der Graaf, Y, Eikelboom, BC, van der Lugt, A, Bartels, LW, Mali, WP: Time-of-flight MR angiography of carotid artery stenosis: does a flow void represent severe stenosis? AJNR Am J Neuroradiol 2002;23:17791784.Google Scholar
Mori, E, Yoneda, Y, Tabuchi, M, et al: Intravenous recombinant tissue plasminogen activator in acute carotid artery territory stroke. Neurology 1992;42:976982.Google Scholar
Trouillas, P, Nighogossian, N, Getenet, J, et al: Open trial of intravenous tissue plasminogen activator in acute carotid territory stroke. Stroke 1996;27:882890.Google Scholar
Wolpert, SM, Bruckman, H, Greenlee, R, et al: Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 1993;14:313.Google Scholar
Albers, GW, Thijs, VN, Wechsler, L, et al: MRI profiles predict clinical response to early reperfusion: The Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Ann Neurol 2006;60:508517.Google Scholar
del Zoppo, GJ, Higashida, R, Furlan, AJ, et al: PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 1998;29:411.Google Scholar
Bhatia, R, Hill, MD, Shobha, N et al: Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 2010;41:22542258.Google Scholar
Meyers, PM, Schumacher, HC, Tanji, K, et al: Use of stents to treat intracranial cerebrovascular disease. Ann Rev Med 2007;58:107122.Google Scholar
Chaturverdi, S, Caplan, LR: Angioplasty for intracranial atherosclerosis: Is the treatment worse than the disease? Neurology 2003;61:16471648.Google Scholar
Mori, T, Fukuoka, M, Kazita, K, Mori, K: Follow-up study after intracranial percutaneous transluminal cerebral balloon angioplasty. AJNR Am J Neuroradiol 1998;19:15251533.Google Scholar
Derdeyn, CP, Chimowitz, MI, Lynn, MJ, for the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet 2014;383:333341.Google Scholar
Chimowitz, MI, Kokkinos, J, Strong, J, et al: The Warfarin–Aspirin Symptomatic Intracranial Disease Study. Neurology 1995;45:14881493.CrossRefGoogle ScholarPubMed
Critchley, M: The anterior cerebral artery, and its syndromes. Brain 1930;53:120165.Google Scholar
Brust, JCM. Anterior cerebral artery. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge UK, Cambridge University Press, 2012, pp 364374.Google Scholar
Ohkuma, H, Suzuki, S, Kikkawa, T, et al: Neuroradiologic and clinical features of arterial dissection of the anterior cerebral artery. Am J Neuroradiol 2003;24:691699.Google Scholar
Sasaki, O, Koike, T, Takeuchi, S, Tanaka, R: Serial angiography in a spontaneous dissecting anterior cerebral artery aneurysm. Surg Neurol 1991;36:4953.CrossRefGoogle Scholar
Guridi, J, Gallego, J, Monzon, F, Aguilera, F: Intracerebral hemorrhage caused by intramural dissection of the anterior cerebral artery. Stroke 1993;24:14001402.Google Scholar
Koyama, S, Kotani, A, Sasaki, J: Spontaneous dissecting aneurysm of the anterior cerebral artery: report of two cases. Surg Neurol 1996;46:5561.Google Scholar
Matsumoto, S, Takada, T, Kazui, S, et al: Rotational angiographic demonstration of dissection of the anterior cerebral artery. Cerebrovasc Dis 2005;20:5558.Google Scholar
Sato, S, Toyoda, K, Matsuoka, H, et al: Isolated anterior cerebral artery territory infarction: dissection as an etiological mechanism. Cerebrovasc Dis 2010;29:170177.Google Scholar
Shimoyama, T, Kimura, K, Iguchi, Y, et al: Spontaneous intra-cranial arterial dissection frequently causes anterior cerebral artery dissection. J Neurol Sci 2011;304:4043.Google Scholar
Nagamine, Y, Fukuoka, T, Hayashi, T et al: Research article: Clinical characteristics of isolated anterior cerebral artery territory infarction due to arterial dissection. J Stroke Cerebrovasc Dis 2014;23:29072913.Google Scholar
Uihlein, A, Thomas, R, Cleary, J: Aneurysms of the anterior communicating artery complex. Mayo Clin Proc 1967;42:7387.Google Scholar
Gacs, G, Fox, A, Barnett, HJM, et al: Occurrence and mechanisms of occlusion of the anterior cerebral artery. Stroke 1983;14:952959.Google Scholar
Bogousslavsky, J, Regli, F: Anterior cerebral artery territory infarction in the Lausanne Stroke Registry. Clinical and etiologic patterns. Arch Neurol 1990;47:144150.Google Scholar
Nagaratnam, N, Davies, D, Chen, E: Clinical effects of anterior cerebral artery infarction. J Stroke Cerebrovasc Dis 1998;7:391397.Google Scholar
Rhoton, AL, Sacki, N, Pearlmutter, D, Zeal, A: Microsurgical anatomy of common aneurysm sites. Clin Neurosurg 1978;26:248306.Google Scholar
Gorczyca, W, Mohr, G: Microvascular anatomy of Heubner’s recurrent artery. J Neurosurg 1976;44:359367.Google Scholar
Caplan, LR, Schmahmann, JD, Kase, CS, et al: Caudate infarcts. Arch Neurol 1990;47:133143.Google Scholar
Dunker, R, Harris, A: Surgical anatomy of the proximal anterior cerebral artery. J Neurosurg 1976;44:359367.Google Scholar
Chamarro, A, Marshall, RS, Valls-Sole, J, et al: Motor behavior in stroke patients with isolated medial frontal ischemic infarction. Stroke 1997;28:17551760.Google Scholar
Geschwind, N, Kaplan, E: A human cerebral deconnection syndrome. Neurology 1962;12:675695.Google Scholar
Geschwind, N: Disconnection syndromes in animals and man. Brain 1965;88:237294, 585644.Google Scholar
Pereira, A, Schomer, A, Feng, W, et al: Anterior disconnection syndrome revisited using modern technologies. Neurology 2012;79:290291.Google Scholar
Rubens, A: Aphasia with infarction in the territory of the anterior cerebral artery. Cortex 1975;11:239250.Google Scholar
Alexander, M, Schmitt, M: The aphasia syndrome of stroke in the left anterior cerebral artery territory. Arch Neurol 1980;37:97100.Google Scholar
Ross, E: Left medial parietal lobe and receptive language functions: Mixed transcortical aphasia after left anterior cerebral artery infarction. Neurology 1980;30:144151.Google Scholar
Fisher, CM: Abulia minor versus agitated behavior. Clin Neurosurg 1983;31:931.Google Scholar
Fesenmeier, JT, Kuzniecky, R, Garcia, J: Akinetic mutism caused by bilateral anterior cerebral tuberculous arteritis. Neurology 1990;40:10051006.Google Scholar
Ghoshal, S, Gokhale, S, Rebovich, G, Caplan, LR: The neurology of decreased activity: abulia. Rev Neurol Dis 2011;8:5567.Google Scholar
Fisher, CM: Intermittent interruption of behavior. Trans Am Neurol Assoc 1968;93:209210.Google Scholar
Brion, S, Jedynak, C-P: Trouble du tranfer inter-hemispherique a propos de trois observations de tumeurs du corps calleux. Le signe de al main etrangere. Rev Neurol (Paris) 1972;126:257266.Google Scholar
Goldberg, G, Mayer, NH, Toglia, JU: Medial frontal cortex infarction and the alien hand sign. Arch Neurol 1981;38:683686.Google Scholar
Geschwind, DH, Iacoboni, M, Mega, MS, et al: Alien hand syndrome: Interhemispheric motor disconnection due to a lesion in the midbody of the corpus callosum. Neurology 1995;45:802808.Google Scholar
Freeman, FR: Akinetic mutism and bilateral anterior cerebral artery occlusion. J Neurol Neurosurg Psychiatry 1971;34:693694.Google Scholar
Borggreve, F, De Deyn, PP, Marien, P, et al: Bilateral infarction in the anterior cerebral artery vascular territory due to an unusual anomaly of the circle of Willis. Stroke 1994;25:12791281.Google Scholar
Ferbert, A, Thorn, A: Bilateral anterior cerebral territory infarction in the differential diagnosis of basilar artery occlusion. J Neurology 1992;239:162164.Google Scholar
Caplan, LR: Caudate infarcts. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 209223.Google Scholar
Chung, C-S, Caplan, LR: Caudate nucleus infarcts and hemorrhages. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge, UK: Cambridge University Press, 2012, pp 397404.Google Scholar
Saris, S: Chorea caused by caudate infarction. Arch Neurol 1983;40:590591.Google Scholar
Mendez, M, Adams, N, Lewandowski, K: Neurobehavioral changes associated with caudate lesions. Neurology 1989;39:349354.Google Scholar
Alexander, GE, DeLong, MR, Strick, PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357381.Google Scholar
Alexander, GE, Delong, MR: Microstimulation of the primate neostriatum: I: Physiological properties of striatal microexcitable zones. J Neurophysiol 1985;53:14171432.Google Scholar
Caplan, LR: Intracranial branch atheromatous disease. Neurology 1989;39:12461250.Google Scholar
Rhoton, A, Fuji, K, Fradd, B: Microsurgical anatomy of the anterior choroidal artery. Surg Neurol 1979;12:171187.Google Scholar
Mohr, JP, Steinke, W, Timsit, SG, et al: The anterior choroidal artery does not supply the corona radiata and lateral ventricular wall. Stroke 1991;22:15021507.CrossRefGoogle Scholar
Takahashi, S, Suga, T, Kawata, Y, Sakamoto, K: Anterior choroidal artery: Angiographic analysis of variations and anomalies. AJNR Am J Neuroradiol 1990;11:719729.Google Scholar
Cooper, I: Surgical occlusions of the anterior choroidal artery in Parkinsonism. Surg Gynecol Obstet 1954;99:207219.Google Scholar
Helgason, C, Caplan, LR, Goodwin, V, et al: Anterior choroidal territory infarction: Case reports and review. Arch Neurol 1986;43:681686.Google Scholar
Helgason, C, Caplan, LR: Anterior choroidal artery territory strokes. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge, UK: Cambridge University Press, 2012, pp 375386.Google Scholar
Ward, T, Bernat, J, Goldstein, A: Occlusion of the anterior choroidal artery. J Neurol Neurosurg Psychiatry 1984;47:10461049.Google Scholar
Masson, M, DeCroix, JP, Henin, D, et al: Syndrome de l’artère choroidienne anterieure: Etude clinique et tomodensitometrique de 4 cas. Rev Neurol (Paris) 1983;139:553559.Google Scholar
Decroix, JP, Graveleau, PH, Masson, M, Cambier, J: Infarction in the territory of the anterior choroidal artery: A clinical and computerized tomographic study of 16 cases. Brain 1986;109:10711085.Google Scholar
Helgason, CM: Anterior choroidal artery territory infarction. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Lacunar and Other Subcortical Infarctions. Oxford: Oxford University Press, 1995, pp 131138.Google Scholar
Frisen, L: Quadruple sector anopia and sectorial optic atrophy: A syndrome of the distal anterior choroidal artery. J Neurol Neurosurg Psychiatry 1979;42:590594.Google Scholar
Helgason, C, Wilbur, A, Weiss, A, et al: Acute pseudobulbar mutism due to discrete bilateral capsular infarction in the territory of the anterior choroidal artery. Brain 1988;111:507524.Google Scholar
Damasio, H: A computed tomographic guide to the identification of cerebral vascular territories. Arch Neurol 1983;40:138142.Google Scholar
Bruno, A, Graff-Radford, NR, Biller, J, Adams, HP: Anterior choroidal artery territory infarction: A small vessel disease. Stroke 1989;20:616619.Google Scholar
Mayer, JM, Lanoe, Y, Pedetti, L, Fabry, B: Anterior choroidal-artery territory infarction and carotid occlusion. Cerebrovasc Dis 1992;2:315316.Google Scholar
Leys, D, Mounier-Vehier, F, Lavenu, I, et al: Anterior choroidal artery territory infarcts. Study of presumed mechanisms. Stroke 1994;25:837842.Google Scholar

References

Caplan, LR: Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis, and Management of Posterior Circulation Disease, 2nd ed. Cambridge: Cambridge University Press, 2015.Google Scholar
Caplan, LR: Posterior circulation ischemia: Then, now, and tomorrow (Thomas Willis Lecture – 2000). Stroke 2000;31:20112013.Google Scholar
Millikan, C, Siekert, R: Studies in cerebrovascular disease. The syndrome of intermittent insufficiency of the basilar arterial system. Mayo Clin Proc 1955;30:6168.Google Scholar
Denny-Brown, D: Basilar artery syndromes. Bull N Engl Med Center 1953;15:5360.Google Scholar
Fang, H, Palmer, J: Vascular phenomena involving brainstem structures. Neurology 1956;6:402419.Google Scholar
Williams, D, Wilson, T: The diagnosis of the major and minor syndromes of basilar insufficiency. Brain 1962;85:741774.Google Scholar
Millikan, C, Siekert, R, Shick, R: Studies in cerebrovascular disease: The use of anticoagulant drugs in the treatment of insufficiency or thrombosis within the basilar arterial system. Mayo Clin Proc 1955;30:116126.Google Scholar
Caplan, LR: Vertebrobasilar disease: Time for a new strategy. Stroke 1981;12:111114.Google Scholar
Caplan, LR: Vertebrobasilar disease: Should we continue the double standard of managing patients with brain ischemia? Heart Stroke 1993; 2:377381.Google Scholar
Reivich, M, Holling, E, Roberts, B, et al: Reversal of blood flow through the vertebral artery and its effects on cerebral circulation. N Engl J Med 1961;265:878885.Google Scholar
Heyman, A, Young, W, Dillon, M, et al: Cerebral ischemia caused by occlusive disease of the subclavian or innominate arteries. Arch Neurol 1964;10:581589.Google Scholar
North, R, Fisher, W, DeBakey, M, et al: Brachial-basilar insufficiency syndrome. Neurology 1962;12:810820.Google Scholar
Patel, A, Toole, J: Subclavian steal syndrome: Reversal of cephalic blood flow. Medicine 1965;44:289303.Google Scholar
Hennerici, M, Klemm, C, Rautenberg, W: The subclavian steal phenomenon: A common vascular disorder with rare neurologic deficits. Neurology 1988;38:669673.Google Scholar
Potter, BJ, Pinto, DS: Subclavian steal syndrome. Circulation 2014;129:23202323.Google Scholar
Pollock, M, Blennerhassett, J, Clark, A: Giant cell arteritis and the subclavian steal syndrome. Neurology 1973;23:653657.Google Scholar
Hall, S, Barr, W, Lie, JT, et al: Takayasu arteritis. Medicine 1985;64:8999.Google Scholar
Shinohara, Y: Takayasu disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 2731.Google Scholar
Brewster, DC, Moncure, AC, Darling, C, et al: Innominate artery lesions: Problems encountered and lessons learned. J Vasc Surg 1985;2:99112.Google Scholar
Hennerici, M, Aulich, A, Sandemann, W, Freund, H-J: Incidence of asymptomatic extracranial occlusive disease. Stroke 1981;12:750758.Google Scholar
Symonds, C: Two cases of thrombosis of subclavian artery with contralateral hemiplegia of sudden onset, probably embolic. Brain 1927;50:259260.Google Scholar
Martin, R, Bogousslavsky, J, Miklossy, J, et al: Floating thrombus in the innominate artery as a cause of cerebral infarction in young adults. Cerebrovasc Dis 1992;2:177181.Google Scholar
Ferriere, M, Negre, G, Bellecoste, JF, et al: Thrombus flottant sous-clavier responsible d’un syndrome encephalo-digital, deux observations. La Presse Med 1984;13:2729.Google Scholar
Fields, WS, LeMak, NA, Ben-Menachem, Y: Thoracic outlet syndrome: Review and reference to a stroke in a major league pitcher. AJNR Am J Neuroradiol 1986;7:7378.Google Scholar
Baker, R, Rosenbaum, A, Caplan, L: Subclavian steal syndrome. Contemp Surg 1974;4:96104.Google Scholar
Caplan, LR, Wityk, RJ, Glass, TA, et al: New England Medical Center Posterior Circulation Registry. Ann Neurol 2004;56:389398.Google Scholar
Caplan, LR, Wityk, RJ, Pazdera, L, et al: New England Medical Center Posterior Circulation Stroke Registry: II. Vascular lesions. J Clin Neurol 2005;1:3149.Google Scholar
Ekestrom, S, Eklund, B, Liljequist, L, et al: Noninvasive methods in the evaluation of obliterative disease of the subclavian or innominate artery. Acta Med Scand 1979;206:467471.Google Scholar
Berguer, R, Higgins, R, Nelson, R: Noninvasive diagnosis of reversal of vertebral artery blood flow. N Engl J Med 1980;302:13491351.Google Scholar
von Reutern, GM, Pourcelot, L: Cardiac cycle-dependent alternating flow in vertebral arteries with subclavian artery stenosis. Stroke 1978;9:229236.Google Scholar
Liljequist, L, Ekestrom, S, Nordhus, O: Monitoring direction of vertebral artery blood flow by Doppler shift ultrasound in patients with suspected subclavian steal. Acta Chir Scand 1981;147:421424.Google Scholar
von Reutern, G-M, von Budingen, H-J: Ultrasound diagnosis of cerebrovascular disease. In von Reutern, G-M, von Budingen, H-J (eds): Ultrasound Diagnosis of Cerebrovascular Disease: Doppler Sonography of the Extracranial and Intracranial Arteries: Duplex Scanning. Stuttgart: Georg Thieme, 1993, pp 129175.Google Scholar
von Budingen, H-J, Staudacher, T: Evaluation of vertebrobasilar disease. In Newell, DW, Aaslid, R (eds): Transcranial Doppler. New York: Raven Press, 1992, pp 167195.Google Scholar
Ackerstaff, RGA: Duplex scanning of the aortic arch and vertebral arteries. In Bernstein, EF (ed): Vascular Diagnosis, 4th ed. St Louis: Mosby, 1993, pp 315321.Google Scholar
Hadjipetrou, P, Cox, S, Piemonte, T, Eisenhauer, A: Percutaneous revascularization of atherosclerotic obstruction of aortic arch vessels. J Am Coll Cardiol 1999;33:12381245.Google Scholar
Dorros, G, Lewin, RF, Jamnadas, P, Mathiak, LM: Peripheral transluminal angioplasty of the subclavian and innominate arteries utilizing the brachial approach: Acute outcome and follow-up. Catheter Cardiovasc Diagn 1990;19:7176.Google Scholar
Hebrang, A, Maskovic, J, Tomac, B: Percutaneous transluminal angioplasty of the subclavian arteries: Long-term results in 52 patients. AJR Am J Roentgenol 1991;156:10911094.Google Scholar
Henry, M, Amor, M, Henry, I, et al: Percutaneous transluminal angioplasty of the subclavian arteries. J Endovasc Surg 1999;6:3341.Google Scholar
Millaire, A, Trinca, M, Marache, P, et al: Subclavian angioplasty: Immediate and late results in 50 patients. Catheter Cardiovasc Diagn 1993;29:817.Google Scholar
Motarjeme, A: Percutaneous transluminal angioplasty of supra-aortic vessels. J Endovasc Surg 1996;3:171181.Google Scholar
Motarjeme, A, Keifer, JW, Zuska, AJ, Nabawi, P: Percutaneous transluminal angioplasty for treatment of subclavian steal. Radiology 1985;155:611613.Google Scholar
Vitek, JJ: Subclavian artery angioplasty and the origin of the vertebral artery. Radiology 1989;170:407409.Google Scholar
Schillinger, M, Haumer, M, Schillinger, S, et al: Risk stratification for subclavian artery angioplasty: Is there an increased rate of restenosis after stent implantation? J Endovasc Ther 2001;8:550557.Google Scholar
Iared, W, Mourao, JE, Puchnick, A, Soma, F, Shigueoka, DC: Angioplasty versus stenting for subclavian artery stenosis. Cochrane Database Syst Rev 2014;5:CD008461.Google Scholar
Aboyans, V, Kamineni, A, Allison, MA, et al: The epidemiology of subclavian stenosis and its association with markers of subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2010;211:266270.Google Scholar
Fisher, CM, Gore, I, Okabe, N, et al: Atherosclerosis of the carotid and vertebral arteries: Extracranial and intracranial. J Neuropathol Exp Neurol 1965;24:455476.Google Scholar
Hutchinson, EC, Yates, PO: The cervical portion of the vertebral artery, a clinicopathological study. Brain 1956;79:319331.Google Scholar
Hutchinson, E, Yates, P: Carotico-vertebral stenosis. Lancet 1957;1:28.Google Scholar
Gorelick, PB, Caplan, LR, Hier, DB, et al: Racial differences in the distribution of posterior circulation occlusive disease. Stroke 1985;16:785790.Google Scholar
Kim, JS, Nah, HW, Park, SM, et al: Risk factors and stroke mechanisms in atherosclerotic stroke: intracranial compared with extracranial and anterior compared with posterior circulation disease. Stroke 2012;43:33133318.Google Scholar
Fisher, CM: Vertigo in cerebrovascular disease. Arch Otolaryngol 1967;85:529534.Google Scholar
Kerber, KA, Brown, D, Lisabeth, LD, et al: Stroke among patients with dizziness, vertigo, and imbalance in the emergency department. A population-based study. Stroke 2006;37:24842487.Google Scholar
Lee, H, Sohn, S-I, Cho, Y-W, et al: Cerebellar infarction presenting isolated vertigo. Frequency and vascular topographical patterns. Neurology 2006;67:11781183.Google Scholar
Moosy, J: Morphology, sites, and epidemiology of cerebral atherosclerosis. Res Publ Assoc Res Nerv Ment Dis 1966;51:122.Google Scholar
Imparato, A, Riles, T, Kim, G: Cervical vertebral angioplasty for brainstem ischemia. Surgery 1981;90:842852.Google Scholar
Pelouze, GA: Plaque ulcerie de l’ostium de l’artère vertebrale. Rev Neurol 1989;145:478481.Google Scholar
Fisher, CM: Occlusion of the vertebral arteries. Arch Neurol 1970;22:1319.Google Scholar
Wityk, RJ, Chang, H-M, Rosengart, A, et al: Proximal extracranial vertebral artery disease in the New England Medical Center posterior circulation registry. Arch Neurol 1998;55:470478.Google Scholar
George, B, Laurian, C: Vertebrobasilar ischemia with thrombosis of the vertebral artery: Report of two cases with embolism. J Neurol Neurosurg Psychiatry 1982;45:9193.Google Scholar
Caplan, LR, Tettenborn, B: Embolism in the posterior circulation. In Bergner, R, Caplan, LR (eds): Vertebrobasilar Arterial Disease. St Louis: Quality Medical Publishers, 1991, pp 5063.Google Scholar
Caplan, LR, Amarenco, P, Rosengart, A, et al: Embolism from vertebral artery origin occlusive disease. Neurology 1992;42:15051512.Google Scholar
Glass, TA, Hennessey, PM, Pazdera, L, et al: Outcome at 30 days in the New England Medical Center Posterior Circulation Registry. Arch Neurol 2002;59:369376.Google Scholar
Moufarrij, N, Little, JR, Furlan, AJ, et al: Vertebral artery stenosis: Long-term follow-up. Stroke 1984;15:260263.Google Scholar
Callow, A: Surgical management of varying patterns of vertebral artery and subclavian artery insufficiency. N Engl J Med 1964;270:546552.Google Scholar
Roon, A, Ehrenfeld, W, Cooke, P, et al: Vertebral artery reconstruction. Am J Surg 1979;138:2936.Google Scholar
Berguer, R, Flynn, LM, Kline, RA, Caplan, LR: Surgical reconstruction of the extracranial vertebral artery: Management and outcome. J Vasc Surg 2000;31:918.Google Scholar
Berguer, R, Flynn, LM, Kline, RA, et al: Surgical reconstruction of the extracranial vertebral artery: Management and outcome. J Vasc Surg 2000;31:918.Google Scholar
Kieffer, E, Koskas, F, Bahnini, A, et al: Long-term results after reconstruction of the cervical vertebral artery. In Caplan, LR, Shifrin, EG, Nicolaides, AN, Moore, WS (eds): Cerebrovascular Ischaemia: Investigations and Management. London: Med-Orion, 1996, pp 617625.Google Scholar
Myers, PM, Schumacher, HC, Higashida, RT, et al: Use of stents to treat extracranial cerebrovascular disease. Ann Rev Med 2006;57:437454.Google Scholar
Higashida, R, Tsai, F, Halbach, V, et al: Transluminal angioplasty, thrombolysis, and stenting for extracranial and intracranial cerebral vascular disease. J Interv Cardiol 1996;9:245255.Google Scholar
Chastain, HD 2nd, Campbell, MS, Iyer, S, et al: Extracranial vertebral artery stent placement: In-hospital and follow-up results. J Neurosurg 1999;91:547552.Google Scholar
Piotin, M, Spelle, L, Martin, JB, et al: Percutaneous transluminal angioplasty and stenting of the proximal vertebral artery for symptomatic stenosis. AJNR Am J Neuroradiol 2000;21:727731.Google Scholar
The SSLVIA Study Investigators. Stenting of Symptomatic Atherosclerotic Lesions in the Vertebral or Intracranial Arteries (SSYLVIA): Study results. Stroke 2004;35:13881392.Google Scholar
Caplan, LR: Dissections of brain-supplying arteries. Nat Clin Pract Neurol 2008;4:3442.Google Scholar
Tettenborn, B, Caplan, LR, Sloan, MA, et al: Postoperative brainstem and cerebellar infarcts. Neurology 1993;43:471477.Google Scholar
Debette, S, Leys, D. Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol. 2009;8:668678.Google Scholar
Caplan, LR, Zarins, C, Hemmatti, M: Spontaneous dissection of the extracranial vertebral arteries. Stroke 1985;16:10301038.Google Scholar
Mokri, B, Houser, OW, Sandok, BA, Piepgras, DG: Spontaneous dissections of the vertebral arteries. Neurology 1988;38:880885.Google Scholar
Silbert, PL, Mokri, B, Schievink, WI: Headache and neck pain in spontaneous internal carotid and vertebral artery dissection. Neurology 1995;45:15171522.Google Scholar
Saeed, AB, Shuaib, A, Al-Sulaiti, G, Emery, D: Vertebral artery dissection: Warning symptoms, clinical features, and prognosis in 26 patients. Can J Neurol Sci 2000;27:292296.Google Scholar
Arnold, M, Bousser, M-G: Clinical manifestations of vertebral artery dissection. In Baumgartner, RW, Bogousslavsky, J, Caso, V, Paciaroni, M (eds): Handbook on Cerebral Artery Dissection. Basel: Karger, 2005, pp 7786.Google Scholar
Arnold, M, Bousser, M-G, Fahrni, G, et al: Vertebral artery dissection. Presenting findings and predictors of outcome. Stroke 2006;37:24992503.Google Scholar
Giroud, M, Gras, P, Dumas, R, Becker, F: Spontaneous vertebral artery dissection initially revealed by a pain in one upper arm. Stroke 1993;24:480481.Google Scholar
Dubard, T, Pouchot, J, Lamy, C, et al: Upper limb peripheral motor deficits due to extracranial vertebral artery dissection. Cerebrovasc Dis 1994;4:8891.Google Scholar
Goldsmith, P, Rowe, D, Jager, R, Kapoor, R: Focal vertebral artery dissection causing Brown–Séquard syndrome. J Neurol Neurosurg Psychiatry 1998;64:416417.Google Scholar
Touboul, PJ, Mas, JL, Bousser, M-G, Laplane, D: Duplex scanning in extracranial vertebral artery dissection. Stroke 1987;18:116121.Google Scholar
Wilkinson, I, Russel, R: Arteries of the head and neck in giant cell arteritis. Arch Neurol 1972;27:378391.Google Scholar
Bickerstaff, E: Neurological Complications of Oral Contraceptives. Oxford: Clarendon Press, 1975.Google Scholar
Muller-Kuppers, M, Graf, KJ, Pessin, MS, et al: Intracranial vertebral artery disease in the New England Medical Center Posterior Circulation Registry. Eur Neurol 1997;37:146156.Google Scholar
Shin, H-K, Yoo, K-M, Chang, HM, Caplan, LR: Bilateral intracranial vertebral artery disease in the New England Medical Center Posterior Circulation Registry. Arch Neurol 1999;56:13531358.Google Scholar
Huang, YC, Chen, YF, Wang, YH, Tu, YK, Jeng, JS, Liu, HM: Cervicocranial arterial dissection: Experience of 73 patients in a single center. Surg Neurol 2009;72 Suppl 2:S2077; discussion S7.Google Scholar
Caplan, LR, Baquis, GD, Pessin, MS, et al: Dissection of the intracranial vertebral artery. Neurology 1988;38:868877.Google Scholar
Hosoya, T, Adachi, M, Yamaguchi, K, Haku, T, Kayama, T, Kato, T: Clinical and neuroradiological features of intracranial vertebrobasilar artery dissection. Stroke 1999;30:10831090.Google Scholar
Kim, JS: Pure lateral medullary infarction: clinical–radiological correlation of 130 acute, consecutive patients. Brain 2003;126:18641872.Google Scholar
Fisher, CM, Karnes, W, Kubik, C: Lateral medullary infarction: The pattern of vascular occlusion. J Neuropathol Exp Neurol 1961;20:323379.Google Scholar
Stephens, RB, Stilwell, DL: Arteries and Veins of the Human Brain. Springfield, IL: Charles C Thomas, 1969.Google Scholar
Duvernoy, HM: Human Brainstem Vessels. Berlin: Springer, 1978.Google Scholar
Kommerall, G, Hoyt, W: Lateropulsion of saccadic eye movements. Arch Neurol 1973;28:313318.Google Scholar
Meyer, K, Baloh, R, Krohel, G, et al: Ocular lateropulsion: A sign of lateral medullary disease. Arch Ophthalmol 1980;98:16141616.Google Scholar
Matsumoto, S, Okuda, B, Imai, T, Kameyama, M: A sensory level on the trunk in lower lateral brainstem lesions. Neurology 1988;38:15151519.Google Scholar
Song, I-U, Kim, J-S, Lee, D-G, et al: Pure sensory deficit at the T4 sensory level as an isolated manifestation of lateral medullary infarction. J Clin Neurol 2007;3:112115.Google Scholar
Kim, JS, Lee, JH, Lee, MC: Patterns of sensory dysfunction in lateral medullary infarction: Clinical-MRI correlation. Neurology 1997;49:15571563.Google Scholar
Kim, JS: Sensory symptoms in ipsilateral limbs/body due to lateral medullary infarction. Neurology 2001;57:12301234.Google Scholar
Devereaux, M, Keane, J, Davis, R: Automatic respiratory failure associated with infarction of the medulla: Report of two cases with pathologic study of one. Arch Neurol 1973;29:4652.Google Scholar
Levin, B, Margolis, G: Acute failure of automatic respirations secondary to a unilateral brainstem infarct. Ann Neurol 1977;1:583586.Google Scholar
Bogousslavsky, J, Khurana, R, Deruaz, JP, et al: Respiratory failure and unilateral caudal brainstem infarction. Ann Neurol 1990;28:668673.Google Scholar
Currier, R, Giles, C, Westerberg, M: The prognosis of some brainstem vascular syndromes. Neurology 1958;8:664668.Google Scholar
Caplan, LR, Pessin, M, Scott, RM, et al: Poor outcome after lateral medullary infarcts. Neurology 1986;36:15101513.Google Scholar
Caplan, LR, Chung, CS, Wityk, RJ, et al: New England Medical Center Posterior Circulation Stroke Registry: I. Methods, database, distribution of brain lesions, stroke mechanisms, and outcomes. J Clin Neurol 2005;1:1430.Google Scholar
Caplan, LR: Bilateral distal vertebral artery occlusion. Neurology 1983;33:552558.Google Scholar
Hauw, J, Der Agopian, P, Trelles, L, et al: Les infarctes bulbaires. J Neurol Sci 1976;28:83102.Google Scholar
Sawada, H, Seriu, N, Udaka, F, Kameyama, M: Magnetic resonance imaging of medial medullary infarction. Stroke 1990;21:963966.Google Scholar
Tyler, KL, Sandberg, E, Baum, KF: Medial medullary syndrome and meningovascular syphilis: A case report in an HIV-infected man and a review of the literature. Neurology 1994;44:22312235.Google Scholar
Kim, JS, Kim, HG, Chung, CS: Medial medullary syndrome: Report of 18 new patients and a review of the literature. Stroke 1995;26:15481552.Google Scholar
Hagiwara, N, Toyoda, K, Torisu, R, et al: Progressive stroke involving bilateral medial medulla expanding to spinal cord due to vertebral artery dissection. Cerebrovasc Dis 2007;24:540542.Google Scholar
Kumral, E, Afsar, N, Kirbas, D, et al: Spectrum of medial medullary infarction: Clinical and magnetic resonance imaging findings. J Neurol 2002;249:8593.Google Scholar
Sypert, G, Alvord, E: Cerebellar infarction: A clinicopathological study. Arch Neurol 1975;32:351363.Google Scholar
Amarenco, P, Hauw, JJ, Henin, D, et al: Les infarctus du territoire de l’artère cerebelleuse postero-inferieure: Etude clinico-pathologique de 28 cas. Rev Neurol 1989;145:277286.Google Scholar
Amarenco, P, Hauw, JJ, Gautier, JC: Arterial pathology in cerebellar infarction. Stroke 1990;21:12991305.Google Scholar
Mazighi, M, Amarenco, P: Cerebellar infarcts. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge: Cambridge University Press, 2012, pp 469479.Google Scholar
Amarenco, P, Caplan, LR: Vertebrobasilar occlusive disease, review of selected aspects: 3. Mechanisms of cerebellar infarctions. Cerebrovasc Dis 1993;3:6673.Google Scholar
Caplan, LR: Cerebellar infarcts: Key features. Rev Neurol Dis 2005;2:5160.Google Scholar
Fisher, CM, Picard, E, Polak, A, et al: Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. J Nerv Ment Dis 1965;140:3857.Google Scholar
Lehrich, J, Winkler, G, Ojemann, R: Cerebellar infarction with brainstem compression: Diagnosis and surgical treatment. Arch Neurol 1970;22:490498.Google Scholar
Fairburn, B, Oliver, L: Cerebellar softening: A surgical emergency. BMJ 1956;1:13351336.Google Scholar
Hornig, CR, Rust, DS, Busse, O, et al: Space-occupying cerebellar infarction. Clinical course and prognosis. Stroke 1994;25:372374.Google Scholar
Seelig, J, Selhorst, J, Young, H, et al: Ventriculostomy for hydrocephalus in cerebellar hemorrhage. Neurology 1981;31:15371540.Google Scholar
Rieke, K, Krieger, D, Adams, H-P, et al: Therapeutic strategies in space-occupying cerebellar infarction based on clinical, neuroradiological and neurophysiological data. Cerebrovasc Dis 1993;3:4555.Google Scholar
Castaigne, P, Lhermitte, F, Gautier, J, et al: Arterial occlusions in the vertebral-basilar system. Brain 1973;96:133154.Google Scholar
Koroshetz, WJ, Ropper, AH: Artery-to-artery embolism causing stroke in the posterior circulation. Neurology 1987;37:292296.Google Scholar
Sundt, T, Whisnant, J, Piepgras, D, et al: Intracranial bypass grafts for vertebral-basilar ischemia. Mayo Clin Proc 1978;53:1218.Google Scholar
Ausman, J, Diaz, F, de los Reyes, R, et al: Anastomosis of occipital artery to AICA for vertebrobasilar junction stenosis. Surg Neurol 1981;16:99102.Google Scholar
Roski, R, Spetzler, R, Hopkins, L: Occipital artery to posterior–inferior cerebellar artery bypass for vertebrobasilar ischemia. Neurosurgery 1982;10:4449.Google Scholar
Allen, G, Cohen, R, Preziosi, T: Microsurgical endarterectomy of the intracranial vertebral artery for vertebrobasilar transient ischemic attacks. Neurosurgery 1981;81:5659.Google Scholar
Takis, C, Kwan, ES, Pessin, MS, et al: Intracranial angioplasty: Experience and complications. AJNR Am J Neuroradiol 1997;18:16611668.Google Scholar
Myers, PM, Schumacher, HC, Tanji, K, et al: Use of stents to treat intracranial cerebrovascular disease. Ann Rev Med 2007;58:207122.Google Scholar
Caplan, LR: The intracranial vertebral artery: A neglected species. The Johann Jacob Wepfer Award 2012. Cerebrovasc Dis 2012;34:2030.Google Scholar
Chimowitz, MI, Lynn, MJ, Derdeyn, CP, et al, for the SAMPRIS Investigators: Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med 2011;365:9931003.Google Scholar
Derdeyn, CP, Fiorella, D, Lynn, MJ, et al: Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Mechanisms of stroke after intracranial angioplasty and stenting in the SAMMPRIS trial. Neurosurg 2013;72:777795.Google Scholar
Fiorella, D, Derdeyn, CP, Lynn, MJ, et al: SAMMPRIS Trial Investigators. Detailed analysis of periprocedural strokes in patients undergoing intracranial stenting in Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS). Stroke 2012;43:26822688.Google Scholar
Nakayama, T, Tanaka, K, Kaneko, M, Yokoya-ma, T, Uemura, K: Thrombolysis and angioplasty for acute occlusion of intracranial vertebrobasilar arteries. J Neurosurg 1998;88:919922.Google Scholar
Wang, Bin, Wang, Yabing, Li, Shenmao, et al: Intra-arterial thrombolysis combined with angioplasty for treatment of acute ischemic cerebral infarction. Chin J Cerebrovasc Dis 2011;8:6569.Google Scholar
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, et al: Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 2005;352:13051316.Google Scholar
Kwon, SU, Cho, YJ, Koo, JS, et al: Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: The multicenter double-blind placebo-controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke 2005;36:782786.Google Scholar
Kubik, C, Adams, R: Occlusion of the basilar artery: A clinical and pathologic study. Brain 1946;69:73121.Google Scholar
Caplan, LR: Occlusion of the vertebral or basilar artery. Stroke 1979;10:272282.Google Scholar
Voetsch, B, DeWitt, LD, Pessin, MS, et al: Basilar artery occlusive disease in the New England Medical Center Posterior Circulation Registry. Arch Neurol 2004;61:496504.Google Scholar
Schonewille, W, Wijman, C, Michel, P: BASICS Investigators. Treatment and clinical outcome in patients with basilar artery occlusion. Stroke 2006;37:922928.Google Scholar
Baird, TA, Muir, KW, Bone, I: Basilar artery occlusion. Neurocritical care 2004;1:319329.Google Scholar
Pessin, MS, Gorelick, PB, Kwan, ES, et al: Basilar artery stenosis: middle and distal segments. Neurology 1987;37:17421746.Google Scholar
LaBauge, R, Pages, C, Marty-Double, JM, et al: Occlusion du tronc basilaire. Rev Neurol 1981;137:545571.Google Scholar
Amarenco, P, Hauw, JJ: Cerebellar infarction in the territory of the anterior inferior cerebellar artery: A clinicopathological study of 20 cases. Brain 1990;118:139155.Google Scholar
Amarenco, P, Rosengart, A, DeWitt, LD, et al: Anterior inferior cerebellar artery territory infarcts. Mechanisms and clinical features. Arch Neurol 1993;50:154161.Google Scholar
Nordgren, RE, Markesbery, WR, Fukuda, K, Reeves, AG: Seven cases of cerebromedullospinal disconnection: The “locked-in syndrome”. Neurology 1971;21:11401148.Google Scholar
Nikić, PM, Jovanović, D, Paspalj, D, Georgievski-Brkić, B, Savić, M: Clinical characteristics and outcome in the acute phase of ischemic locked-in syndrome: case series of twenty patients with ischemic LIS. Eur Neurol 2013;69:207212.Google Scholar
Posner, JB, Saper, CB, Schiff, ND, Plum, F: Plum and Posner’s Diagnosis of Stupor and Coma, 4th ed. Oxford, Oxford University Press, 2007.Google Scholar
Pierrot-Deseilligny, C, Caplan, LR: Eye movement abnormalities. In Caplan, LR, van Gijn, J (eds) Stroke Syndromes, 3rd ed. Cambridge: Cambridge University Press, 2012, pp 6474.Google Scholar
Thömke, F: Disorders of ocular motility. In Urban, PP, Caplan, LR (eds): Brainstem Disorders. Berlin: Springer-Verlag, 2011, pp 104130.Google Scholar
Fisher, CM: Some neuro-ophthalmological observations. J Neurol Neurosurg Psychiatry 1967;30:383392.Google Scholar
Chase, T, Moretti, L, Prensky, A: Clinical and electroencephalographic manifestations of a vascular lesion of the pons. Neurology 1968;18:357368.Google Scholar
Parvizi, J, Damasio, AR: Neuroanatomical correlates of brainstem coma. Brain 2003;126:15241536.Google Scholar
Biller, J, Yuh, W, Mitchell, GW: Early diagnosis of basilar artery occlusion using magnetic resonance imaging. Stroke 1988;19:297306.Google Scholar
Fisher, CM: Bilateral occlusion of basilar artery branches. J Neurol Neurosurg Psychiatry 1977;40:11821189.Google Scholar
Klein, IF, Lavallee, PC, Schouman-Claeys, E, Amarenco, P: High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005;64:551552.Google Scholar
Caplan, LR: Thrombolysis in vertebrobasilar occlusive disease. In Lyden, PD (ed): Thrombolytic Therapy for Acute Stroke, 2nd ed. Totawa, NJ: Humana Press, 2005, pp 203209.Google Scholar
Lindsberg, P, Soinne, L, Tatlisumak, T et al. Long-term outcome after intravenous thrombolysis of basilar artery occlusion. JAMA 2004;292:18621866.Google Scholar
Lindsberg, PJ, Mattle, HP: Therapy of basilar artery occlusion: A systematic analysis comparing intra-arterial and intravenous thrombolysis. Stroke 2006;37:922928.Google Scholar
Schonewille, WJ, Wijman, CAC, Michel, P et al. on behalf of the BASICS study group: Treatment and outcomes of acute basilar artery occlusion in the Basilar Artery International Cooperation Study (BASICS): A prospective registry study. Lancet Neurol 2009;8:724730.Google Scholar
Bogousslavsky, J, Regli, F, Maeder, P, et al: The etiology of posterior circulation infarcts: A prospective study using magnetic resonance imaging and magnetic resonance angiography. Neurology 1993;43:15281533.Google Scholar
Roether, J, Wentz, K-U, Rautenberg, W, et al: Magnetic resonance angiography in vertebrobasilar ischemia. Stroke 1993;24:13101315.Google Scholar
Bash, S, Villablanca, JP, Duckwiler, G, et al: Intracranial vascular stenosis and occlusive disease. Evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:10121021.Google Scholar
Caplan, LR, Sergay, S: Positional cerebral ischemia. J Neurol Neurosurg Psychiatry 1976;39:385391.Google Scholar
Lu, PH, Park, JW, Park, S, et al: Intracranial stenting of subacute symptomatic atherosclerotic occlusion versus stenosis. Stroke 2011;42:34703476.Google Scholar
Broussalis, E, Hitzl, W, McCoy, M, Trinka, E, Killer, M: Comparison of endovascular treatment versus conservative medical treatment in patients with acute basilar artery occlusion. Vasc Endovascular Surg 2013;47:429437.Google Scholar
Caplan, LR: Top of the basilar syndrome: Selected clinical aspects. Neurology 1980;30:7279.Google Scholar
Mehler, MF: The rostral basilar artery syndrome: Diagnosis, etiology, prognosis. Neurology 1989;39:916.Google Scholar
Mehler, MF: The neuro-ophthalmologic spectrum of the rostral basilar artery syndrome. Arch Neurol 1988;45:966971.Google Scholar
Fisher, CM: Oval pupils. Arch Neurol 1980:37:502503.Google Scholar
Hommel, M, Bogousslavsky, J: The spectrum of vertical gaze palsy following unilateral brainstem stroke. Neurology 1991;41:12291234.Google Scholar
Alemdar, M, Kamaci, S, Budak, F: Unilateral midbrain infarction causing upward and downward gaze palsy. J Neuro-Ophthalmol 2006;26:173176.Google Scholar
Hommel, M, Besson, G: Midbrain infarcts. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes, 2nd ed. Cambridge: Cambridge University Press, 2001, pp 512519.Google Scholar
Caplan, LR: Ptosis. J Neurol Neurosurg Psychiatry 1974;37:17.Google Scholar
Collier, J: Nuclear ophthalmoplegia with especial reference to retraction of the lids and ptosis and to lesions of the posterior commissure. Brain 1927;50:488498.Google Scholar
Hermann, DM, Siccoli, M, Brugger, P, et al: Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke 2008;39:6268.Google Scholar
Fisher, CM, Caplan, LR: Basilar artery branch occlusion: A cause of pontine infarction. Neurology 1971;21:900905.Google Scholar
Fisher, CM: Bilateral occlusion of basilar artery branches. J Neurol Neurosurg Psychiatry 1977;40:11821189.Google Scholar
Caplan, LR: Intracranial branch atheromatous disease: A neglected, understudied and underused concept. Neurology 1989;39:12461250.Google Scholar
Klein, IF, Lavallee, PC, Schouman-Claeys, E, Amaraenco, P: High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005;64:551552.Google Scholar
Bassetti, C, Bogousslavsky, J, Barth, A, Regli, F: Isolated infarcts of the pons. Neurology 1996;46:165175.Google Scholar
Kataoka, S, Hori, A, Shirakawa, T, Hirose, G: Paramedian pontine infarction. Neurological/topographical correlation. Stroke 1997;28:809815.Google Scholar
Kumral, E, Bayulkem, G, Evyapan, D: Clinical spectrum of pontine infarction. Clinical-MRI correlations. J Neurol 2002;249:16591670.Google Scholar
Kim, JS, Cho, KH, Kang, DW, Kwon, SU, Suh, DC: Basilar artery atherosclerotic disease is related to subacute lesion volume increase in pontine base infarction. Acta Neurol Scand 2009;120:8893.Google Scholar
Alexander, CB, Burger, PC, Goree, JA: Dissecting aneurysms of the basilar artery in two patients. Stroke 1979;10:294299.Google Scholar
Masson, C, Krespy, Y, Masson, M, Colombani, JM: Magnetic resonance imaging in basilar artery dissection. Stroke 1993;24:12641266.Google Scholar
Ruecker, M, Furtner, M, Knoflach, M, et al: Basilar artery dissection: Series of 12 consecutive cases and review of the literature. Cerebrovasc Dis 2010;30:267276.Google Scholar
Pessin, MS, Lathi, E, Cohen, M, et al: Clinical features and mechanism of occipital infarction. Ann Neurol 1987;21:290299.Google Scholar
Chaves, CJ, Caplan, LR: Posterior cerebral artery. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge: Cambridge University Press, 2012, pp 405418.Google Scholar
Yamamoto, Y, Georgiadis, AL, Chang, HM, Caplan, LR: Posterior cerebral artery territory infarcts in the New England Medical Center (NEMC) Posterior Circulation Registry. Arch Neurol 1999;56:824832.Google Scholar
Kumral, E, Bayulkem, G, Atac, C, Alper, Y: Spectrum of superficial posterior cerebral artery territory infarcts. Eur J Neurol 2004;11:237246.Google Scholar
Lee, E, Kang, DW, Kwon, SU, Kim, JS: Posterior cerebral artery infarction: Diffusion-weighted MRI analysis of 205 patients. Cerebrovasc Dis 2009;28:298305.Google Scholar
Caplan, LR, Estol, CJ, Massaro, AR: Dissection of the posterior cerebral arteries. Arch Neurol 2005;62:11381143.Google Scholar
Hishikawa, T, Tokunaga, K, Sugiu, K, Date, I: Assessment of the difference in posterior circulation involvement between pediatric and adult patients with moyamoya disease. J Neurosurg 2013;119:961965.Google Scholar
Frens, DB, Petajan, JH, Anderson, R, Deblanc, JH Jr: Fibromuscular dysplasia of the posterior cerebral artery: Report of a case and review of the literature. Stroke 1974;5:161166.Google Scholar
Calabrese, LH, Dodick, DW, Schwedt, TJ, Singhal, AB. Narrative review: Reversible cerebral vasoconstriction syndromes. Ann Intern Med 2007;146:3444.Google Scholar
Pessin, MS, Kwan, E, DeWitt, LD, et al: Posterior cerebral artery stenosis. Ann Neurol 1987;21:8589.Google Scholar
Mohr, JP, Pessin, MS: Posterior cerebral artery disease. In Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, F (eds): Stroke Pathophysiology, Diagnosis, and Management, 3rd ed. New York: Churchill Livingstone, 1998, pp 481502.Google Scholar
Barton, JS, Caplan, LR: Cerebral visual dysfunction. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge: Cambridge University Press, 2012, pp 7597.Google Scholar
Georgiadis, AL, Yamamoto, Y, Kwan, ES, et al: Anatomy of sensory findings in patients with posterior cerebral artery (PCA) territory infarction. Arch Neurol 1999;56:835838.Google Scholar
Caplan, LR, DeWitt, LD, Pessin, MS, et al: Lateral thalamic infarcts. Arch Neurol 1988;45:959964.Google Scholar
Benson, DF, Tomlinson, EB: Hemiplegic syndrome of the posterior cerebral artery. Stroke 1971;2:559564.Google Scholar
Hommel, M, Besson, G, Pollak, P, et al: Hemiplegia in posterior cerebral artery occlusion. Neurology 1990;40:14961499.Google Scholar
Hommel, M, Moreaud, O, Besson, G, Perret, J: Site of arterial occlusions in the hemiplegic posterior cerebral artery syndrome. Neurology 1991;41:604605.Google Scholar
Dejerine, J: Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Memoires de la Societe Biologique 1892;4:6190.Google Scholar
Geschwind, N, Fusillo, M: Color naming defect in association with alexia. Arch Neurol 1966;15:137146.Google Scholar
Caplan, LR, Hedley-White, T: Cueing and memory dysfunction in alexia without agraphia. Brain 1974;97:25262.Google Scholar
Kertesz, A, Sleppard, A, MacKenzie, R: Localization in transcortical sensory aphasia. Arch Neurol 1982;39:475479.Google Scholar
Victor, M, Angevine, J, Mancall, E, et al: Memory loss with lesions of hippocampal formation. Arch Neurol 1961;5:244263.Google Scholar
Ferro, JM, Martins, IP: Memory loss. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge: Cambridge University Press, 2012, pp 212220.Google Scholar
Benson, F, Marsden, C, Meadows, J: The amnestic syndrome of posterior cerebral artery occlusion. Acta Neurol Scand 1974;50:133145.Google Scholar
Mohr, JP, Leicester, J, Stoddard, L, et al: Right hemianopia with memory and color deficits in circumscribed left posterior cerebral artery territory infarction. Neurology 1971;21:11041113.Google Scholar
Ott, B, Saver, JL: Unilateral amnestic stroke. Six new cases and a review of the literature. Stroke 1993;24:10331042.Google Scholar
Szabo, K, Forster, A, Jager, T et al: Hippocampal lesion patterns in acute posterior cerebral artery stroke: Clinical and imaging findings. Stroke 2009;40:20422045.Google Scholar
Rubens, A, Benson, F: Associative visual agnosia. Arch Neurol 1971;24:305316.Google Scholar
Grusser, OJ, Landis, T: Visual Agnosias and Other Disturbances of Visual Perception and Cognition. Boston: CRC Press, 1991.Google Scholar
Damasio, A, Damasio, H, Van Hoesen, G: Prosopagnosia: Anatomic basis and behavioral mechanisms. Neurology 1982;32:331341.Google Scholar
Tranel, D, Damasio, AR: Intact recognition of facial expression, gender, and age in patients with im-paired recognition of face identity. Neurology 1988;38:690696.Google Scholar
Fisher, CM: Disorientation to place. Arch Neurol 1982;39:3336.Google Scholar
Symonds, C, McKenzie, I: Bilateral loss of vision from cerebral infarction. Brain 1957;80:415455.Google Scholar
Medina, J, Rubino, F, Ross, E: Agitated delirium caused by infarctions of the hippocampal formation and fusiform and lingual gyri: A case report. Neurology 1974;24:11811183.Google Scholar
Horenstein, S, Chamberlain, W, Conomy, J: Infarction of the fusiform and calcarine regions: Agitated delirium and hemianopsia. Trans Am Neurol Assoc 1962;92:357367.Google Scholar
Kumral, E, Bayulkem, G, Atac, C, Alper, Y: Spectrum of superficial posterior cerebral artery territory infarcts. Eur J Neurol 2004;11:237246.Google Scholar
Kondziella, D, Frahm-Falkenberg, S: Anton’s syndrome and eugenics. J Clin Neurol 2011;7:9698.Google Scholar
Eby, SA, Buchner, EJ, Bryant, MG, Mak, HK: The rehabilitation of Anton syndrome. PM R 2012;4:385387.Google Scholar
Mesulam, M-M: Higher visual functions of the cerebral cortex and their disruption in clinical practice. In Albert, DM, Jakobiec, FA (eds): Principles and Practice of Ophthalmology, vol 4. Philadelphia, WB Saunders Co., 1994, pp 26402653.Google Scholar
Mishkin, M, Ungerleider, LG, Macko, KA: Object vision and spatial vision: Two cortical pathways. Trends Neurosci 1983;6:414417.Google Scholar
Ungerleider, LG, Haxby, JV: “What” and “where” in the human brain. Curr Opin Neurobiol 1994;4:157165.Google Scholar
Levine, DN, Warach, J, Farah, M: Two visual systems in mental imagery: Dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology 1985;35:10101018.Google Scholar
Meadows, J: Disturbed perception of colors associated with localized cerebral lesions. Brain 1974;97:615632.Google Scholar
Damasio, A, Yamada, T, Damasio, H, et al: Central achromatopsia: behavioral, anatomic, and physiologic aspects. Neurology 1980;30:10641071.Google Scholar
Hecaen, H, De Ajuriaguerra, J: Balint’s syndrome (psychic paralysis of visual fixation) and its minor forms. Brain 1954;77:373400.Google Scholar
Bálint, R: Seelenlahmung des `Schauens’ optische ataxie, räumliche storung der aufmerksamkeit. Monatschr Psychiatr Monatschr Psychiatr Neurol 1909;25:51191.Google Scholar
Luria, AR: Disorders of “simultaneous perception” in a case of bilateral occipito-parietal brain injury. Brain 1959;82:437449.Google Scholar
Holmes, G: Disturbances of visual orientation. Br J Ophthalmol 1918;2:506516.Google Scholar
Cogan, DG: Ophthalmic manifestations of bilateral non-occipital cerebral lesions. Br J Ophthalmol 1965;49:281297.Google Scholar
Johnston, JL, Sharpe, JA, Morrow, MJ: Spasm of fixation: A quantitative study. J Neurol Sci 1992;107:166171.Google Scholar
Kinkle, W, Newman, R, Jacobs, L: Posterior cerebral artery branch occlusions: CT and anatomical considerations. In Berguer, R, Bauer, R (eds): Vertebrobasilar Arterial Occlusive Disease. New York: Raven Press, 1984, pp 117133.Google Scholar
Goto, K, Tagawa, K, Uemma, K, et al: Posterior cerebral artery occlusion. Radiology 1979;132:357368.Google Scholar
Bogousslavsky, J, Cachin, C, Regli, F, et al: Cardiac sources of embolism and cerebral infarction – clinical consequences and vascular concomitants: The Lausanne Stroke Registry. Neurology 1991;41:855859.Google Scholar
Bogousslavsky, J, Regli, F, Maeder, P, Meuli, R, Nader, J: The etiology of posterior circulation infarcts: A prospective study using magnetic resonance angiography. Neurology 1993;43:15281533.Google Scholar
Bogousslavsky, J, Van Melle, G, Regli, F: The Lausanne Stroke Registry: Analysis of 1000 consecutive patients with first stroke. Stroke 1988;19:10831092.Google Scholar
Moulin, T, Tatu, L, Crepin-Leblond, T, et al: The Besancon Stroke Registry: An acute stroke registry of 2500 consecutive patients. Eur Neurol 1997;38:1020.Google Scholar
Moulin, T, Tatu, L, Vuillier, F, et al: Role of a stroke data bank in evaluating cerebral infarction subtypes: Patterns and outcome of 1776 consecutive patients from the Besancon Stroke Registry. Cerebrovasc Dis 2000;10:261271.Google Scholar
Vemmos, K, Takis, C, Georgilis, K, et al: The Athens Stroke Registry: Results of a five-year hospital-based study. Cerebrovasc Dis 2000;10:133141.Google Scholar

References

Fisher, CM: Lacunes, small deep cerebral infarcts. Neurology 1965;15:774784.Google Scholar
Fisher, CM: The arterial lesions underlying lacunes. Acta Neuropathol 1969;12:115.Google Scholar
Besson, G, Hommel, M: Historical aspects of lacunes and the “lacunar controversy”. In Pullicino, PM, Caplan, LR, Hommel, M (eds): Cerebral Small Artery Disease. New York: Raven Press, 1993, pp 110.Google Scholar
Hauw, J-J: The history of lacunes. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Lacunar and Other Subcortical Infarcts. Oxford: Oxford University Press, 1995, pp 315.Google Scholar
Durand-Fardel, M: Traite des ramollisements du cerveau. Paris: Bailliere, 1843.Google Scholar
Ferrand, J: Essai Sur l’Hemiplegie des Vieillards: Les Lacunes de Desintegration Cerebrale [thesis]. Paris: University of Paris, 1902.Google Scholar
Marie, P: Des foyers lacunaires de desintegration et des differents autres etats cavitaires du cerveau. Rev Med (Paris) 1901;21:281.Google Scholar
Foix, C, Levy, M: Les ramollisements sylviens. Rev Neurol 1927;43:151.Google Scholar
Foix, C, Hillemand, P: Contribution a l’etude des ramollisements protuberantiels. Rev Med 1926;43:287305.Google Scholar
Caplan, LR: Charles Foix – the first modern stroke neurologist. Stroke 1990;21:348356.Google Scholar
Kolominsky-Rabas, PL, Weber, M, Gefeller, O, Neundoerfer, B, Heuschmann, PU: Epidemiology of ischemic stroke subtypes according to TOAST criteria: Incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 2001;32:27352740.Google Scholar
Sacco, S, Marini, C, Totaro, R, Russo, T, Cerone, D, Carolei, A: A population-based study of the incidence and prognosis of lacunar stroke. Neurology 2006;66:13351338.Google Scholar
Awad, I, Johnson, PC, Spetzler, RF, Hodak, JA: Incidental subcortical lesions identified on magnetic resonance imaging in the elderly: II. Postmortem pathological correlations. Stroke 1986;17:10901097.Google Scholar
Fisher, CM: Pure motor hemiplegia of vascular origin. Arch Neurol 1965;13:3044.Google Scholar
Fisher, CM: Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 1971;30:536550.Google Scholar
Fisher, CM: Cerebral miliary aneurysms in hypertension. Am J Pathol 1972;66:313324.Google Scholar
Cole, F, Yates, P: Intracerebral microaneurysms and small cerebrovascular lesions. Brain 1966;90:759767.Google Scholar
Rosenblum, WJ: Miliary aneurysms and “fibrinoid” degeneration of cerebral blood vessels. Hum Pathol 1977;8:133139.Google Scholar
Charcot, J, Bouchard, C: Nouvelles recherches sur la pathogenie de l’hemorrhagie cérébrale. Arch Phys Norm Pathol 1868;1:110127, 643665.Google Scholar
Baudrimont, M, Dubas, F, Joutel, A: Autosomal dominant leukoencephalopathy and subcortical ischemic strokes: A clinicopathological study. Stroke 1993;24:122125.Google Scholar
Lammie, GA, Rakshi, J, Rossor, MN, et al: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy – confirmation by cerebral biopsy in two cases. Clin Neuropathol 1995;14:201206.Google Scholar
Chabriat, H, Bousser, M-G: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 111120.Google Scholar
Fukutake, T: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): From discovery to gene identification. J Stroke Cerebrovasc Dis 2011;20:8593.Google Scholar
Oide, T, Nakayma, H, Yanagama, S, Ito, N, Arima, K: Extensive loss of arterial medial smooth muscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Neuropathology 2008;28:132142.Google Scholar
Gould, DB, Phalan, FC, Breedveld, GI, et al: Mutations in COL4A1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:11671171.Google Scholar
van der Knaap, MS, Smit, LM, Barkhof, F, et al: Neonatal porencephaly and adult stroke related to mutations in collagen IVA1. Ann Neurol 2006;59:504511.Google Scholar
Gould, DB, Phalan, FC, van Mil, SE, et al: Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006;354:14891496.Google Scholar
Plaisir, E, Gribouval, O, Alamowitch, S, et al: COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med 2007;357:26872695.Google Scholar
Lanfranconi, S, Markus, HS: COL4A1 mutations as a monogenic cause of cerebral small vessel disease a systematic review. Stroke 2010;41:e513e518.Google Scholar
Labrune, P, Lacroix, C, Goutieres, F, et al: Extensive brain calcifications, leukodystrophy, and formation of parenchymal cysts: A new progressive disorder due to diffuse cerebral microangiopathy. Neurology 1996;46:12971301.Google Scholar
Corboy, JR, Gault, J, Kleinschmidt-Demasters, BK: An adult case of leukoencephalopathy with intracranial calcifications and cysts. Neurology 2006;67:18901892.Google Scholar
Duret, H: Conclusion d’un memorie sur la circulation bulbaire. Arch Phys Norm Pathol 1873;50:8889.Google Scholar
Duret, H: Recherches anatomiques sur la circulation de l’encephale. Arch Phys Norm Pathol 1874;1:6091, 316353.Google Scholar
Foix, C, Hillemand, P: Irrigation de la protuberance. Compt Rendu Soc Biol (Paris) 1925;42:3537.Google Scholar
Foix, C, Hillemand, P: Les artères de l’axe encephalique jusqu’a diencephale inclusivement. Rev Neurol 1925;41:705739.Google Scholar
Foix, C, Hillemand, P: Irrigation du bulbe. Compt Rendu Soc Biol (Paris) 1924;42:3335.Google Scholar
Stopford, J: The arteries of the pons and medulla oblongata: I. J Anat Physiol 1915;50:131164.Google Scholar
Stopford, J: The arteries of the pons and medulla oblongata: II. J Anat Physiol 1916;50:255280.Google Scholar
Pullicino, PM: The course and territories of cerebral small arteries. In Pullicino, PM, Caplan, LR, Hommel, M (eds): Cerebral Small Artery Disease. New York: Raven Press, 1993, pp 1139.Google Scholar
Pullicino, PM: Diagrams of perforating artery territories in axial, coronal, and sagittal planes. In Pullicino, PM, Caplan, LR, Hommel, M (eds): Cerebral Small Artery Disease. New York: Raven Press, 1993, pp 4172.Google Scholar
Fisher, CM, Caplan, LR: Basilar artery branch occlusion: A cause of pontine infarction. Neurology 1971;21:900905.Google Scholar
Fisher, CM: Bilateral occlusion of basilar artery branches. J Neurol Neurosurg Psychiatry 1977;40:11821189.Google Scholar
Caplan, LR: Intracranial branch atheromatous disease: A neglected, understudied and underused concept. Neurology 1989;39:12461250.Google Scholar
Ostrow, PT, Miller, LL: Pathology of small artery disease. In Pullicino, PM, Caplan, LR, Hommel, M (eds): Cerebral Small Artery Disease. New York: Raven Press, 1993, pp 93123.Google Scholar
Klein, IF, Lavallee, PC, Touboul, P-J, et al: In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 2006;67:327329.Google Scholar
Lam, WW, Wong, KS, So, NM, et al: Plaque volume measurement by magnetic resonance imaging as an index of remodeling of middle cerebral artery: Correlation with transcranial color Doppler and magnetic resonance angiography. Cerebrovasc Dis 2004;17:166169.Google Scholar
Klein, IF, Lavallee, PC, Schouman-Claeys, E, Amaraenco, P: High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005;64:551552.Google Scholar
Kim, JS, Yoon, Y: Single subcortical infarction associated with parental arterial disease: important yet neglected sub-type of atherothrombotic stroke. Int J Stroke 2013;8:197203.Google Scholar
Yoon, Y, Lee, DH, Kang, DW, Kwon, SU, Kim, JS: Single subcortical infarction and atherosclerotic plaques in the middle cerebral artery: High-resolution magnetic resonance imaging findings. Stroke 2013;44:24622467.Google Scholar
Zhang, C, Wang, Y, Zhao, X, on behalf of the Chinese Intracranial Atherosclerosis Study Group: Distal single subcortical infarction had a better clinical outcome compared with proximal single subcortical infarction. Stroke 2014;45:26132619.Google Scholar
Horowitz, DR, Tuhrim, S, Weinberger, JM, Rudolph, SH: Mechanisms in lacunar infarction. Stroke 1992;23:325327.Google Scholar
Peress, N, Kane, W, Aronson, S: Central nervous system findings in a tenth-decade autopsy population. Prog Brain Res 1973;40:473484.Google Scholar
Bang, OY, Heo, JH, Kim, JY, et al: Middle cerebral artery stenosis is a major clinical determinant in striatocapsular deep infarction. Arch Neurol 2002;59:259263.Google Scholar
Wong, KS, Gao, S, Chan, YL, et al: Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis: A diffusion-weighted imaging and microemboli monitoring study. Ann Neurol 2002;52:7481.Google Scholar
Bang, OY, Joo, SY, Lee, PH, et al: The course of patients with lacunar infarcts and a parent arterial lesion: Similarities to large artery vs. small artery disease. Arch Neurol 2004;61:514519.Google Scholar
Baumgartner, RW, Sidler, C, Mosso, M, Georgiadis, D: Ischemic lacunar stroke in patients with and without potential mechanism other than small-artery disease. Stroke 2003;34:653659.Google Scholar
Boiten, J: Lacunar Stroke: A Prospective Clinical and Radiologic Study [thesis]. Maastricht, 1991.Google Scholar
Yamamoto, Y, Ohara, T, Hamanaka, M, Hosomi, A, Tamura, A, Akiguchi, I: Characteristics of intracranial branch atheromatous disease and its association with progressive motor deficits. J Neurol Sci 2011;304:7882.Google Scholar
Norrving, B, Cronqvist, S: Clinical and radiologic features of lacunar versus nonlacunar minor stroke. Stroke 1989;20:5964.Google Scholar
Pullicino, P, Nelson, R, Kendall, B, et al: Small deep infarcts diagnosed on computed tomography. Neurology 1980;30:10901096.Google Scholar
Weisberg, L: Computed tomography and pure motor hemiparesis. Neurology 1979;29:490495.Google Scholar
Donnan, G, Tress, B, Bladin, P: A prospective study of lacunar infarction using computed tomography. Neurology 1982;32:4756.Google Scholar
Mohr, JP, Caplan, LR, Melski, J: The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;28:754762.Google Scholar
Tuszynski, MH, Petito, CK, Levy, DB: Risk factors and clinical manifestations of pathologically verified lacunar infarctions. Stroke 1989;20:990999.Google Scholar
Labovitz, DL, Boden-Albala, B, Hauser, WA, Sacco, RL: Lacunar infarct or deep intracerebral hemorrhage. Who gets which? The Northern Manhattan Study. Neurology 2007;68:606608.Google Scholar
Ikram, MA, Vernooji, MW, Hofman, A, et al: Kidney function is related to cerebral small vessel disease. Stroke 2008;39:5561.Google Scholar
Pico, F, Labreuche, J, Seilhean, D, et al: Association of small-vessel disease with dilatative arteriopathy of the brain. Neuropathologic evidence. Stroke 2007;38:11971202.Google Scholar
Caplan, LR, Young, R: EEG findings in certain lacunar stroke syndromes. Neurology 1972;22:403.Google Scholar
Mohr, JP: Lacunes. Stroke 1982;13:311.Google Scholar
Miller, V: Lacunar stroke, a reassessment. Arch Neurol 1983;40:129134.Google Scholar
Rascol, A, Clanet, M, Manelfe, C, et al: Pure motor hemiplegia: CT study of 30 cases. Stroke 1982;13:1117.Google Scholar
Donnan, GA, O’Malley, HM, Quang, L, et al: The capsular warning syndrome and lacunar TIAs. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 175184.Google Scholar
Steinke, W, Ley, S: Lacunar stroke is the major cause of progressive motor deficits. Stroke 2002;33:15101516.Google Scholar
Caplan, LR: Worsening in ischemic stroke patients: Is it time for a new strategy? Stroke 2002; 33:14431445.Google Scholar
Donnan, GA, Norrving, B: Lacunes and lacunar syndromes. Handb Clin Neurol 2009;93:559575.Google Scholar
Arboix, A, Massons, J, Garcia-Eroles, L, Targa, C, Comes, E, Parra, O: Clinical predictors of lacunar syndrome not due to lacunar infarction. BMC Neurol 2010;10:31.Google Scholar
Vermeer, SE, Longstreth, WT Jr, Koudstaal, PJ: Silent brain infarcts: A systematic review. Lancet Neurol 2007;6:611619.Google Scholar
Vermeer, SE, Prins, ND, denHeijer, T, Hofman, A, Koudstaal, PJ, Breteler, M: Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003;348:12151222.Google Scholar
Nelson, R, Pullicino, P, Kendall, B, et al: Computed tomography in patients presenting with lacunar syndromes. Stroke 1980;11:256261.Google Scholar
Richter, R, Bruse, J, Bruun, B, et al: Frequency and course of pure motor hemiparesis: A clinical study. Stroke 1977;8:5860.Google Scholar
Gobernado, JM, de Molina, AR, Gimeno, A: Pure motor hemiplegia due to hemorrhage in the lower pons. Arch Neurol 1980;37:393.Google Scholar
Mori, E, Tabuchi, M, Yamadori, A: Lacunar syndrome due to intracerebral hemorrhage. Stroke 1985;16:454459.Google Scholar
Kase, CS: Subcortical haemorrhages. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 347377.Google Scholar
Hommel, M, Besson, G, LeBas, JF, et al: Prospective study of lacunar infarction using magnetic resonance imaging. Stroke 1990;21:546554.Google Scholar
Besson, G: Les Infarctus Lacunaires: Evaluation Clinique et par l’Imagerie par Resonance Magnetique [thesis]. France: University of Grenoble, 1989.Google Scholar
Kase, CS, Wolf, PA, Hier, DB, et al: Lacunar infarcts: Clinical and CT aspects. The Stroke Data Bank experience. Neurology 1986;36:178179.Google Scholar
Fisher, CM, Cole, M: Homolateral ataxia and crural paresis, a vascular syndrome. J Neurol Neurosurg Psychiatry 1965;28:4855.Google Scholar
Fisher, CM: Ataxic hemiparesis. Arch Neurol 1978;35:126128.Google Scholar
Helgason, CM, Wilbur, AC: Capsular hypesthetic ataxic hemiparesis. Stroke 1990;21:2433.Google Scholar
Goldblatt, D, Markesbury, W, Reeves, AG: Recurrent hemichorea following striatal lesions. Arch Neurol 1974;32:5154.Google Scholar
Kase, C, Maulsby, G, DeJaun, E: Hemichorea-hemiballism and lacunar infarction in the basal ganglia. Neurology 1981;31:452455.Google Scholar
Helgason, C, Wilbur, A, Weiss, A, et al: Acute pseudobulbar mutism due to discrete bilateral capsular infarction in the territory of the anterior choroidal artery. Brain 1988;111:507524.Google Scholar
Caplan, LR, Schmahmann, JD, Kase, CS, et al: Caudate infarcts. Arch Neurol 1990;47:133143.Google Scholar
Caplan, LR: Caudate infarcts. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 209223.Google Scholar
Fisher, CM: Capsular infarcts. Arch Neurol 1979;36:6573.Google Scholar
Helgason, C, Caplan, LR, Goodwin, J, Hedges, T: Anterior choroidal artery territory infarction: Case reports and review. Arch Neurol 1986;43:681686.Google Scholar
Mohr, JP, Steinke, W, Timsit, SG, et al: The anterior choroidal artery does not supply the corona radiata and lateral ventricular wall. Stroke 1991;22:15021507.Google Scholar
Caplan, LR: Anterior choroidal artery territory infarcts. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 225240.Google Scholar
Kumral, E, Evyapan, D, Balkir, K: Acute caudate vascular lesions. Stroke 1999;30:100108.Google Scholar
Mendez, M, Adams, N, Lewandowski, K: Neurobehavioral changes associated with caudate lesions. Neurology 1989;39:349354.Google Scholar
Caplan, LR: Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis and Management of Posterior Circulation Disease. Cambridge, Cambridge University Press, 2015.Google Scholar
Bassetti, C, Bogousslavsky, J, Barth, A, Regli, F: Isolated infarcts of the pons. Neurology 1996;46:165175.Google Scholar
Rothrock, JF, Lyden, PD, Hesselink, JF, et al: Brain magnetic resonance imaging in the evaluation of lacunar stroke. Stroke 1987;18:781786.Google Scholar
Leestra, JE, Noronha, A: Pure motor hemiplegia, medullary pyramid lesion, and olivary hypertrophy. J Neurol Neurosurg Psychiatry 1976;39:877884.Google Scholar
Ropper, AH, Fisher, CM, Kleinman, GM: Pyramidal infarction in the medulla: A cause of pure motor hemiplegia sparing the face. Neurology 1979;29:9195.Google Scholar
Milandre, L, Arnaud, O, Khalil, R: Infarction of the medullary pyramid identified on MRI. Cerebrovasc Dis 1992;2:183184.Google Scholar
Ho, KL, Meyer, KR: The medial medullary syndrome. Arch Neurol 1981;38:385387.Google Scholar
Kataoka, S, Hori, A, Shirakawa, T, Hirose, G: Paramedian pontine infarction, neurological/topographical correlation. Stroke 1997;28:809815.Google Scholar
Kim, JS, Lee, JH, Im, JH, Lee, MC: Syndromes of pontine base infarction, a clinical–radiological correlation study. Stroke 1995;26:950955.Google Scholar
Fisher, CM: A lacunar stroke, the dysarthria-clumsy hand syndrome. Neurology 1967;17:614617.Google Scholar
Chung, C-S, Caplan, LR: Pontine infarcts and hemorrhages. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes, 2nd ed. Cambridge: Cambridge University Press, 2001, pp 520533.Google Scholar
Helgason, CM, Wilbur, AC: Basilar branch pontine infarctions with prominent sensory signs. Stroke 1991;22:11291136.Google Scholar
Caplan, LR, Goodwin, J: Lateral tegmental brainstem hemorrhages. Neurology 1982;32:252260.Google Scholar
Shintani, S, Tsuroka, S, Shiigai, T: Pure sensory stroke caused by a pontine infarct. Clinical, radiological, and physiological features in four patients. Stroke 1994;25:15121515.Google Scholar
Kim, JS, Bae, YH: Pure or predominant sensory stroke due to brainstem lesion. Stroke 1997;28:17611764.Google Scholar
Ho, K-L: Pure motor hemiplegia due to infarction of the cerebral peduncle. Arch Neurol 1982;39:524526.Google Scholar
Bogousslavsky, J, Maeder, P, Regli, F, et al: Pure midbrain infarction: Clinical syndromes, MRI, and etiologic patterns. Neurology 1994;44:20322040.Google Scholar
Martin, PJ, Chang, H-M, Wityk, R, Caplan, LR: Midbrain infarction: Associations and aetiologies in the New England Medical Center Posterior Circulation Registry. J Neurol Neurosurg Psychiatry 1998;64:392395.Google Scholar
Hommel, M, Besson, G: Midbrain infarcts. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes, 2nd ed. Cambridge: Cambridge University Press, 2001, pp 512519.Google Scholar
Hommel, B, Besson, G, Pollak, P, et al: Hemiplegia in posterior cerebral artery occlusion. Neurology 1990;40:14961499.Google Scholar
Mossuto-Agatiello, L: Caudal paramedian midbrain syndrome. Neurology 2006;66:16681671.Google Scholar
Sato, S, Toyoda, K, Kawase, K, et al: A caudal mesencephalic infarct presenting only tetra-ataxia and tremor. Cerebrovasc Dis 2008;25:187189.Google Scholar
Castaigne, P, Lhermitte, F, Buge, A, et al: Paramedian thalamic and midbrain infarcts: Clinical and neuropathological study. Ann Neurol 1981;10:127148.Google Scholar
Percheron, G: Les arteres du thalamus humain: II. Arteres et territoires thalamique paramedians de l’arterie basilarie communicante. Rev Neurol (Paris) 1976;132:309324.Google Scholar
Barth, A, Bogousslavsky, J, Caplan, LR: Thalamic infarcts and hemorrhages. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes, 2nd ed. Cambridge: Cambridge University Press, 2001, pp 461468.Google Scholar
Bogousslavsky, J, Miklossy, J, Deruaz, J, et al: Unilateral left paramedian infarction of thalamus and midbrain: A clinicopathological study. J Neurol Neurosurg Psychiatry 1986;49:686694.Google Scholar
Graff-Radford, NR, Damasio, H, Yamada, T, et al: Nonhaemorrhagic thalamic infarction. Brain 1985;108:495516.Google Scholar
Bogousslavsky, J, Regli, F, Assal, G: The syndrome of tuberothalamic artery territory infarction. Stroke 1986;17:434441.Google Scholar
Bogousslavsky, J, Regli, F, Uske, A: Thalamic infarcts: Clinical syndromes, etiology, and prognosis. Neurology 1988;38:837848.Google Scholar
Tatemichi, T, Steinke, W, Duncan, C, et al: Paramedian thalamo-peduncular infarction: Clinical syndromes and magnetic resonance imaging. Ann Neurol 1992;32:162171.Google Scholar
Bogousslavsky, J, Caplan, LR: Vertebrobasilar occlusive disease, review of selected aspects. III: Thalamic infarcts. Cerebrovasc Dis 1993;3:193205.Google Scholar
de Freitas, GR, Bogousslavsky, J: Thalamic infarcts. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 255285.Google Scholar
Kaplan, RF, Estol, CJ, Damasio, H, et al: Bilateral polar artery thalamic infarcts. Neurology 1991;41(Suppl 1):329.Google Scholar
Wall, M, Slamovits, TL, Weisberg, LA, Trufant, SA: Vertical gaze ophthalmoplegia from infarction in the area of the posterior thalamo-subthalamic paramedian artery. Stroke 1986;17:546555.Google Scholar
Pierrot-Deseiligny, C, Caplan, LR: Eye movement abnormalities. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes 3rd ed. Cambridge: Cambridge University Press, 2012, pp 6474.Google Scholar
Meissner, I, Sapir, S, Kokmen, E, Stein, SD: The paramedian diencephalic syndrome: A dynamic phenomenon. Stroke 1987;18:380385.Google Scholar
Caplan, LR, DeWitt, LD, Pessin, MS, et al: Lateral thalamic infarcts. Arch Neurol 1988;45:959964.Google Scholar
Dejerine, J, Roussy, G: Le syndrome thalamique. Rev Neurol 1906;14:521532.Google Scholar
Fisher, CM: Pure sensory stroke involving face, arm, and leg. Neurology 1965;15:7680.Google Scholar
Fisher, CM: Thalamic pure sensory stroke: A pathologic study. Neurology 1978;28:11411144.Google Scholar
Fisher, CM: Pure sensory stroke and allied conditions. Stroke 1982;13:434447.Google Scholar
Fisher, CM: Lacunar strokes and infarcts: A review. Neurology 1982;32:871876.Google Scholar
Hommel, M, Besson, G, Pollak, P, et al: Pure sensory stroke due to a pontine lacune. Stroke 1989;20:406408.Google Scholar
Mohr, JP, Kase, C, Meckler, R, et al: Sensorimotor stroke. Arch Neurol 1977;34:734741.Google Scholar
Mohr, JP, Timsit, S: Choroidal artery disease. In Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, F (eds): Stroke, Pathophysiology, Diagnosis, and Management, 3rd ed. New York: Churchill Livingstone, 1998, pp 503512.Google Scholar
Besson, G, Bogousslavsky, J, Regli, F: Posterior choroidal-artery infarct with homonymous horizontal sectoranopia. Cerebrovasc Dis 1991;1:117120.Google Scholar
Frisen, I, Holmegaard, L, Rosencrantz, M: Sectorial optic atrophy and homonymous, horizontal sectoranopia: A lateral posterior choroidal artery syndrome. J Neurol Neurosurg Psychiatry 1978;41:374380.Google Scholar
Neau, JP, Bogousslavsky, J: The syndrome of posterior choroidal artery territory infarction. Ann Neurol 1996;39:779788.Google Scholar
Loeb, C, Gandolfo, C, Croce, R, Conti, M: Dementia associated with lacunar infarction. Stroke. 1992;23:12251229.Google Scholar
Jacova, C, Pearce, LA, Costello, R, et al: Cognitive impairment in lacunar strokes: The SPS3 trial. Ann Neurol 2012;72:351362.Google Scholar
Makin, SD, Turpin, S, Dennis, MS, Wardlaw, JM: Cognitive impairment after lacunar stroke: Systematic review and meta-analysis of incidence, prevalence and comparison with other stroke subtypes. J Neurol Neurosurg Psychiatry 2013;84:893900.Google Scholar
Longstreth, WT Jr, Arnold, AM, Beauchamp, NJ Jr, et al: Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: The Cardiovascular Health Study. Stroke 2005;36:5661.Google Scholar
Schmidt, R, Ropele, S, Enzinger, C, et al: White matter lesion progression, brain atrophy, and cognitive decline: The Austrian Stroke Prevention Study. Ann Neurol 2005;58:610616.Google Scholar
Vermeer, SE, Hollander, M, van Dijk, EJ, Hofman, A, Koudstaal, PJ, Breteler, MM. Silent brain infarcts and white matter lesions increase stroke risk in the general population: The Rotterdam Scan Study. Stroke 2003;34:11261129.Google Scholar
Adams, H, Damasio, H, Putnam, S, et al: Middle cerebral artery occlusion as a cause of isolated subcortical infarction. Stroke 1983;14:948952.Google Scholar
Maki, G, Mihara, H, Shizuka, M, et al: CT and arteriographic comparison of patients with transient ischemic attacks: Correlation with small infarcts of basal ganglia. Stroke 1983;14:276280.Google Scholar
Caplan, LR, Babikian, V, Helgason, C, et al: Occlusive disease of the middle cerebral artery. Neurology 1985;35:975982.Google Scholar
Bogousavsky, J, Regli, F, Maeder, P: Intracranial large-artery disease and “lacunar” infarction. Cerebrovasc Dis 1991;1:154159.Google Scholar
Miyashita, K, Naritomi, H, Sawada, T, et al: Identification of recent lacunar lesions in cases of multiple small infarction by magnetic resonance imaging. Stroke 1988;29:834839.Google Scholar
Patel, B, Markus, HS: Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int J Stroke 2011;6:4759.Google Scholar
Förster, A, Kerl, HU, Wenz, H, Brockmann, MA, Nölte, I, Groden, C: Diffusion- and perfusion-weighted imaging in acute lacunar infarction: Is there a mismatch? PLoS One 2013;8:e77428.Google Scholar
Bang, OY, Yeo, SH, Yoon, JH, et al: Clinical MRI cutoff points for predicting lacunar stroke may not exist: Need for a grading rather than a dichotomized system. Cerebrovasc Dis 2007;24:520529.Google Scholar
Rajajee, V, Kidwell, C, Starkman, S, et al: Diagnosis of lacunar infarcts within 6 hours of onset by clinical and CT criteria versus MRI. UCLA MRI Acute Stroke Investigators. J Neuroimag 2008;18:6672.Google Scholar
Faris, A, Poser, C, Wilmore, D, et al: Radiologic visualization of neck vessels in healthy men. Neurology 1963;13:386396.Google Scholar
Takahashi, W, Fujii, H, Ide, M, et al: Atherosclerotic changes in intracranial and extracranial large arteries in apparently healthy persons with asymptomatic lacunar infarction. J Stroke Cerebrovasc Dis 2005;14:1722.Google Scholar
Lodder, J, Bamford, J, Kappelle, J, Boiten, J: What causes false clinical prediction of small deep infarcts. Stroke 1994;25:8691.Google Scholar
National Institute of Neurological Disorders and Stroke rt-PA Study Group: Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:15811587.Google Scholar
Ingall, TJ, O’Fallon, WM, Asplund, K, et al: Findings from the reanalysis of the NINDS tissue plasminogen activator for acute ischemic stroke treatment trial. Stroke 2004;35:24182424.Google Scholar
Fuentes, B, Martínez-Sánchez, P, Alonso de Leciñana, M, et al. for the Madrid Stroke Network: Efficacy of intravenous thrombolysis according to stroke subtypes: the Madrid Stroke Network data. Eur J Neurol 2012;19:15681574.Google Scholar
IST-3 Collaborative Group, Sandercock, P, Wardlaw, JM, Lindley, RI, et al: The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the Third International Stroke Trial (IST-3)): A randomised controlled trial. Lancet 2012;379:23522363.Google Scholar
Mustanoja, S, Meretoja, A, Putaala, J, et al. for the Helsinki Stroke Thrombolysis Registry Group: Outcome by stroke etiology in patients receiving thrombolytic treatment: descriptive subtype analysis. Stroke 2011;42:102106.Google Scholar
Shobha, N, Fang, J, Hill, MD: Do lacunar strokes benefit from thrombolysis? Evidence from the Registry of the Canadian Stroke Network. Int J Stroke 2013;8(Suppl A100):4549.Google Scholar
Lahoti, S, Gokhale, S, Caplan, LR, et al: Thrombolysis in ischemic stroke without arterial occlusions. Stroke 2014;45:27222727.Google Scholar
Griebe, M, Fischer, E, Kablau, M, et al: Thrombolysis in patients with lacunar stroke is safe: an observational study. J Neurol 2014;261:405411.Google Scholar
Fluri, F, Hatz, F, Rutgers, MP, et al: Intravenous thrombolysis in patients with stroke attributable to small artery occlusion. Eur J Neurol 2010;17:10541060.Google Scholar
Dobkin, B: Heparin for lacunar stroke in progression. Stroke 1983;14:421423.Google Scholar
SPS3 Study Group: Blood-pressure targets in patients with recent lacunar stroke: The SPS3 randomised trial Lancet 2013;382:507515.Google Scholar
Yamamoto, Y, Akiguchi, I, Oiwa, K, et al: Twenty-four-hour blood pressure and MRI as predictive factors for different outcomes in patients with lacunar infarct. Stroke 2002;33:297305.Google Scholar
Walters, M, Muir, S, Shah, I, Lees, K: Effect of perindopril on cerebral vasomotor reactivity in patients with lacunar infarction. Stroke 2004;35:18991902.Google Scholar
Mohr, JP, Thompson, JLP, Lazar, RM, et al: A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. Warfarin–Aspirin Recurrent Stroke Study Group. N Engl J Med 2001;345:14441451.Google Scholar
Diener, HC, Cunha, L, Forbes, C, et al: European Stroke Prevention Study 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci 1996;143:113.Google Scholar
Gotoh, F, Tohgi, H, Hirai, S, et al: Cilostazole Stroke Prevention Study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J Stroke Cerebrovasc Dis 2000;9:147157.Google Scholar
Furie, KL, Kasner, SE, Adams, RJ, et al: Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011;42:227276.Google Scholar
Sacco, RL, Diener, HC, Yusuf, S, et al. for the PRoFESS Study Group: Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N Engl J Med 2008;359:12381251.Google Scholar
SPS3 Investigators: Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N Engl J Med 2012;367:817825.Google Scholar
Carod-Artal, FJ: Statins and cerebral vasomotor reactivity. Implications for a new therapy. Stroke 2006;37:24462448.Google Scholar
Pretnar-Oblak, J, Sabovic, M, Sebestjen, M, et al: The influence of atorvastatin treatment on L-arginine cerbrovascular reactivity and flow-mediated dilatation in patients with lacunar infarction. Stroke 2006;37:25402545.Google Scholar
Amarenco, P, Benavente, O, Goldstein, LB, for the Stroke Prevention by Aggressive Reduction in Cholesterol Levels Investigators: Results of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Trial by stroke subtypes. Stroke 2009;40:14051409.Google Scholar
Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators: High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 2006;355:549559.Google Scholar
Intravenous Magnesium Efficacy in Stroke (IMAGES) Study Investigators: Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke Trial): Randomized controlled trial. Lancet 2004;363:439445.Google Scholar
Aslanyan, S, Weir, CJ, Muir, KW, Lees, KR: Magnesium for treatment of acute lacunar stroke syndromes. Further analysis of the IMAGES trial. Stroke 2007;38:12691273.Google Scholar
Hachinski, V, Potter, P, Merskey, H: Leuko-araiosis. Arch Neurol 1987;44:2123.Google Scholar
Okeda, R: Morphometrische Vergleichsuntersuchungen an Hirnarterien bei Binswangerscher Encephalopathie und Hochdruckencephalopathie. Acta Neuropathol (Berlin) 1973;26:2343.Google Scholar
Caplan, LR: Binswanger’s disease – revisited. Neurology 1995;45:626633.Google Scholar
Binswanger, O: Die abgrenzung der allgemeinen progressiven paralyse. Klin Wochenschr 1894; 49:11031105; 1895;50:11371139; 1895;52:11801186.Google Scholar
Blass, JP, Hoyer, S, Nitsch, R: A translation of Otto Binswanger’s article: The delineation of the generalized progressive paralysis. Arch Neurol 1991;48:961972.Google Scholar
Olszewski, J: Subcortical arteriosclerotic encephalopathy. World Neurol 1965;3:359374.Google Scholar
Caplan, LR, Schoene, WC: Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger’s disease). Neurology 1978;28:12061215.Google Scholar
Babikian, V, Ropper, AH: Binswanger disease: A review. Stroke 1987;18:112.Google Scholar
Fisher, CM: Binswanger’s encephalopathy: A review. J Neurol 1989;236:6579.Google Scholar
Ward, NS, Brown, MM: Leukoaraiosis. In Donnan, G, Norrving, B, Bamford, J, Bogousslavsky, J (eds): Subcortical Stroke, 2nd ed. Oxford: Oxford University Press, 2002, pp 4766.Google Scholar
Maclullich, AM, Wardlaw, JM, Ferguson, KJ, et al: Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry 2004;75:15191523.Google Scholar
Kim, D-G, Oh, S-H, Kim, J: A case of disseminated polycystic dilated perivascular spaces presenting with dementia and parkinsonism. J Clin Neurol 2007;32:96100.Google Scholar
Gray, F, Dubas, F, Roullet, E, Escourolle, R: Leukoencephalopathy in diffuse hemorrhagic cerebral amyloid angiopathy. Ann Neurol 1985;18:5459.Google Scholar
Dubas, F, Gray, F, Roullet, E, Escourolle, R: Leukoencephalopathies arteriopathiques. Rev Neurol 1985;141:93108.Google Scholar
Loes, D, Biller, J, Yuh, WT, et al: Leukoencephalopathy in cerebral amyloid angiopathy: MR imaging in four cases. AJNR Am J Neuroradiol 1990;11:485488.Google Scholar
DeWitt, LD, Louis, DN: Case records of the Massachusetts General Hospital: Case 27–1991. N Engl J Med 1991;325:4254.Google Scholar
Fountain, NB, Eberhard, DA: Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy: Report of two cases and review of the literature. Neurology 1996;46:190197.Google Scholar
Caplan, LR: Case records of the Massachusetts General Hospital. Case 10–2000. N Engl J Med 2000;342:957964.Google Scholar
Marotti, JD, Savitz, SI, Kim, W-K, Williams, K, Caplan, LR, Joseph, JT: Cerebral amyloid angiitis progressing to generalized angiitis and leucoencephalitis. Neuropathol Appl Neurobiol 2007;33:15.Google Scholar
Davous, P: CADASIL: A review with proposed diagnostic criteria. Eur J Neurology 1998;5:219233.Google Scholar
Dichgans, M, Mayer, M, Uttner, I, et al: The phenotypic spectrum of CADASIL: Clinical findings in 102 cases. Ann Neurol 1998;44:731739.Google Scholar
Tournier-Lasserve, E, Joutel, A, Melki, J, et al: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps on chromosome 19q12. Nat Gen 1993;3:256259.Google Scholar
Chabriat, H, Levy, C, Taillia, H, et al: Patterns of MRI lesions in CADACIL. Neurology 1998;51:452457.Google Scholar
Pantoni, L, Poggesi, A, Inzitari, D: The relation between white matter lesions and cognition. Curr Opin Neurol 2007;20:390397.Google Scholar
Savva, GM, Wharton, SB, Ince, PG, Forster, G, Matthews, FE, Brayne, C: Medical Research Council Cognitive Function and Ageing Study. Age, neuropathology, and dementia. N Engl J Med 2009;360:23022309.Google Scholar
Debette, S, Markus, HS: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010;341:c3666.Google Scholar
van der Flier, WM, van Straaten, EC, Barkhof, F, et al: Small vessel disease and general cognitive function in nondisabled elderly: The LADIS Study. Stroke 2005;36:21162120.Google Scholar
Baezner, H, Blahak, C, Poggesi, A, et al: Association of gait and balance disorders with age-related white matter changes: The LADIS Study. Neurology 2008;70:935942.Google Scholar
The LADIS Study Group 2001–2011: A decade of the LADIS (Leukoaraiosis And DISability) Study: What have we learned about white matter changes and small-vessel disease? Cerebrovasc Dis 2011;32:577588.Google Scholar
Greenberg, SM, Vonsattel, JPG, Stakes, JW, et al: The clinical spectrum of cerebral amyloid angiopathy: Presentations without lobar hemorrhage. Neurology 1993;43:20732079.Google Scholar
Scolding, NJ, Joseph, J, Kirby, PA, et al: Alpha-beta related angiitis: Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 2005;128:500515.Google Scholar
Eng, JA, Frosch, MP, Choi, K, et al: Clinical manifestations of cerebral amyloid-related inflammation. Ann Neurol 2004;55:250256.Google Scholar
Ginsberg, L, Geddes, J, Valentine, A: Amyloid angiopathy and granulomatous angiitis of the central nervous system: A case responding to corticosteroid treatment. J Neurol 1998;235:438440.Google Scholar
McHugh, JC, Ryan, AM, Lynch, T, et al: Steroid-responsive recurrent encephalopathy in a patient with cerebral amyloid angiopathy. Cerebrovasc Dis 2007;23:6669.Google Scholar
Pantoni, L: Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689701.Google Scholar
Greenberg, SM, Vernooij, MW, Cordonnier, C, et al. for the Microbleed Study Group: Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol 2009;8:165174.Google Scholar
Wardlaw, JM, Smith, EE, Biessels, GJ, et al. for the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1): Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822838.Google Scholar
Koennecke, HC: Cerebral microbleeds on MRI: Prevalence, associations, and potential clinical implications. Neurology 2006;66:165171.Google Scholar
Klein, I, Lung, B, Labreuche, J et al. for the IMAGE Study Group: Cerebral microbleeds are frequent in infective endocarditis. Stroke 2009;40:34613465.Google Scholar
Yamamoto, Y, Akiguchi, I, Oiwa, K, et al: Adverse effect of nighttime blood pressure on the outcome of lacunar infarct patients. Stroke 1998;29:570576.Google Scholar
Yamamoto, Y, Akiguchi, I, Oiwa, K, et al: Twenty-four-hour blood pressure and MRI as predictive factors for different outcomes in patients with lacunar infarct. Stroke 2002;33:297305.Google Scholar
Yamamoto, Y, Akiguchi, I, Oiwa, K, et al: The relationship between 24-hour blood pressure readings, subcortical ischemic lesions and vascular dementia. Cerebrovasc Dis 2005;19:302308.Google Scholar
Hoshide, Y, Kario, K, Schwartz, JE, et al: Incomplete benefit of antihypertensive therapy on stroke reduction in older hypertensives with abnormal nocturnal blood pressure dipping (extreme-dippers and reverse-dippers). Am J Hypertens 2002;15:844850.Google Scholar
Chamorro, A, Pujol, J, Saiz, A, et al: Periventricular white matter lucencies in patients with lacunar stroke. A marker of too high or too low blood pressure. Arch Neurol 1997;54:12841288.Google Scholar
Schneider, R, Ringelstein, EB, Zeumer, H, et al: The role of plasma hyperviscosity in subcortical arteriosclerotic encephalopathy (Binswanger’s disease). J Neurol 1987;234:6773.Google Scholar
Chung, C-S, Caplan, LR, van Swieten, J, et al: White matter changes in stroke and fibrinogen levels. Ann Neurol 1993;34:260.Google Scholar
Rosenberg, GA, Sullivan, N, Esiri, MM: White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 2001;32:11621168.Google Scholar
Adair, JC, Charlie, J, Dencoff, JE, et al: Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke 2004;35:e159e162.Google Scholar
Yang, Y, Estrada, EY, Thompson, JF, et al: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007;27:697709.Google Scholar
Brown, WR, Moody, DM, Challa, VR, Thore, CR, Anstrom, JA: Venous collagenosis and arterial tortuosity in leukoaraiosis. J Neurol Sci 2002;15;203204.Google Scholar
Rosenberg, GA, Bjerke, M, Wallin, A: Multimodal markers of inflammation in the subcortical ischemic vascular disease type of vascular cognitive impairment. Stroke 2014;45:15311538.Google Scholar
Arauz, A, Murillo, L, Cantú, C, Barinagarrementeria, F, Higuera, J: Prospective study of single and multiple lacunar infarcts using magnetic resonance imaging: Risk factors, recurrence, and outcome in 175 consecutive cases. Stroke 2003;34:24532458.Google Scholar
Dichgans, M, Zietemann, V: Prevention of vascular cognitive impairment. Stroke 2012;43:31373146.Google Scholar

References

Caplan, LR. Embolic particles. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 259275.Google Scholar
Molina, C, Alexandrov, A. Transcranial Doppler ultrasound. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 113128.Google Scholar
Caplan, LR. Brain embolism, revisited. Neurology 1993;43:12811287.Google Scholar
Caplan, LR. Brain embolism. In Caplan, LR, Hurst, JW, Chimowitz, M (eds), Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 35185.Google Scholar
Markus, HS. Transcranial Doppler detection of circulating cerebral emboli, a review. Stroke 1993;24:12461250.Google Scholar
Sliwka, U, Job, F-P, Wissuwa, D, et al. Occurrence of transcranial Doppler high-intensity transient signals in patients with potential cardiac sources of embolism, a prospective study. Stroke 1995;26:20672070.Google Scholar
Daffertshofer, M, Ries, S, Schminke, U, Hennerici, M. High-intensity transient signals in patients with cerebral ischemia. Stroke 1996;27:18441849.Google Scholar
Sliwka, U, Lingnau, A, Stohlmann, W-D, et al. Prevalence and time course of microembolic signals in patients with acute strokes, a prospective study. Stroke 1997;28:358363.Google Scholar
Babikian, VL, Caplan, LR. Brain embolism is a dynamic process with variable characteristics. Neurology 2000;54:797801.Google Scholar
Caplan, LR. Recipient artery. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 3159.Google Scholar
Mohr, JP, Caplan, LR, Melski, JW, et al. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;29:754762.Google Scholar
Caplan, LR, Hier, DB, D’Cruz, I. Cerebral embolism in the Michael Reese Stroke Registry. Stroke 1983;14:530536.Google Scholar
Mohr, JP, Gautier, JC, Hier, DB, Stein, RW. Middle cerebral artery. In Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, FM (eds), Stroke, Pathophysiology, Diagnosis, and Management, Vol 1. New York: Churchill Livingstone, 1986, pp 377450.Google Scholar
Minematsu, K, Yamaguchi, T, Omae, T. “Spectacular shrinking deficit”: Rapid recovery from a major hemispheric syndrome by migration of an embolus. Neurology 1992;42:157162.Google Scholar
Bogousslavsky, J, van Melle, G, Regli, F. The Lausanne Stroke Registry: Analysis of 1000 consecutive patients with first stroke. Stroke 1988;19:10831092.Google Scholar
Gacs, G, Merer, FT, Bodosi, M. Balloon catheter as a model of cerebral emboli in humans. Stroke 1982;13:3942.Google Scholar
Helgason, C. Cardioembolic stroke topography and pathogenesis. Cerebrovasc Brain Metab Rev 1992;4:2858.Google Scholar
Caplan, LR. Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis, and Management of Posterior Circulation Disease. Cambridge: Cambridge University Press, 2015.Google Scholar
Caplan, LR. Top of the basilar syndrome: Selected clinical aspects. Neurology 1980;30:7279.Google Scholar
Mehler, MF. The rostral basilar artery syndrome: Diagnosis, etiology, prognosis. Neurology 1989;39:916.Google Scholar
Caplan, LR. Cerebellar infarcts: Key features. Rev Neurol Dis 2005;2:5160.Google Scholar
Lodder, J, Krijne-Kubat, B, Broekman, J. Cerebral hemorrhagic infarction at autopsy: Cardiac embolic cause and the relationship to the cause of death. Stroke 1986;17:626629.Google Scholar
Hart, RG, Easton, JD. Hemorrhagic infarcts. Stroke 1986;17:586589.Google Scholar
Timsit, SG, Sacco, RL, Mohr, JP, et al. Brain infarction severity differs according to cardiac or arterial embolic source. Neurology 1993;43:728733.Google Scholar
Bladin, CF. Seizures After Stroke. Melbourne: University of Melbourne, 1997. Thesis.Google Scholar
Kittner, SJ, Sharkness, CM, Price, TR, et al. Infarcts with a cardiac source of embolism in the NINCDS Stroke Data Bank: Historical features. Neurology 1990;40:281284.Google Scholar
Hinton, RC, Kistler, JP, Fallon, JR, Friedlich, AL, Fisher, CM. Influence of etiology of atrial fibrillation on incidence of systemic embolism. Am J Card 1977;40:509513.Google Scholar
Abboud, H, Labreuche, J, Gongora-Riverra, F, et al. Prevalence and determinants of subdiaphragmatic visceral infarction in patients with fatal stroke. Stroke 2007;38:14421446.Google Scholar
Ringelstein, EB, Koschorke, S, Holling, A, et al. Computed tomographic patterns of proven embolic brain infarctions. Ann Neurol 1989;26:759765.Google Scholar
Viehman, JA, Saver, JL, Liebeskind, DS, et al. Utility of urinalysis in discriminating cardioembolic stroke mechanism. Arch Neurol 2007;64:667670.Google Scholar
Slaoui, T, Klein, IF, Guidoux, C, et al. Prevalence of subdiaphragmatic visceral infarction in cardioembolic stroke. Neurology 2010;74:10301032.Google Scholar
Ringelstein, EB, Koschorke, S, Holling, A, et al. Computed tomographic patterns of proven embolic brain infarctions. Ann Neurol 1989;26:759765.Google Scholar
Fisher, CM, Adams, R. Observations on brain embolism with special reference to the mechanism of hemorrhagic infarction. J Neuropathol Exp Neurol 1951;10:9293.Google Scholar
Fisher, CM, Adams, RD. Observations on brain embolism with special reference to hemorrhagic infarction. In Furlan, AJ (ed), The Heart and Stroke. London: Springer, 1987 pp 1736.Google Scholar
Yamaguchi, T, Minematsu, K, Choki, JI, Ikeda, M. Clinical and neuroradiological analysis of thrombotic and embolic cerebral infarction. Jpn Circ J 1984;48:5058.Google Scholar
Okada, Y, Yamaguchi, T, Minematsu, K, et al. Hemorrhagic transformation in cerebral embolism. Stroke 1989;20:598603.Google Scholar
Pessin, MS, Estol, C, Lafranchise, F, Caplan, LR. Safety of anticoagulation after hemorrhagic infarction. Neurology 1993;43:12981303.Google Scholar
Chaves, CJ, Pessin, MS, Caplan, LR, et al. Cerebellar hemorrhagic infarction. Neurology 1996;46:346349.Google Scholar
Garcia, J, Ho, K-L, Caccamo, DV. Intracerebral hemorrhage: Pathology of selected topics. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 4572.Google Scholar
Fieschi, C, Argentino, C, Lenzi, G, et al. Clinical and instrumental evaluation of patients with ischemic stroke within the first six hours. J Neurol Sci 1989;91:311322.Google Scholar
del Zoppo, GJ, Poeck, K, Pessin, MS, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 1992;32:7886.Google Scholar
Wolpert, SM, Bruckmann, H, Greenlee, R, Wechsler, L, Pessin, MS, del Zoppo, GJ. Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. AJNR Am J Neuroradiol 1993;14:313.Google Scholar
Dalal, P, Shah, P, Sheth, S, et al. Cerebral embolism: Angiographic observations on spontaneous clot lysis. Lancet 1965;1:6164.Google Scholar
Liebeskind, A, Chinichian, A, Schechter, M. The moving embolus seen during cerebral angiography. Stroke 1971;2:440443.Google Scholar
Caplan, LR, Allam, GJ, Teal, PA. The moving embolus. J Neurimag 1993;3:195197.Google Scholar
Sharma, VK, Tsivgoulis, G, Lao, AY, Alexandrov, AV. Role of transcranial Doppler ultrasonography in evaluation of patients with cerebrovascular disease. Curr Neurol Neurosci Rep 2007;7:820.Google Scholar
Thomassen, L, Waje-Andreassen, U, Naess, H, et al. Doppler ultrasound and clinical findings in patients with acute ischemic stroke treated with thrombolysis. Eur J Neurol 2005;12:462465.Google Scholar
Molina, CA, Alexandrov, AV, Demchuk, AM, et al. Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke 2004;35:151156.Google Scholar
Askevold, ET, Naess, H, Thomassen, L. Predictors of recanalization after intravenous thrombolysis in acute ischemic stroke. J Stroke Cerebrovasc Dis 2007;16:2124.Google Scholar
Georgiadis, D, Lindner, A, Manz, M, et al. Intracranial microembolic signals in 500 patients with potential cardiac or carotid embolic source and in normal controls. Stroke 1997;28:12031207.Google Scholar
Cho, K-H, Kim, JS, Kwon, SU, Cho, A-H, Kang, D-W. Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 2005;36:23792383.Google Scholar
Kimura, K, Iguchi, V, Shibazaki, K, Watanabe, M, Iwanga, T, Aoki, J. M1 susceptiblity vessel sign on T2* as a strong predictor for no early recanalization after IV – t-PA in acute ischemic stroke. Stroke 2009;40:31303132.Google Scholar
Yamamoto, N, Satomi, J, Tada, Y, et al. Two-layered susceptibility vessel sign on 3-Tesla T2*-weighted imaging is a predictive biomarker of stroke subtype. Stroke 2015;46:269271.Google Scholar
Liebeskind, DS, Sanossian, N, Yong, WH, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 2011;42:12371243.Google Scholar
Caplan, LR. Of birds and nests and brain emboli. Rev Neurol 1991;147:265273.Google Scholar
Caplan, LR, Manning, W. Cardiac sources of embolism: The usual suspects. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 129159.Google Scholar
Manning, W. Cardiac sources of embolism: Pathophysiology and identification. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 161186.Google Scholar
Virchow, R. Gesammelte Abhandlungen zur Wissenschaftlichenmedtezin. Frankfurt: Meidinger Sohn, 1856, pp 219732.Google Scholar
Harker, LA, Slichter, SL. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N Engl J Med 1970;283:13021305.Google Scholar
Baumgartner, HR, Haudenschild, C. Adhesion of platelets to subendothelium. Ann N Y Acad Sci 1972;201:2236.Google Scholar
Gustafsson, C, Blomback, M, Britton, M, et al. Coagulation factors and the increased risk of stroke in nonvalvular atrial fibrillation. Stroke 1990;21:4751.Google Scholar
Kumagai, K, Fukunami, M, Ohmori, M, et al. Increased intracardiovascular clotting in patients with chronic atrial fibrillation. J Am Coll Cardiol 1990;16:377380.Google Scholar
Hanna, JP, Furlan, AJ. Cardiac disease and embolic sources. In Caplan, LR (ed), Brain Ischemia. London: Springer, 1995, pp 299315.Google Scholar
Goldman, ME, Pearce, LA, Hart, RG. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (The Stroke Prevention in Atrial Fibrillation (SPAF-III) Study). J Am Soc Echocardiogr 1999;12:10801087.Google Scholar
Wolf, PA, Dawber, TR, Thomas, HE, Kannel, WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The Framingham Study. Neurology 1978;28:973977.Google Scholar
Wolf, PA, Abbott, RD, Kannel, WB. Atrial fibrillation: A major contribution to stroke in the elderly. The Framingham Study. Arch Intern Med 1987;147:15611564.Google Scholar
Cairns, JA, Connolly, SJ. Nonrheumatic atrial fibrillation. Risk of stroke and role of antithrombotic therapy. Circulation 1991;84:469481.Google Scholar
Dunn, M, Alexander, J, DeSilva, R, Hildner, F. Antithrombotic therapy in atrial fibrillation. Chest 1989;95:S118S127.Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. Predictors of thromboembolism in atrial fibrillation: 1. Clinical features of patients at risk. Ann Intern Med 1992;116:15.Google Scholar
Atrial Fibrillation Investigators. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: Analysis of pooled data from five randomized controlled trials. Arch Intern Med 1994;154:14491457.Google Scholar
Caplan, LR, D’Cruz, I, Hier, DB, et al. Atrial size, atrial fibrillation, and stroke. Ann Neurol 1986;19:158161.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Predictors of thromboembolism in atrial fibrillation: II. Echocardiographic features of patients at risk. Ann Intern Med 1992;116:612.Google Scholar
DiPasquale, G, Urbinati, S, Pinelli, G. New echocardiographic markers of embolic risk in atrial fibrillation. Cerebrovasc Dis 1995;5:315322.Google Scholar
Vernhorst, P, Kamp, O, Visser, CA, Verheught, FWA. Left atrial appendage flow velocity assessment using transesophageal echocardiography in nonrheumatic atrial fibrillation and systemic embolism. Am J Cardiol 1993;71:192196.Google Scholar
Garcia-Fernandez, MA, Torrecilla, EG, San Roman, D, et al. Left atrial appendage Doppler flow patterns: Implications of thrombus formation. Am Heart J 1992;124:955965.Google Scholar
Beppu, S, Nimura, Y, Sakakibara, H. Smoke-like echo in the left atrial cavity in mitral valve disease: Its features and significance. J Am Coll Cardiol 1985;6:744749.Google Scholar
Merino, A, Hauptman, P, Badiman, L, et al. Echocardiographic “smoke” is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces. J Am Coll Cardiol 1992;20:16611668.Google Scholar
Black, IW, Stewart, WJ. The role of echocardiography in the evaluation of cardiac sources of embolism. Echocardiography 1993;10:429439.Google Scholar
Chimowitz, MI, DeGeorgia, MA, Poole, RM, et al. Left atrial spontaneous echo contrast is highly associated with previous stroke in patients with atrial fibrillation or mitral stenosis. Stroke 1993;24:10151019.Google Scholar
Warraich, HJ, Gandhavadi, M, Manning, WJ. Mechanical discordance of the left atrium and appendage. Stroke 2014;45:14811484.Google Scholar
Manning, WJ, Silverman, DI, Gordon, SPF, Krumholz, HM, Douglas, PS. Cardioversion from atrial fibrillation without prolonged anticoagulation with use of transesophageal echocardiography to exclude the presence of atrial thrombi. N Engl J Med 1993;328:750756.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. Ann Intern Med 1998;128:639647.Google Scholar
Weigner, MJ, Thomas, LR, Patel, U, et al. Transesophageal-echocardiography-facilitated early cardioversion from atrial fibrillation: Short-term safety and impact on maintenance of sinus rhythm at 1 year. Am J Med 2001;110:694702.Google Scholar
Klein, AL, Grimm, RA, Murray, RD, et al. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. N Engl J Med 2001;344:14111420.Google Scholar
Stoddard, MF, Dawkins, PR, Prince, CR, Ammash, NM. Left atrial appendage thrombus is not uncommon in patients with acute atrial fibrillation and a recent embolic event: A transesophageal echocardiographic study. J Am Coll Cardiol 1995;25:452459.Google Scholar
Manning, WJ, Silverman, DI, Waksmonski, CA, Oettgen, P, Douglas, PS. Prevalence of residual left atrial thrombi in patients presenting with acute thromboembolism and newly recognized atrial fibrillation. Arch Intern Med 1995;155:21932197.Google Scholar
Kishore, A, Vail, A, Majid, A, et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: A systematic review and meta-analysis. Stroke 2014;45:520526.Google Scholar
Kamel, H. Heart-rhythm monitoring for evaluation of cryptogenic stroke. N Engl J Med 2014;370:25322533.Google Scholar
Sanna, T, Diener, H-C, Passman, RS, et al. for the CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 2014;370:24782486.Google Scholar
Gladstone, DJ, Spring, M, Dorian, P, et al. for the EMBRACE Investigators. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med 2014;370:24672477.Google Scholar
Hoshino, T, Nagao, T, Shiga, T, et al. Prolonged QTc interval predicts poststroke paroxysmal atrial fibrillation. Stroke 2015;46:7176.Google Scholar
Mair, J. Biochemistry of B-type natriuretic peptide – where are we now? Clin Chem Lab Med 2008;46:15071514.Google Scholar
Braunwald, E. Biomarkers in heart failure. N Engl J Med 2008;358:21482159.Google Scholar
Patton, KK, Ellinor, PT, Heckbert, SR, et al. N-terminal pro-B-type naturetic peptide is a major predictor of the development of atrial fibrillation: The Cardiovascular Health Study. Circulation 2009;120:176817774.Google Scholar
Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med 1990;323:15051511.Google Scholar
EAFT Study Group. Silent brain infarction in nonrheumatic atrial fibrillation. Neurology 1996;46:159165.Google Scholar
EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:12551262.Google Scholar
Petersen, P, Godtfredsen, J, Boysen, G, et al. Placebo-controlled, randomized trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation: The Copenhagen AFASAK Study. Lancet 1989;1:175179.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. The Stroke Prevention In Atrial Fibrillation Study: Final results. Circulation 1991;84:527539.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet 1996;348:633638.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Prospective identification of patients with nonvalvular atrial fibrillation at low risk of stroke during treatment with aspirin: Stroke Prevention in Atrial Fibrillation III Study. Circulation 1997;96(Suppl):1281(abst).Google Scholar
Albers, G. Atrial fibrillation and stroke. Three new studies, three remaining questions. Arch Intern Med 1994;154:14431448.Google Scholar
Samsa, GP, Matchar, DB, Goldstein, LB, et al. Quality of anticoagulation management among patients with atrial fibrillation: Results of a review of medical records from two communities. Arch Intern Med 2000;160:967973.Google Scholar
Chiquette, E, Amato, MG, Bussey, HI. Comparison of an anticoagulation clinic with usual medical care: Anticoagulation control, patient outcomes, and health care costs. Arch Intern Med 1998;158:16411647.Google Scholar
Kucher, N, Connolly, S, Beckman, JA, et al. International normalized ratio increase before warfarin-associated hemorrhage: Brief and subtle. Arch Intern Med 2004;164:21762179.Google Scholar
Rash, A, Downes, T, Portner, R, et al. A randomized controlled trial of warfarin vs. aspirin for stroke prevention in octogenarians with atrial fibrillation (WASPO). Age Ageing 2007;36:151156.Google Scholar
Mant, J, Hobbs, FD, Fletcher, K, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (The Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): A randomized controlled trial. Lancet 2007;370:493503.Google Scholar
Di Nisio, M, Middeldorp, S, Buller, HR. Direct thrombin inhibitors. Engl J Med 2005;353:10281040.Google Scholar
Yeh, CH, Fredenburgh, JC, Weitz, JI. Oral direct factor Xa inhibitors. Circ Res 2012;111:10691078.Google Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:11391151.Google Scholar
Connolly, SJ, Eikelboom, J, Joyner, C, et al. Apixaban in patients with atrial fibrillation. N Engl J Med 2011;364:806817.Google Scholar
Granger, CB, Alexander, JH, McMurray, JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981992.Google Scholar
Patel, MR, Mahaffey, KW, Garg, J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883891.Google Scholar
Giugliano, RP, Ruff, CT, Braunwald, E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:20932104.Google Scholar
Cameron, C, Coyle, D, Richter, D, et al. Systematic review and network meta-analysis comparing antithrombotic agents for the prevention of stroke and major bleeding in patients with atrial fibrillation. BMJ Open 2014;4:e004301.Google Scholar
Sherman, DG. Stroke prevention in atrial fibrillation. Pharmacological rate vs. rhythm control. Stroke 2007;38(part 2):615617.Google Scholar
Roy, D, Talajic, M, Nattel, S, et al. for the Atrial Fibrillation and Congestive Heart Failure Investigators. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 2008;358:26672677.Google Scholar
Gillinov, AM. Advances in surgical treatment of atrial fibrillation. Stroke 2007:38 (part 2): 618623.Google Scholar
Tung, R, Buch, E, Shivkumar, K. Catheter ablation of atrial fibrillation. Circulation 2012;126:223229.Google Scholar
Reddy, VY, Doshi, SK, Sievert, H, et al. on behalf of the PROTECT AF Investigators. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation. Circulation 2013;127:720729.Google Scholar
Swaans, MJ, Post, MC, Rensing, BJWM, Boersma, LVA. Ablation for atrial fibrillation in combination with left atrial appendage closure: First results of a feasibility study. J Am Heart Assoc 2012;1:e002212.Google Scholar
Onalan, O, Crystal, E. Left atrial appendage exclusion for stroke prevention in patients with nonrheumatic atrial fibrillation. Stroke 2007;38 (part 2):624630.Google Scholar
Syed, TM, Halperin, JL. Left atrial appendage closure for stroke prevention in atrial fibrillation: State of the art and current challenges. Nat Clin Pract Neurol 2007;4:428435.Google Scholar
Maisel, WH. Left atrial appendage occlusion – closure or just the beginning. N Engl J Med 2009;360:26012603.Google Scholar
Rubenstein, JJ, Schulman, CL, Yurchak, PM, et al. Clinical spectrum of the sick sinus syndrome. Circulation 1972;46:513.Google Scholar
Fairfax, AJ, Lambert, CD, Leatham, A. Systemic embolism in chronic sinoatrial disorder. N Engl J Med 1976;295:190192.Google Scholar
Lown, B. Electrical reversion of cardiac arrhythmias. Br Heart J 1967;29:469489.Google Scholar
Orencia, AJ, Hammill, SC, Whisnant, JP. Sinus node dysfunction and ischemic stroke. Heart Dis Stroke 1994;3:9194.Google Scholar
Phillips, SJ, Whisnant, JP, O’Fallon, WM, Frye, RL. Prevalence of cardiovascular disease and diabetes mellitus in residents of Rochester, Minnesota. Mayo Clin Proc 1990;65:344359.Google Scholar
Radford, DJ, Julian, DG. Sick sinus syndrome. Experience of a cardiac pacemaker clinic. BMJ 1974;3:504507.Google Scholar
Rosenqvist, M, Vallin, H, Edhag, O. Clinical and electrophysiologic course of sinus node disease: Five-year follow-up study. Am Heart J 1985;109:513522.Google Scholar
Bathen, J, Sparr, S, Rokseth, R. Embolism in sinoatrial disease. Acta Med Scand 1978;203:711.Google Scholar
Cerebral Embolism Task Force. Cardiogenic brain embolism. Arch Neurol 1986;43:7184.Google Scholar
Stein, PD, Sabbah, HN, Pitha, JV. Continuing disease process of calcific aortic stenosis. Am J Cardiol 1977;39:159163.Google Scholar
Casella, L, Abelmann, WH, Ellis, LB. Patients with mitral stenosis and systemic emboli. Arch Int Med 1964;114:773781.Google Scholar
Weiss, S, Davis, D. Rheumatic heart disease: III. Embolic manifestations. Am Heart J 1933;9:4552Google Scholar
Wallach, JB, Lukash, L, Angrist, AA. An interpretation of the incidence of mitral thrombi in the left auricle and appendage with particular reference to mitral commissurotomy. Am Heart J 1953;45:252254.Google Scholar
Bannister, RB. Risk of deferring valvotomy in patients with moderate mitral stenosis. Lancet 1960;2:329332.Google Scholar
Szekely, P. Systemic embolism and anticoagulant prophylaxis in rheumatic heart disease. BMJ 1964;1:12091212.Google Scholar
Keen, G, Leveaux, VM. Prognosis of cerebral embolism in rheumatic heart disease. BMJ 1958;2:9192.Google Scholar
Coulshed, N, Epstein, EJ, McKendrick, CS, et al. Systemic embolism in mitral valve disease. BMJ 1970;32:2634.Google Scholar
Daley, R, Mattingly, TW, Holt, CL, et al. Systemic arterial embolism in rheumatic heart disease. Am Heart J 1951;42:566581.Google Scholar
Fleming, HA, Bailey, SM. Mitral valve disease, systemic embolism and anticoagulants. Postgrad Med J 1971;47:599604.Google Scholar
Carabello, BA, Crawford, FA. Valvular heart disease. N Engl J Med 1997;337:3241.Google Scholar
Soulie, P, Caramanian, M, Soulie, J, Bader, JL, Colcher, E. Les embolies calcaires des atteintes orificielles calcifees du coeur gauche. Arch Mal Coeur Vaiss 1969;12:16571684.Google Scholar
Holley, KE, Bahn, RC, McGoon, DC, Mankin, HT. Spontaneous calcific embolization associated with calcific aortic stenosis. Circulation 1963;27:197202.Google Scholar
Klues, HG, Maron, BJ, Dollar, AL, Roberts, WC. Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation 1992;85:16511660.Google Scholar
Hardarson, T, De la Calzada, CS, Curiel, R, Goodwin, JF. Prognosis and mortality of hypertrophic obstructive cardiomyopathy. Lancet 1973;14621467.Google Scholar
Glancy, DL, O’Brien, KP, Gold, HK, Epstein, SE. Atrial fibrillation in patients with idiopathic hypertrophic subaortic stenosis. Brit Heart J 1970;32:652659.Google Scholar
Tajik, AJ, Giuliani, ER, Frye, RL, et al. Mitral valve and/or annulus calcification assoiated with hypertrophic subaortic stenosis (IHSS). Circulation 1972;16(Suppl II):228.Google Scholar
Barlow, JB, Bosman, CK. Aneurysmal protrusion of posterior leaflets of the mitral valve. An auscultatory-electrocardiographic syndrome. Am Heart J 1966;71:166178.Google Scholar
Lauzier, S, Barnett, HJM. Cerebral ischemia with mitral valve prolapse and mitral annular calcification. In Furlan, AJ (ed), The Heart and Stroke: Exploring Mutual Cerebrovascular and Cardiovascular Issues. London: Springer, 1987, pp 63100.Google Scholar
Markiewicz, W, Stoner, J, London, E, et al. Mitral valve prolapse in one hundred presumably healthy young females. Circulation 1976;53:464473.Google Scholar
Cheitlin, MD, Byrd, RC. Prolapsed mitral valve: The commonest valve disease? Curr Probl Cardiol 1984;8:353.Google Scholar
Ranganatham, N, Silver, MD, Robinson, T, et al. Angiographic–morphological correlation in patients with severe mitral regurgitation due to prolapse of the posterior mitral valve leaflet. Circulation 1973;48:514518.Google Scholar
Kostuk, WJ, Boughner, DR, Barnett, HJM, Silver, MD. Strokes: A complication of mitral-leaflet prolapse? Lancet 1977;2:313316.Google Scholar
Marks, AR, Choong, CY, Sanfillipo, AJ, et al. Identification of high-risk and low-risk subgroups of patients with mitral-valve prolapse. N Engl J Med 1989;320:10311036.Google Scholar
Nishimura, RA, McGoon, MD, Shub, C, et al. Echocardiographically documented mitral-valve prolapse: Long term follow-up of 237 patients. N Engl J Med 1985;313:13051309.Google Scholar
Barnett, HJM. Transient cerebral ischemia: Pathogenesis, prognosis, and management. Ann Royal Coll Phys Surg Can 1974;7:153173.Google Scholar
Barnett, HJM, Jones, MW, Boughner, DR, Kostuk, WJ. Cerebral ischemic events associated with prolapsing mitral valve. Arch Neurol 1976;33:777782.Google Scholar
Barnett, HJM, Boughner, DR, Taylor, DW, et al. Further evidence relating mitral-valve prolapse to cerebral ischemic events. N Engl J Med 1980;302:139144.Google Scholar
Aronow, WS, Koenigsberg, M, Kronzon, I, Gutstein, H. Association of mitral annular calcium with new thromboembolic stroke and cardiac events at 39-month follow-up in elderly patients. Am J Cardiol 1990;65:15111512.Google Scholar
Benjamin, EJ, Plehn, JF, D’Agostino, RB, et al. Mitral annular calcification and the risk of stroke in an elderly cohort. N Engl J Med 1992;327:374379.Google Scholar
Korn, D, DeSanctis, R, Sell, S. Massive calcification of the mitral valve, a clinicopathological study of fourteen cases. N Engl J Med 1962;267:900909.Google Scholar
DeBono, D, Warlow, C. Mitral annulus calcification and cerebral or retinal ischemia. Lancet 1979;2:383385.Google Scholar
Benjamin, EJ, Plehn, JF, D’Agostino, RB, et al. Mitral annular calcification and the risk of stroke in an elderly cohort. N Engl J Med 1992;327:374379.Google Scholar
Kizer, J, Wiebers, DO, Whisnant, JP, et al. Mitral annular calcification, aortic valve sclerosis, and incident stroke in adults free of clinical cardiovasacular disease. The Strong Heart Study. Stroke 2005;36:25332537.Google Scholar
Pomerance, A. Pathological and clinical study of calcification of the mitral valve ring. J Clin Pathol 1970;23:354361.Google Scholar
Stein, JH, Soble, JS. Thrombus associated with mitral valve calcification. A possible mechanism for embolic stroke. Stroke 1995;26:16971699.Google Scholar
Barnett, HJM. Stroke by cause. Some common, some exotic, some controversial. Stroke 2005;36:25232525.Google Scholar
Adler, Y, Shohat-Zabarski, R, Vaturi, M, et al. Association between mitral annular calcium and aortic atheroma as detected by transesophageal echocardiographic study. Am J Cardiol 1998;81:784786.Google Scholar
Vongpatanasin, W, Hillis, D, Lange, RA. Prosthetic heart valves. N Engl J Med 1996;335:407416.Google Scholar
Edmunds, LH Jr. Thromboembolic complications of current cardiac valvular prostheses. Ann Thor Surg 1982;34:96106.Google Scholar
Metzdorff, MT, Grunkemeier, GL, Pinson, CW, Starr, A. Thrombosis of mechanical cardiac valves: A qualitative comparison of the silastic ball valve and the tilting disc valve. J Am Coll Cardiol 1984;4:5053.Google Scholar
Harker, LA, Slichter, SL. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N Engl J Med 1970;283:13021305.Google Scholar
Silber, H, Khan, SS, Matloff, JM, et al. The St. Jude valve: Thrombolysis as the first line of therapy for cardiac valve thrombosis. Circulation 1993;87:3037.Google Scholar
Vitale, N, Renzulli, A, Cerasuolo, F, et al. Prosthetic valve obstruction: Thrombolysis versus operation. Ann Thorac Surg 1994;57:365370.Google Scholar
Cannegieter, SC, Rosendaal, FR, Briet, E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 1994;89:635641.Google Scholar
Cohn, LH, Mudge, GH, Pratter, F, Collins, JJ Jr. Five to eight-year follow-up of patients undergoing porcine heart-valve replacement. N Engl J Med 1981;304:258262.Google Scholar
Osler, W. Gulstonian lectures on malignant endocarditis. Lancet 1885;1:459465.Google Scholar
Jones, HR, Siekert, RG, Geraci, J. Neurologic manifestations of bacterial endocarditis. Ann Intern Med 1969;71:2128.Google Scholar
Salgado, AV, Furlan, AJ, Keys, TF, et al. Neurologic complications of endocarditis: A 12-year experience. Neurology 1989;39:173178.Google Scholar
Hart, RG, Foster, JW, Luther, MF, Kanter, MC. Stroke in infective endocarditis. Stroke 1990;21:695700.Google Scholar
Kanter, MC, Hart, RG. Neurologic complications of infective endocarditis. Neurology 1991;41:10151020.Google Scholar
Keyser, DL, Biller, J, Coffman, TT, Adams, HP. Neurologic complications of late prosthetic valve endocarditis. Stroke 1990;21:472475.Google Scholar
Matsushita, K, Kuriyama, Y, Sawada, T, et al. Hemorrhagic and ischemic cerebrovascular complications of active infective endocarditis of native valve. Eur Neurol 1993;33:267274.Google Scholar
Pruitt, AA, Rubin, RH, Karchmer, AW, Duncan, GW. Neurological complications of bacterial endocarditis. Medicine 1978;57:329–43.Google Scholar
Steckelberg, JM, Murphy, JG, Ballard, D, et al. Emboli in infective endocarditis: The prognostic value of echocardiography. Ann Intern Med 1991;114:635640.Google Scholar
Tunkel, AR, Mandell, GL. Infecting microorganisms. In Kay, D, (ed.), Infective Endocarditis. New York: Raven Press, 1992, pp 8597.Google Scholar
Garvey, GJ, Neu, HC. Infective endocarditis – an evolving disease. A review of endocarditis at the Columbia-Presbyterian Medical Center, 1968–1973. Medicine 1978;57:105127.Google Scholar
Jaffe, WM, Morgan, DE, Pearlman, AS, Otto, CM. Infective endocarditis, 1983–1988: Echocardiographic findings and factors influencing morbidity and mortality. J Am Coll Cardol 1990:15:12271233.Google Scholar
Rohmann, S, Erbel, R, Gorge, G, et al. Clinical relevance of vegetation localization by transesophageal echocardiography in infective endocarditis. Eur Heart J 1992;12:446452.Google Scholar
Shively, BK, Gurule, FT, Roldan, CA, Leggett, JH, Schiller, NB. Diagnostic value of transesophageal compared with transthoracic echocardiography in infective endocarditis. J Am Coll Cardiol 1991;18:391397.Google Scholar
Sanfilippo, AJ, Picard, MH, Newell, JB, et al. Echocardiographic assessment of patients with infectious endocarditis: Prediction of risk for complications. J Am Coll Cardiol 1991;18:11911199.Google Scholar
Hart, RG, Kagan-Hallet, K, Joerns, S. Mechanisms of intracranial hemorrhage in infective endocarditis. Stroke 1987;18:10481056.Google Scholar
Masuda, J, Yutani, C, Waki, R, et al. Histopathological analysis of the mechanisms of intracranial hemorrhage complicating infective endocarditis. Stroke 1992;23:843850.Google Scholar
Klein, I, Iung, B, Wolff, M, et al. Silent T2* cerebral microbleeds. A potential new imaging clue in infective endocarditis. Neurology 2007;68:2043.Google Scholar
Nandigam, K. Silent T2* cerebral microbleeds: A potential new imaging clue in infective endocarditis. Neurology 2008;70:323324.Google Scholar
Morawetz, RB, Karp, RB. Evolution and resolution of intracranial bacterial (mycotic) aneurysms. Neurosurgery 1984;15:4349.Google Scholar
Moskowitz, MA, Rosenbaum, AE, Tyler, HR. Angiographically monitored resolution of cerebral mycotic aneurysms. Neurology 1974;24:11031108.Google Scholar
Bingham, WF. Treatment of mycotic intracranial aneurysms. J Neurosurg 1977;46:428437.Google Scholar
Bertorini, TE, Laster, RE, Thompson, BF, Gelfand, M. Magnetic resonance imaging of the brain in bacterial endocarditis. Arch Intern Med 1989;149:815817.Google Scholar
Libman, E, Sacks, B. A hitherto undescribed form of valvular and mural endocarditis. Arch Intern Med 1924;33:701737.Google Scholar
Klemperer, P, Pollack, AD, Baehr, G. Pathology of disseminated lupus erythematosus. Arch Pathol 1941;32:569631.Google Scholar
Baehr, G, Klemperer, P, Schifrin, A. A diffuse disease of the peripheral circulation usually associated with lupus erythematosus and endocarditis. Trans Assoc Am Physicians 1935;50:139155.Google Scholar
Gross, L. The cardiac lesions in Libman–Sacks disease, with a consideration of its relationship to acute diffuse lupus erythematosus. Am J Pathol 1940;16:375407.Google Scholar
Roldan, CA, Shively, B, Crawford, MH. An echocardiographic study of valvular heart disease associated with systemic lupus erythematosus. N Engl J Med 1996;335:14241430.Google Scholar
Moyssakis, I, Tektonidou, MG, Vassilios, V, et al. Libman–Sacks endocarditis in systemic lupus erythematosus: Prevalence, associations, and evolution. Am J Med 2007;120:636642.Google Scholar
Barbut, D, Borer, J, Gharavi, A, et al. Prevalence of anticardiolipin antibody in isolated mitral or aortic regurgitation, or both, and possible relation to cerebral ischemic events. Am J Cardiol 1992;70:901905.Google Scholar
Barbut, D, Borer, J, Wallerson, D, et al. Anticardiolipin antibody and stroke: Possible relation of valvular heart disease and embolic events. Cardiology 1991;79:99109.Google Scholar
Antiphospholipid Antibodies in Stroke Study Group. Clinical and laboratory findings in patients with antiphospholipid antibodies and cerebral ischemia. Stroke 1990;21:12681273.Google Scholar
Amico, L, Caplan, LR, Thomas, C. Cerebrovascular complications of mucinous cancer. Neurology 1989;39:522526.Google Scholar
Reagan, TJ, Okazaki, H. The thrombotic syndrome associated with carcinoma. Arch Neurol 1974;31:390395.Google Scholar
Edoute, Y, Haim, N, Rinkevich, D, Brenner, B, Reisner, SA. Cardiac valvular vegetations in cancer patients: A prospective echocardiographic study of 200 patients. Am J Med 1997;102:252258.Google Scholar
Connolly, HM, Crary, JL, McGoon, MD, et al. Valvular heart disease associated with Fenflurmine-phentermine. N Engl J Med 1997;337:581588.Google Scholar
Yamamoto, M, Uesugi, T, Nakayama, T. Dopamine agonists and cardiac valvulopathy in Parkinson’s disease: A case control study. Neurology 2006;67:12251229.Google Scholar
Lambl, VA. Papillare exkreszenzen an der semilunar-klappe der aorta. Wien Med Wochenscshr 1856;6:244247.Google Scholar
Magarey, FR. On the mode of formation of Lambl’s excrescences and their relation to chronic thickening of the mitral valve. J Pathol Bacteriol 1949;61:203208.Google Scholar
Roldan, CA, Shively, BK, Crawford, MH. Valve excrescences: Prevalence, evolution and risk for embolism. J Am Coll Cardiol 1997;30:13081314.Google Scholar
Freedberg, RS, Goodkin, GM, Perez, JL, et al. Valve strands are strongly associated with systemic embolization: A transesophageal echocardiographic study. J Am Coll Cardiol 1995;26:17091712.Google Scholar
Roberts, JK, Omarali, I, Di Tullio, MR, et al. Valvular strands and cerebral ischemia. Effect of demographics and strand characteristics. Stroke 1997;28:21852188.Google Scholar
Cohen, A, Tzourio, C, Chauvel, C, et al. Mitral valve strands and the risk of ischemic stroke in elderly patients. Stroke 1997;28:15741578.Google Scholar
Lee, RJ, Bartzokis, T, Yeoh, TK, et al. Enhanced detection of intracardiac sources of cerebral emboli by transesophageal echocardiography. Stroke 1991;22:734739.Google Scholar
Nighoghossian, N, Derex, L, Loire, R, et al. Giant Lambl excrescences. An unusual source of cerebral embolism. Arch Neurol 1997;54:4144.Google Scholar
Vaitkus, PT, Berlin, JA, Schwartz, JS, Barnathan, ES. Stroke complicating acute myocardial infarction: A meta-analysis of risk modification by anticoagulation and thrombolytic therapy. Arch Intern Med 1992;152:20202024.Google Scholar
Konrad, MS, Coffey, CE, Coffey, KS, et al. Myocardial infarction and stroke. Neurology 1984;34:14031409.Google Scholar
Chiarella, F, Santoro, E, Domenicucci, S, et al. on behalf of the GISSI-3 Investigators. Predischarge two-dimensional echocardiographic evaluation of left ventricular thrombosis after acute myocardial infarction in the GISSI-3 study. Am J Cardiol 1998;81:822827.Google Scholar
Meltzer, RS, Visser, CA, Fuster, V. Intracardiac thrombi and systemic embolization. Ann Intern Med 1986;104:689698.Google Scholar
Visser, CA, Kan, G, Meltzer, RS, et al. Embolic potential of left ventricular thrombi after myocardial infarction: A two-dimensional echocardiographic study of 119 patients. J Am Coll Cardiol 1985;5:12761280.Google Scholar
Kouvaras, G, Chronopoulas, G, Soufras, G, et al. The effects of long term antithrombotic treatment on left ventricular thrombi in patients after an acute myocardial infarction. Am Heart J 1990;119:7378.Google Scholar
Asinger, RW, Mikell, FL, Elsperger, J, Hodges, M. Incidence of left-ventricular thrombosis after acute transmural myocardial infarction. Serial evaluation by two-dimensional echocardiography. N Engl J Med 1981;305:297302.Google Scholar
Nihoyannopoulos, P, Smith, GC, Maseri, A, Foale, RA. The natural history of left ventricular thrombus in myocardial infarction: A rationale in support of masterly inactivity. J Am Coll Cardiol 1989;14:903911.Google Scholar
Greaves, SC, Zhi, G, Lee, RT, et al. Incidence and natural history of left ventricular thrombus following anterior wall acute myocardial infarction. Am J Cardiol 1997;80:442448.Google Scholar
Keren, A, Goldberg, S, Gottlieb, S, et al. Natural history of left ventricular thrombi: Their appearance and resolution in the posthospitalization period of acute myocardial infarction. J Am Coll Cardiol 1990;15:790800.Google Scholar
Domenicucci, S, Chiarella, F, Bellotti, P, et al. Long-term prospective assessment of left ventricular thrombus in anterior wall acute myocardial infarction and implications for a rational approach to embolic risk. Am J Cardiol 1999;83:519524.Google Scholar
Lapeyre, AC III, Steele, PM, Kazmier, FJ, et al. Systemic embolism in chronic left ventricular aneurysm: Incidence and the role of anticoagulation. J Am Coll Cardiol 1985;6:534538.Google Scholar
Anticoagulants in acute myocardial infarction: Results of a cooperative clinical trial. JAMA 1973;225:724729.Google Scholar
Faxon, DP, Ryan, TJ, Davis, KB, et al. Prognostic significance of angiographically documented left ventricular aneurysm from the coronary artery surgery study (CASS). Am J Cardiol 1982;50:157164.Google Scholar
Reeder, GS, Lengyei, M, Tajik, AJ, et al. Mural thrombus in left ventricular aneurysm. Incidence, role of angiography, and relation between anticoagulation and embolism. Mayo Clin Proc 1981;56:7781.Google Scholar
Loh, E, Sutton, M, Wun, C-C, et al. Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med 1997;336:251257.Google Scholar
Stratton, JR, Lighty, GW, Pearlman, AS, Ritchie, JL. Detection of left ventricular thrombus by two-dimensional echocardiography: Sensitivity, specificity, and causes of uncertainty. Circulation 1982;66:156166.Google Scholar
Ports, TA, Cogan, J, Schiller, NB, Rapaport, E. Echocardiography of left ventricular masses. Circulation 1978;58:528536.Google Scholar
Chen, C, Koschyk, D, Hamm, C, et al. Usefulness of transesophageal echocardiography in identifying small left ventricular apical thrombus. J Am Coll Cardiol 1993;21:208215.Google Scholar
Oppenheimer, SM, Lima, J. Neurology and the heart. J Neurol Neurosurg Psychiatry 1998;64:289297.Google Scholar
Wong, C, Marwick, TH. Obesity cardiomyopathy: Diagnosis and therapeutic implications. Nature Clin Practice Cardiovasc Med. 2007;4:480489.Google Scholar
Grabowski, A, Kilian, J, Strank, C, Cieslinski, G, Meyding-Lamade, U. Takotsubo cardiomyopathy – a rare cause of cardioembolic stroke. Cerebrovasc Dis 2007;24:146148.Google Scholar
Ziegelstein, RC. Acute emotional stress and cardiac arrhythmias. JAMA 2007;298:324329.Google Scholar
Wold, LE, Lie, JT. Cardiac myxomas: A clinicopathologic profile. Am J Pathol 1980;101:219240.Google Scholar
Reynen, K. Cardiac myxomas. N Engl J Med 1995;333:16101617.Google Scholar
Blondeau, P. Primary cardiac tumors: French study of 533 cases. Thorac Cardiovasc Surg 1990;38 (Suppl 2):192195.Google Scholar
Lee, VH, Connolly, HM, Brown, RD Jr. Central nervous system manifestations of cardiac myxoma. Arch Neurol 2007;64:11151120.Google Scholar
Sandok, BA, von Estorff, I, Giuliani, ER. Subsequent neurological events in patients with atrial myxoma. Ann Neurol 1980;8:305307.Google Scholar
Edwards, FH, Hale, D, Cohen, A, et al. Primary cardiac valve tumors. Ann Thorac Surg 1991;52:11271131.Google Scholar
Giannesini, C, Kubis, N, N’Guyen, A, et al. Cardiac papillary fibroelastoma: A rare cause of ischemic stroke in the young. Cerebrovasc Dis 1999;9:4549.Google Scholar
Brown, RD, Khandheria, BK, Edwards, WD. Cardiac papillary fibroelastoma: A treatable cause of transient ischemic attack and ischemic stroke detected by transesophageal echocardiography. Mayo Clin Proc 1995;70:863868.Google Scholar
Klarich, KW, Enriquez-Sarano, M, Gura, GM, et al. Papillary fibroelastoma: Echocardiographic characteristics for diagnosis and pathologic correlation. J Am Coll Cardiol 1997;30:784–90.Google Scholar
Gagliardi, R, Franken, R, Protti, G. Cardiac papillary fibroelastoma and stroke in a young man – etiology and treatment. Cerebrovasc Dis 2008;185187.Google Scholar
Azarbal, B, Tobis, J. Interatrial communications, stroke, and migraine headache. Appl Neurol 2005;1:2236.Google Scholar
Hagen, PT, Scholz, DG, Edwards, WD. Incidence and size of patent foramen ovale during the first 10 decades of life: An autopsy study of 965 normal hearts. Mayo Clin Proc 1984;59:1720.Google Scholar
Lechat, PH, Mas, JL, Lascault, G, et al. Prevalence of patent foramen ovale in patients with stroke. N Engl J Med 1988;318:11481152.Google Scholar
Di Tullio, M, Sacco, RL, Gopal, A, et al. Patent foramen ovale as a risk factor for cryptogenic stroke. Ann Intern Med 1992;117:461465.Google Scholar
Petty, GW, Khanderia, BK, Chu, C-P, et al. Patent foramen ovale in patients with cerebral infarction. A transesophageal echocardiographic study. Arch Neurol 1997;54:819822.Google Scholar
Gautier, JC, Durr, A, Koussa, S, et al. Paradoxical cerebral embolism with a patent foramen ovale. A report of 29 patients. Cerebrovasc Dis 1991;1:193202.Google Scholar
Venketasubramanian, N, Sacco, RL, Di Tullio, M, et al. Vascular distribution of paradoxical emboli by transcranial Doppler. Neurology 1993;43:15331535.Google Scholar
Kim, BJ, Kim, N-Y, Kang, D-W, Kim, JS, Kwon, SU. Provoked right-to-left shunt in patent foramen ovale associates with ischemic stroke in posterior circulation. Stroke 2014;45:37073710.Google Scholar
Konstantinides, S, Kasper, W, Geibel, A, et al. Detection of left-to-right shunt in atrial septal defect by negative contrast echocardiography: A comparison of transthoracic and transesophageal approach. Am Heart J 1993;126:909917.Google Scholar
Hamann, GF, Schatzer-Klotz, D, Frohlig, G, et al. Femoral injection of echo contrast medium may increase the sensitivity of testing for a patent foramen ovale. Neurology 1998;50:14231428.Google Scholar
Hausmann, D, Mügge, A, Daniel, WG. Identification of patent foramen ovale permitting paradoxic embolism. J Am Coll Cardiol 1995;26:10301038.Google Scholar
Homma, S, Tullio, MR, Sacco, RL, et al. Characteristics of patent foramen ovale associated with cryptogenic stroke: A biplane transesophageal echocardiographic study. Stroke 1994;25:582586.Google Scholar
Chimowitz, MI, Nemec, JJ, Marwick, TH, et al. Transcranial Doppler ultrasound identifies patients with right-to-left cardiac or pulmonary shunts. Neurology 1991;41:19021904.Google Scholar
Albert, A, Muller, HR, Hetzel, A. Optimized transcranial Doppler technique for the diagnosis of cardiac right-to-left shunts. J Neuroimaging 1997;7:159163.Google Scholar
Di Tullio, M, Sacco, RL, Venketasubramanian, N, et al. Comparison of diagnostic techniques for the detection of a patent foramen ovale in stroke patients. Stroke 1993;24:10201024.Google Scholar
Mohrs, OK, Petersen, SE, Erkapic, D, et al. Diagnosis of patent foramen ovale using contrast-enhanced dynamic MRI: A pilot study. AJR Am J Roetgenol 2005;184:234240.Google Scholar
Ilercil, A, Meisner, JS, Vijayaraman, P, et al. Clinical significance of fossa ovalis membrane aneurysm in adults with cardioembolic cerebral ischemia. Am J Cardiol 1997;80:9699.Google Scholar
Belkin, RN, Hurwitz, BJ, Kislo, J. Atrial septal aneurysm: Association with cerebrovascular and peripheral embolic events. Stroke 1987;18:856862.Google Scholar
Schneider, B, Hanrath, P, Vogel, P, Meinertz, T. Improved morphologic characterization of atrial septal aneurysm by transesophageal echocardiography: Relation to cerebrovascular events. J Am Coll Cardiol 1990;16:10001009.Google Scholar
Burger, AJ, Sherman, HB, Charlamb, MJ. Low incidence of embolic strokes with atrial septal aneurysms: A prospective, long-term study. Am Heart J 2000;139:149152.Google Scholar
Agmon, Y, Khandheria, BK, Meissner, I, et al. Frequency of atrial septal aneurysms in patients with cerebral ischemic events. Circulation 1999;99:19421944.Google Scholar
Zabalgoitia-Reyes, M, Herrera, C, Gandhi, DK, et al. A possible mechanism for neurologic ischemic events in patients with atrial septal aneurysm. Am J Cardiol 1990;66:761764.Google Scholar
Berthet, K, Lavergne, T, Cohen, A, et al. Significant association of atrial vulnerability with atrial septal abnormalities in young patients with ischemic stroke of unknown cause. Stroke 2000;31:398403.Google Scholar
Silver, MD, Dorsey, JS. Aneurysms of the septum primum in adults. Arch Pathol Lab Med 1978;102:6265.Google Scholar
Cabanes, L, Mas, JL, Cohen, A, et al. Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age. A study using transesophageal echocardiography. Stroke 1993;24:18651873.Google Scholar
Hanna, JP, Sun, JP, Furlan, AJ, et al. Patent foramen ovale and brain infarct. Echocardiographic predictors, recurrence, and prevention. Stroke 1994;25:782786.Google Scholar
Ay, H, Buonanno, FS, Abraham, S, et al. An electrocardiographic criterion for diagnosis of patent foramen ovale associated with ischemic stroke. Stroke 1998;29:13931397.Google Scholar
Bogousslavsky, J, Garazi, S, Jeanrenaud, X, et al. Stroke recurrence in patients with patent foramen ovale: The Lausanne study. Neurology 1996;46:13011305.Google Scholar
French Study Group on Patent Foramen Ovale and Atrial Septal Aneurysm. Recurrent cerebrovascular events in patients with patent foramen ovale or atrial septal aneurysms and cryptogenic stroke or TIA. Am Heart J 1995;130:10831088.Google Scholar
Devuyst, G, Bogousslavsky, J, Ruchat, P, et al. Prognosis after stroke followed by surgical closure of patent foramen ovale: A prospective follow-up study with brain MRI and simultaneous transesophageal and transcranial Doppler ultrasound. Neurology 1996;47:11621166.Google Scholar
Kim, D, Saver, JL. Patent foramen ovale and stroke: What we do and don’t know. Rev Neurol Dis 2005;2:17.Google Scholar
Bridges, ND, Hellensbrand, W, Catson, L, et al. Transcatheter closure of patent foramen ovale after presumed paradoxical embolism. Circulation 1992;86:19021908.Google Scholar
Li, Y, Zhou, K, Hua, Y, et al. Amplatzer occluder versus Cardioseal/Starflex occluder: A meta-analysis of the efficacy and safety of transcatheter occlusion for patent foramen ovale and atrial septal defect. Cardiol Young 2013;23:582596.Google Scholar
Carroll, JD, Saver, JL, Thaler, DE, et al. for the RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med 2013;368:10921100.Google Scholar
Meier, B, Kalesan, B, Mattle, HP, et al. for the PC Trial Investigators. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med 2013;368:10831091.Google Scholar
Furlan, AJ, Reisman, M, Joseph Massaro, J, et al. for the CLOSURE I Investigators. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med 2012;366:991999.Google Scholar
Kent, DM, Ruthazer, R, Weimar, C, et al. An index to identify stroke-related vs. incidental patent foramen ovale in cryptogenic stroke. Neurology 2013;81:619625.Google Scholar
Thaler, DE, Ruthazer, R, Weimar, C, et al. Recurrent stroke predictors differ in medically treated patients with pathogenic vs. other PFOs. Neurology 2014;83:221226.Google Scholar
Bogousslavsky, J, Cachin, C, Regli, F, et al. Cardiac sources of embolism and cerebral infarction. Clinical consequences and vascular concomitants. Neurology 1991;41:855859.Google Scholar
Tunick, PA, Kronzon, I. Protruding atherosclerotic plaque in the aortic arch of patients with systemic embolization: A new finding seen by transesophageal echocardiography. Am Heart J 1990;120:658660.Google Scholar
Tunick, PA, Culliford, AT, Lamparello, PJ, Kronzon, I. Atheromatosis of the aortic arch as an occult source of multiple systemic emboli. Ann Intern Med 1991;114:391392.Google Scholar
Tunick, PA, Perez, JL, Kronzon, I. Protruding atheromas in the thoracic aorta and systemic embolization. Ann Intern Med 1991;115:423427.Google Scholar
Amarenco, P, Duyckaerts, C, Tzourio, C, et al. The prevalence of ulcerated plaques in the aortic arch in patients with stroke. N Engl J Med 1992;326:221225.Google Scholar
Amarenco, P, Cohen, A, Baudrimont, M, Bousser, M-G. Transesophageal echocardiographic detection of aortic arch disease in patients with cerebral infarction. Stroke 1992;23:10051009.Google Scholar
Tobler, HG, Edwards, JE. Frequency and location of atherosclerotic plaques in the ascending aorta. J Thor Cardiovasc Surg 1988;96:304306.Google Scholar
Bruns, JL, Segel, DP, Adler, S. Control of cholesterol embolization by discontinuation of anticoagulant therapy. Am J Med Sci 1978;275:105108.Google Scholar
French Study of Aortic Plaques in Stroke Group. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med 1996;334:12161221.Google Scholar
Mitusch, R, Doherty, C, Wucherpfennig, H, et al. Vascular events during follow-up in patients with aortic arch atherosclerosis. Stroke 1997;28:3639.Google Scholar
Amarenco, P, Cohen, A. Update on imaging aortic atherosclerosis. Adv Neurol 2003;92:7589.Google Scholar
Vaduganathan, V, Ewton, A, Nagueh, SF, et al. Pathologic correlates of aortic plaques, thrombi and mobile “aortic debris” imaged in vivo with transesophageal echocardiography J Am Coll Cardiol 1997;30:357363.Google Scholar
Weinberger, J, Azhar, S, Danisi, F, Hayes, R, Goldman, M. A new noninvasive technique for imaging atherosclerotic plaque in the aortic arch of stroke patients by transcutaneous real-time B-mode ultrasonography. Stroke 1998;29:673676.Google Scholar
Schwammenthal, A, Schwammenthal, Y, Tanne, D, et al. Transcutaneous detection of aortic arch atheromas by suprasternal harmonic imaging. J Am Coll Cardiol 2002;39:11271132.Google Scholar
Kutz, SM, Lee, VS, Tunick, PA, et al. Atheromas of the thoracic aorta: A comparison of transesophageal echocardiography and breath-hold gadolinium enhanced 3-dimensional magnetic resonance angiography. J Am Soc Echocardiogr 1999;12:853858.Google Scholar
Barkhausen, J, Ebert, W, Heyer, C, Debatin, JF, Weinmann, H-J. Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging. Circulation 2003;108:605609.Google Scholar
Harloff, A, Dudler, P, Frydrychowicz, A, et al. Reliability of aortic MRI at 3 Tesla in patients with cryptogenic stroke. J Neurol Neurosurg Psychiatry 2007;79:540546.Google Scholar
Chatzikonstantinou, A, Krissak, R, Fluchter, S, et al. CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic stroke. Cerebrovasc Dis 2012;33:322328.Google Scholar
Wehrum, T, Kams, M, Strecker, C, et al. Prevalence of potential retrograde embolization pathways in the proximal descending aorta in stroke patients. Cerebrovas Dis 2014;38:410417.Google Scholar
Yamashiro, K, Funabe, S, Tanaka, R, et al. Primary aortic sarcoma. Neurology 2015;84:755756.Google Scholar
Blackshear, JL, Jahangir, A, Oldenberg, WA, Safford, RE. Digital embolization from plaque-related thrombus in the thoracic aorta: Identification with transesophageal echocardiography and resolution with warfarin therapy. Mayo Clin Proc 1993;68:268272.Google Scholar
Freedberg, RS, Tunick, PA. Culliform, AT, Tatelbaum, RJ, Kronzon, I. Disappearance of a large intraaortic mass in a patient with prior systemic embolization. Am Heart J 1993;125:14451447.Google Scholar
Fine, MJ, Kapoor, W, Falanga, V. Cholesterol crystal embolization: A review of 221 cases in the English literature. Angiology 1987;38:769784.Google Scholar
Hausmann, D, Gulba, D, Bargheer, , et al. Successful thrombolysis of an aortic-arch thrombus in a patient after mesenteric embolism. N Engl J Med 1992;327:500501.Google Scholar
Belden, JR, Caplan, LR, Bojar, RM, Payne, DD, Blachman, P. Treatment of multiple cerebral emboli from an ulcerated, thrombogenic ascending aorta with aortectomy and graft replacement. Neurology 1997;49:621622.Google Scholar
Amarenco, P, Davis, S, Jones, EF, et al. for the Aortic Arch Related Cerebral Hazard Trial Investigators. Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke 2014;45:12481257.Google Scholar
Slogoff, S, Girgis, KZ, Keats, AS. Etiologic factors in neuropsychiatric complications associated with cardiopulmonary bypass. Anesth Analg 1982;61:903911.Google Scholar
Gilman, S. Neurological complications of open heart surgery. Ann Neurol 1990;28:475476.Google Scholar
Shaw, PJ, Bates, D, Cartledge, NEF. Early neurological complications of coronary artery bypass surgery. BMJ 1985;391:13841387.Google Scholar
Breuer, AC, Furlan, AJ, Hanson, MR, et al. Central nervous system complications of coronary artery bypass graft surgery: Prospective analysis of 421 patients. Stroke 1983;14:682687.Google Scholar
Coffey, CE, Massey, EW, Roberts, KB, et al. Natural history of cerebral complication of coronary artery bypass graft surgery. Neurology 1983;33:14161421.Google Scholar
Feeney, DM, Gonzalez, A, Law, WA. Amphetamine, haloperidol and experience interact to affect the rate of recovery after motor cortex injury. Science 1982;217:855857.Google Scholar
Houda, DA, Feeney, DM. Haloperidol blocks amphetamine induced recovery of binocular depth perception of the bilateral visual cortex abilities in the cat. Proc West Pharmacol Soc 1985;28:209211.Google Scholar
Sila, C. Neuroimaging of cerebral infarction associated with coronary revascularization. AJNR Am J Neuroradiol 1991;12:817818.Google Scholar
Moody, DM, Bell, MA, Challa, VR, et al. Brain microemboli during cardiac surgery or aortography. Ann Neurol 1990;28:477486.Google Scholar
Pugsley, W, Klinger, L, Paschalis, C, et al. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke 1994;25:13931399.Google Scholar
Barbut, D, Caplan, LR. Brain complications of cardiac surgery. Curr Probl Cardiol 1997;22:445476.Google Scholar
Barbut, D, Lo, Y, Gold, JP, et al. Impact of embolization during coronary artery bypass grafting on outcome and length of stay. Ann Thor Surg 1997;63:9981002.Google Scholar
Clark, RE, Brillman, J, Davis, DA, et al. Microemboli during coronary artery bypass grafting: Genesis and effect on outcome. J Thorac Cardiovasc Surg 1995;25:13931399.Google Scholar
Tufo, HM, Ostfeld, AM, Shekelle, R. Central nervous system dysfunction following open-heart surgery. JAMA 1970;212:13331340.Google Scholar
Stockard, JJ, Bickford, RG, Schauble, JF. Pressure-dependent cerebral ischemia during cardiopulmonary bypass. Neurology 1973;23:521529.Google Scholar
Gold, JP, Charlson, ME, Williams-Russo, P, et al. Improvement of outcomes after coronary artery bypass: A randomized trial comparing intraoperative high vs. low mean arterial pressure. J Thorac Cardiovasc Surg 1995;110:13021314.Google Scholar
Gottesmann, RF, Hillis, AE, Grega, MA, et al. Early postoperative cognitive dysfunction and blood pressure during coronary artery bypass graft operation. Arch Neurol 2007;64:11111114.Google Scholar
Dubinsky, RM, Lai, SM. Mortality from combined carotid endarterectomy and coronary artery bypass surgery in the US. Neurology 2007;68:195197.Google Scholar
Breslau, PJ, Fell, G, Ivey, TD, et al. Carotid arterial disease in patients undergoing coronary artery bypass operations. J Thorac Cardiovasc Surg 1981;82:765767.Google Scholar
Turnipseed, WD, Berkhoff, HA, Belzer, FO. Postoperative stroke in cardiac and peripheral vascular disease. Ann Surg 1980;192:365368.Google Scholar
Chimowitz, M. Neurological complications of cardiac surgery. In Caplan, LR, Hurst, JW, Chimowitz, M (eds), Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 226257.Google Scholar
Furlan, A, Craciun, A. Risk of stroke during coronary artery bypass graft surgery in patients with internal carotid artery disease documented by angiography. Stroke 1985;16:797799.Google Scholar
Von Reutern, G, Hetzel, A, Birnbaum, D, et al. Transcranial Doppler ultrasound during cardiopulmonary bypass in patients with internal carotid artery disease documented by angiography. Stroke 1988;19:674680.Google Scholar
Hise, JH, Nipper, MN, Schnitker, JC. Stroke associated with coronary artery bypass surgery. AJNR Am J Neuroradiol 1991;12:811814.Google Scholar
Barbut, D, Gold, JP. Aortic atheromatosis and risks of cerebral embolization. J Cardiothorac Vasc Anesth 1996;10:2430.Google Scholar
Blauth, CI, Cosgrove, DM, Webb, BW, et al. Atheroembolism from the ascending aorta. An emerging problem in cardiac surgery. J Thorac Cardiovasc Surg 1992;103:11041112.Google Scholar
Masuda, J, Yutani, C, Ogata, J, et al. Atheromatous embolism to the brain: A clinicopathologic analysis of 15 autopsy cases. Neurology 1994;44:12311237.Google Scholar
Katz, ES, Tunick, PA, Rusinek, H, et al. Protruding aortic atheromas predict stroke in elderly patients undergoing cardiopulmonary bypass: Experience with intraoperative transesophageal echocardiography. J Am Coll Cardiol 1992;20:7077.Google Scholar
Mills, NL, Everson, CT. Atherosclerosis of the ascending aorta and coronary artery bypass. Pathology, clinical correlates and operative management. J Thorac Cardiovasc Surg 1991;102:546553.Google Scholar
Yao, FSF, Barbut, D, Hager, DN, et al. Detection of aortic emboli by transesophageal echocardiography during coronary artery bypass surgery. J Cardiothorac Vasc Anesth 1996;10:314317.Google Scholar
Gardner, TJ, Horneffer, PJ, Manolio, TA, et al. Stroke following coronary artery bypass grafting: A ten-year study. Ann Thorac Surg 1985;40:574581.Google Scholar
Caplan, LR. Translating what is known about neurological complications of coronary artery bypass graft surgery into action (Editorial). Arch Neurol 2009;66:10621064.Google Scholar
Warehag, TH, Davila-Roman, VG, Barzilai, B, et al. Management of the severely atherosclerotic aorta during cardiac operations. J Thorac Cardiovasc Surg 1992;103:453462.Google Scholar
Barbut, D, Yao, FS, Hager, DN, et al. Comparison of transcranial Doppler ultrasonography and transesophageal echocardiography during coronary artery bypass surgery. Stroke 1996;27:8790.Google Scholar
Dittrich, R, Ringelstein, EB. Occurrence and clinical impact of microembolic signals during or after cardiosurgical procedures. Stroke 2008;39:503511.Google Scholar
Marshall, WG, Barzilai, B, Kouchoukos, NT, et al. Intraoperative ultrasonic imaging of the ascending aorta. Ann Thorac Surg 1989;48:339344.Google Scholar
Borowicz, I, Goldsborough, M, Selnes, O, McKann, G. Neuropsychologic change after cardiac surgery. A critical review. J Cardiothorac Vasc Anesth 1996;10:105111.Google Scholar
Barbut, D, Hinton, R, Szatrowski, TP, et al. Cerebral emboli detected during bypass surgery are associated with clamp removal. Stroke 1994;25:23982402.Google Scholar
Hammon, J, Stump, D, Kon, N, et al. Risk factors and solutions for the development of neurobehavioral changes after coronary artery bypass grafting. Ann Thorac Surg 1997;63:16131618.Google Scholar
Hanson, MR, Hamid, MA, Tomsak, RL, Chou, SS, Leigh, RJ. Selective saccadic palsy caused by pontine lesions: Clinical, physiological, and pathological correlations. Ann Neurol 1986;20:209217.Google Scholar
Tomsak, RL, Volpe, BT, Stahl, JS, Leigh, RJ. Saccadic palsy after cardiac surgery: Visual disability and rehabilitation. Ann NY Acad Sci 2002;956:430433.Google Scholar
Eggers, SDZ, Moster, ML, Cranmer, K. Selective saccadic palsy after cardiac surgery. Neurology 2008;70:318320.Google Scholar
Solomon, D, Ramat, S, Tomsak, RL, et al. Saccadic palsy after cardiac surgery: Characteristics and pathogenesis. Ann Neurol 2007;63:355365.Google Scholar
van Dijk, D, Spoor, M, Hijman, R, et al. for the Octopus Study Group. Cognitive and cardiac outcomes 5 years after off-pump vs. on-pump coronary artery bypass graft surgery. JAMA 2007;297:701708.Google Scholar
Duncan, A, Rumbaugh, C, Caplan, LR. Cerebral embolic disease, a complication of carotid aneurysms. Radiology 1979;133:379384.Google Scholar
Fisher, M, Davidson, R, Marcus, E. Transient focal cortical ischemia as a presenting manifestation of unruptured cerebral aneurysms. Ann Neurol 1980;8:367372.Google Scholar
Pessin, MS, Chimowitz, MI, Levine, SR, et al. Stroke in patients with fusiform vertebrobasilar aneurysms. Neurology 1989;39:1621.Google Scholar
Caplan, LR, Stein, R, Patel, D, et al. Intraluminal clot of the carotid artery detected radiographically. Neurology 1984;34:11751181.Google Scholar
Perloff, JK. Congenital mitral stenosis, cor triatriatum, congenital pulmonary vein stenosis. In Perloff, JK, Marelli, AJ (eds), The Clinical Recognition of Congenital Heart Disease. Philadelphia: W B Saunders, 1987, pp 169171.Google Scholar
Manning, WJ, Weintraub, RM, Waksmonski, CA, et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med 1995;123:817822.Google Scholar
Fatkin, D, Scalia, G, Jacobs, N, et al. Accuracy of biplane transesophageal echocardiography in detecting left atrial thrombus. Am J Cardiol 1996;77:321323.Google Scholar
Pearson, AC, Labovitz, AJ, Tatineni, S, Gomez, CR. Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology. J Am Coll Cardiol 1991;17:6672.Google Scholar
DeRook, FA, Comess, KA, Albers, GW, Popp, RL. Transesophageal echocardiography in the evaluation of stroke. Ann Intern Med 1992;117:922932.Google Scholar
Daniel, WG, Mugge, A. Transesophageal echocardiography. N Engl J Med 1995;332:12681279.Google Scholar
Horowitz, DR, Tuhrim, S, Weinberger, J, et al. Transesophageal echocardiography: Diagnostic and clinical applications in the evaluation of the stroke patient. J Stroke Cerebrovasc Dis 1997;6:332336.Google Scholar
Johnson, LL, Pohost, GM. Nuclear cardiology. In Schlant, RC, Alexander, RW (eds), Hurst’s The Heart, 8th ed. New York: McGraw-Hill, 1994, pp 22812323.Google Scholar
Ezekowiz, MD, Wilson, DA, Smith, EO, et al. Comparison of indium-111 platelet scintigraphy and two-dimensional echocardiography in the diagnosis of left ventricular thrombi. N Engl J Med 1982;306:15091513.Google Scholar
Daccarett, M, McGann, CJ, Akoum, NW, MacLeod, R, Marrouche, NF. MRI of the left atrium: Predicting clinical outcomes in patients with atrial fibrillation. Exp Rev Cardiovasc Ther 2011;9:105111.Google Scholar
Baher, A, Mowla, A, Kodali, S, et al. Cardiac MRI improves identification of etiology of acute ischemic stroke. Cerebrovasc Dis 2014;37:277284.Google Scholar
Hur, J, Kim, YJ, Lee, HJ, et al. Left atrial appendage thrombi in stroke patients: Detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology 2009;251:683690.Google Scholar
Hur, J, Kim, YJ, Lee, HJ, et al. Cardioembolic stroke: Dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 2012;263:688695.Google Scholar
Romero, J, Husain, SA, Kelesidis, I, Sanz, J, Medina, HM, Garcia, MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: A meta-analysis. Circ Cardiovasc Imaging 2013;6:185194.Google Scholar
Romero, J, Cao, JJ, Garcia, MJ, Taub, CC. Cardiac imaging for assessment of left atrial appendage stasis and thrombosis. Nat Rev Cardiol 2014;11:470480.Google Scholar
Caplan, LR, Feinberg, WM, Fisher, MJ, del Zoppo, GJ. The blood. In Caplan, LR (ed), Brain Ischemia. Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 83126.Google Scholar
Caplan, LR. Treatment of the acute embolic event. In Caplan, LR, Manning, W (eds), Brain Embolism. New York: Informa Healthcare, 2006, pp 277288.Google Scholar
Furlan, A, Higashida, R, Wechsler, L, et al. Intraarterial prourokinase for acute ischemic stroke. The PROACT II Study: A randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:20032011.Google Scholar
Fisher, CM, Perlman, A. The nonsudden onset of cerebral embolism. Neurology 1967;17:10251032.Google Scholar
Melski, J, Caplan, LR, Mohr, JP, Geer, D, Bleich, H. Modeling the diagnosis of stroke at two hospitals. MD Computing 1989;6:157163.Google Scholar
Staroselskaya, I, Chaves, C, Silver, B, et al. Relationship between magnetic resonance arterial patency and perfusion-diffusion mismatch in acute ischemic stroke and its potential clinical use. Arch Neurol 2001;58:10691074.Google Scholar
Derex, L, Nighoghossian, N, Hermier, M, Adeleine, P, Froment, JC, Trouillas, P. Early detection of cerebral arterial occlusion on magnetic resonance angiography: Predictive value of the baseline NIHSS score and impact on neurological outcome. Cerebrovasc Dis 2002;13:225229.Google Scholar
Parsons, MW, Barber, PA, Chalk, J, et al. Diffusion- and perfusion-weighted response to thrombolysis in stroke. Ann Neurol 2002;51:2837.Google Scholar
Campbell, BC, Christensen, S, Parsons, MW, et al. for the EPITHET and DEFUSE Investigators. Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann Neurol 2013;73:510519.Google Scholar
Pessin, MS, del Zoppo, GJ, Furlan, AJ. Thrombolytic treatment in acute stroke: Review and Update of Selected Topics in Cerebrovascular Disease. 19th Princeton Conference, 1994. Boston: Butterworth–Heinemann, 1995, pp 409418.Google Scholar
Caplan, LR. Caplan’s Stroke, a Clinical Approach. Boston, Butterworth–Heinemann, 2000, pp 124130.Google Scholar
Caplan, LR. Thrombolysis 2004: The good, the bad, and the ugly. Rev Neurol Dis 2004;1:1626.Google Scholar
Christoforidis, G, Mohammad, Y, Bourekas, E, Slivka, A. Initial severity of angiographic occlusion predicts subsequent volume of cerebral infarction following intra-arterial thrombolysis in acute ischemic stroke. Neurology 2004;62 (Suppl 5): A449.Google Scholar
Toni, D, Fiorelli, M, Zanette, EM, et al. Early spontaneous improvement and deterioration of ischemic stroke patients: A serial study with transcranial Doppler ultrasonography. Stroke 1998;29:11441148.Google Scholar
Lewandowski, C, Frankel, M, Tomsick, T, et al. Combined intravenous and intraarterial r-tPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) Bridging Trial. Stroke 1999;30:25982605.Google Scholar
IMS Study Investigators. Combined intravenous and intra-arterial recanalization for acute ischemic stroke: The Interventional Management of Stroke Study. Stroke 2004;35:904912.Google Scholar
Hausegger, K, Hauser, M, Kau, T. Mechanical thrombectomy with stent retrievers in acute ischemic stroke. Cardiovasc Intervent Radiol 2014;37:863–74.Google Scholar
Ciccone, A, Valvassori, L. Endovascular treatment for acute ischemic stroke. N Engl J Med 2013;368:24332434.Google Scholar
Berlis, A, Lutsep, H, Barnwell, S. Mechanical thrombolysis in acute ischemic stroke with endovascular photoacoustic recanalization. Stroke 2004;35:11121116.Google Scholar
Hacke, W. The dilemma of reinstituting anticoagulation for patients with cardioembolic sources and intracranial hemorrhage: How wide is the strait between Skylla and Karybdis? Arch Neurol 2000;57:16821684.Google Scholar
Phan, TG, Koh, M, Wijdicks, EF. Safety of discontinuation of anticoagulation in patients with intracranial hemorrhage at high thromboembolic risk. Arch Neurol 2000;57:17101713.Google Scholar
O’Brien, MD. Ischemic cerebral edema in brain ischemia. In Caplan, LR (ed.), Basic Concepts and Clinical Relevance, London: Springer-Verlag, 1995, pp 4350.Google Scholar
Parisi, DM, Koval, K, Egol, K. Fat embolism syndrome. Am J Orthop (Belle Mead NJ) 2002;31:507512.Google Scholar
Bulger, E, Smith, DG, Maier, RV, Jurkovich, G. Fat embolism syndrome. A 10-year review. Arch Surg 1997;132:435439.Google Scholar
Sevitt, S. Fat Embolism. London: Butterworth & Co., 1962.Google Scholar
Dines, DE, Burgher, LW, Okazaki, H. The clinical and pathological correlation of fat embolism syndrome. Mayo Clin Proc 1975;50:407411.Google Scholar
Jacobson, DM, Terrence, CF, Reinmuth, OM. The neurologic manifestations of fat embolism. Neurology 1986;36:847851.Google Scholar
Hill, JD, Aguilar, MJ, Baranco, AP, Gerbode, F. Neuropathological manifestations of cardiac surgery. Ann Thorac Surg 1969;7:409517.Google Scholar
Ghatal, NR, Sinnenberg, RJ, DeBlois, GG. Cerebral fat embolism following cardiac surgery. Stroke 1983;14:619621.Google Scholar
Charache, S, Page, DL. Infarction of bone marrow in sickle cell disorders. Ann Intern Med 1967;67:11951200.Google Scholar
Vichinsky, E, Williams, K, Das, M, et al. Pulmonary fat embolism: A distinct cause of severe acute chest syndrome in sickle cell anemia. Blood 1994;83:31073112.Google Scholar
Shelley, WM, Curtis, EM. Bone marrow and fat embolism in sickle cell anemia and sickle cell-hemoglobin C disease. Bull Johns Hopkins Hosp 1958;103:825.Google Scholar
Chmel, H, Bertles, J. Hemoglobin S/C disease in a pregnant woman with crisis and fat embolization syndrome. Am J Med 1975;58:563566.Google Scholar
Yoo, KM, Yoo, BG, Kim, KS, Lee, SU, Han, BH. Cerebral lipiodol embolism during transcatheter arterial chemoembolism. Neurology 2004;63:181183.Google Scholar
Qian, Y, Ances, BM, Pruitt, A, Choi, B, Moonis, G. Intracranial fat embolization due to baclofen pump. Neurology 2005;64:919.Google Scholar
Simon, A, Ulmer, JL, Strottman, JM. Contrast-enhanced MR imaging of cerebral fat embolism: Case report and review of the literature. AJNR 2003;24:97101.Google Scholar
Forteza, AM, Rabinstein, A, Koch, S, et al. Endovascular closure of a patent foramen ovale in the fat embolism syndrome. Changes in the embolic pattern as detected by transcranial Doppler. Arch Neurol 2002;59:455459.Google Scholar
Forteza, AM, Koch, S, Romano, JG, et al. Transcranial Doppler detection of fat emboli. Stroke 1999;30:26872691.Google Scholar
Guillevin, R, Vallee, JN, Demeret, S, et al. Cerebral fat embolism: Usefulness of magnetic resonance spectroscopy. Ann Neurol 2005;57:434439.Google Scholar
Chastre, J, Fagon, J-Y, Soler, P, et al. Bronchoalveolar lavage for rapid diagnosis of the fat embolism syndrome in trauma patients. Ann Intern Med 1990;113:583588.Google Scholar
Godeau, B, Schaeffer, A, Bachir, D, et al. Bronchoalveolar lavage in adult sickle cell patients with acute chest syndrome: Value for diagnostic assessment of fat embolism. Am J Resp Care Med 1996;153:16911696.Google Scholar
Kamenar, E, Burger, PC. Cerebral fat embolism: A neuropathological study of a microembolic state. Stroke 1980;11:477484.Google Scholar
Menkin, M, Schwartzman, RJ. Cerebral air embolism. Report of five cases and review of the literature. Arch Neurol 1977;34:169170.Google Scholar
Valentino, R, Hilbert, G, Vargas, F, Gruson, D. Computed tomographic scan of massive cerebral air embolism. Lancet 2003;361:1848.Google Scholar
Demaerel, P, Gevers, A-M, De Brueker, Y, Sunaert, S, Wilms, G. Stroke caused by cerebral air embolism during endoscopy. Gastrointest Endosc 2003;1:134135.Google Scholar
Weber, M-A, Fiebach, JB, Lichy, MP, Schwark, C, Grau, A. Bilateral cerebral air embolism. J Neurol 2003;250:11151117.Google Scholar
Hodics, T, Linfante, I. Cerebral air embolism. Neurology 2003;60:112.Google Scholar
Hertz, JA, Schinco, MA, Frykberg, ER. Extensive pneumocranium. J Trauma 2002;52:188.Google Scholar
Laskey, AL, Dyer, C, Tobias, JD. Venous air embolism during home infusion therapy. Pediatrics 2002;109:e15.Google Scholar
Gei, AF, Vadhera, , Hankins, GDV. Embolism during pregnancy: Thrombus, air, and amniotic fluid. Anesthesiol Clin North America 2003;21:165182.Google Scholar
Malinow, AM, Naulty, JS, Hunt, CO, et al. Precordial ultrasonic monitoring during cesarean delivery. Anesthesiology 1987;66:816819.Google Scholar
Spencer, MP, Campbell, SD. Development of bubbles in venous and arterial blood during hyperbaric decompression. Bull Mason Clin 1968;22:2632.Google Scholar
Gillen, HW. Symptomatology of cerebral gas embolism. Neurology 1968;18:507512.Google Scholar
van Hulst, RA, Klein, J, Lachman, B. Gas embolism: Pathophysiology and treatment. Clin Physiol Funct Imaging 2003;23:237246.Google Scholar
Cantais, E, Louge, P, Suppini, A, Foster, PP, Palmier, B. Right-to-left shunt and risk of decompression illness with cochleovestibular and cerebral symptoms in divers: Case control study in 101 consecutive dive accidents. Crit Care Med 2003;31:8488.Google Scholar
Jeon, S-B, Kim, JS, Lee, DK, Kang, D-W, Kwon, SU. Clinicoradiological characteristics of cerebral air embolism. Cerebrovasc Dis 2007;23:459462.Google Scholar
Yeh, T, Austin, EH, Sehic, A, Edmonds, HL. Rapid recognition and treatment of cerebral air embolism: The role of neuroimaging. J Thor Cardiovasc Surg 2003;126:589591.Google Scholar
Lefkovitz, NW, Roessman, U, Kori, S. Major cerebral infarction from tumor embolus. Stroke 1986;17:555557.Google Scholar
Banerjee, AK, Chopra, JS. Cerebral embolism from a thyroid carcinoma. Arch Neurol 1972;27:186187.Google Scholar
Kase, CS, White, R, Vinson, TL, Eichelberger, RP. Shotgun pellet embolus to the middle cerebral artery. Neurology 1981;31:458461.Google Scholar
Yaari, R, Ahmadi, J, Chang, GY. Cerebral shotgun pellet embolism. Neurology 2000;54:1487.Google Scholar
Duncan, I, Fourie, PA. Embolization of a bullet in the internal carotid artery. AJR Am J Roentgenol 2002;178:15721573.Google Scholar
Langenbach, M, Leopold, H-C, Hennerici, M. Neck trauma with embolization of the middle cerebral artery by a metal splinter. Neurology 1990;40:552553.Google Scholar
Dato, GMA, Arsianian, A, Di Marzio, P, Filosso, PL, Ruffini, E. Posttraumatic and iatrogenic foreign bodies in the heart: Report of fourteen cases and review of the literature. J Thor Cardiovascular Surg 2003;126:408414.Google Scholar
Crie, JS, Hajar, R, Folger, G. Umbilical catheter masquerading at echocardiography as a left atrial mass. Clin Cardiol 1989;12:728730.Google Scholar
Mattox, KL, Beall, AC, Ennix, CL, DeBakey, ME. Intravascular migratory bullets. Am J Surg 1979;137:192195.Google Scholar
Caplan, LR, Thomas, C, Banks, G. Central nervous system complications of “Ts and blues” addiction. Neurology 1982;32:623628.Google Scholar
Caplan, LR, Hier, DB, Banks, G. Current concepts of cerebrovascular disease – stroke: Stroke and drug abuse. Stroke 1982;27:869–73.Google Scholar
Atlee, W. Talc and cornstarch emboli in the eyes of drug abusers. JAMA 1972;219:4951.Google Scholar
Mizutami, T, Lewis, R, Gonatas, N. Medial medullary syndrome in a drug abuser. Arch Neurol 1980;37:425428.Google Scholar
Chillar, RK, Jackson, AL, Alaan, L. Hemiplegia after intracarotid injection of methylphenidate. Arch Neurol 1982;39:598599.Google Scholar

References

Hansen, AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985;65(1):101148.Google Scholar
Choi, DW. Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988;11(10):465469.Google Scholar
Hossmann, KA. Pathophysiological basis of translational stroke research. Folia Neuropathol. 2009;47(3):213227.Google Scholar
Kristian, T, Siesjo, BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705718.Google Scholar
Starkov, AA, Chinopoulos, C, Fiskum, G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium. 2004;36(3–4):257264.Google Scholar
Sanderson, TH, Reynolds, CA, Kumar, R, Przyklenk, K, Huttemann, M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013;47(1):923.Google Scholar
Wang, Q, Tang, XN, Yenari, MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1–2): 5368.Google Scholar
Ames, A 3rd, Wright, RL, Kowada, M, Thurston, JM, Majno, G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437453.Google Scholar
Fischer, EG, Ames, A 3rd, Hedley-Whyte, ET, O’Gorman, S. Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow phenomenon”. Stroke. 1977;8(1):3639.Google Scholar
Singhal, AB, Topcuoglu, MA, Koroshetz, WJ. Diffusion MRI in three types of anoxic encephalopathy. J Neurol Sci. 2002; 196 (1–2): 3740.Google Scholar
Brierley, JB. Experimental hypoxic brain damage. J Clin Pathol Suppl (R Coll Pathol). 1977;11:181187.Google Scholar
Nichol, G, Thomas, E, Callaway, CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300(12):14231431.Google Scholar
Morrison, LJ, Neumar, RW, Zimmerman, JL, et al. Strategies for improving survival after in-hospital cardiac arrest in the United States: 2013 consensus recommendations: A consensus statement from the American Heart Association. Circulation. 2013;127(14):15381563.Google Scholar
Chang, WT, Ma, MH, Chien, KL, et al. Postresuscitation myocardial dysfunction: Correlated factors and prognostic implications. Intensive Care Med. 2007;33(1):8895.Google Scholar
Ruiz-Bailen, M, Aguayo de Hoyos, E, Ruiz-Navarro, S, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005;66(2):175181.Google Scholar
Adrie, C, Adib-Conquy, M, Laurent, I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation. 2002;106(5):562568.Google Scholar
Nolan, JP, Neumar, RW, Adrie, C, et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350379.Google Scholar
Teodorescu, C, Reinier, K, Dervan, C, et al. Factors associated with pulseless electric activity versus ventricular fibrillation: The Oregon sudden unexpected death study. Circulation. 2010;122(21):21162122.Google Scholar
Cobb, LA, Fahrenbruch, CE, Olsufka, M, Copass, MK. Changing incidence of out-of-hospital ventricular fibrillation, 1980–2000. JAMA. 2002;288(23):30083013.Google Scholar
Youngquist, ST, Kaji, AH, Niemann, JT. Beta-blocker use and the changing epidemiology of out-of-hospital cardiac arrest rhythms. Resuscitation. 2008;76(3):376380.Google Scholar
Cummins, RO, Ornato, JP, Thies, WH, Pepe, PE. Improving survival from sudden cardiac arrest: The “chain of survival” concept. A statement for health professionals from the Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation. 1991;83(5):18321847.Google Scholar
Huikuri, HV, Castellanos, A, Myerburg, RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345(20):14731482.Google Scholar
Berdowski, J, Berg, RA, Tijssen, JG, Koster, RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81(11):14791487.Google Scholar
Rubart, M, Zipes, DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115(9):23052315.Google Scholar
Go, AS, Mozaffarian, D, Roger, VL, et al. Heart disease and stroke statistics – 2013 update: A report from the American Heart Association. Circulation. 2013;127(1):e6e245.Google Scholar
Hollenberg, J, Herlitz, J, Lindqvist, J, et al. Improved survival after out-of-hospital cardiac arrest is associated with an increase in proportion of emergency crew–witnessed cases and bystander cardiopulmonary resuscitation. Circulation. 2008;118(4):389396.Google Scholar
Adielsson, A, Hollenberg, J, Karlsson, T, et al. Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: Bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart. 2011;97(17):13911396.Google Scholar
Chan, PS, Spertus, JA, Krumholz, HM, et al. A validated prediction tool for initial survivors of in-hospital cardiac arrest. Arch Intern Med. 2012;172(12):947953.Google Scholar
Merchant, RM, Yang, L, Becker, LB, et al. Incidence of treated cardiac arrest in hospitalized patients in the United States. Crit Care Med. 2011;39(11):24012406.Google Scholar
Field, JM, Hazinski, MF, Sayre, MR, et al. Part 1: Executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3): S640656.Google Scholar
Spaulding, CM, Joly, LM, Rosenberg, A, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med. 1997;336(23):16291633.Google Scholar
Radsel, P, Knafelj, R, Kocjancic, S, Noc, M. Angiographic characteristics of coronary disease and postresuscitation electrocardiograms in patients with aborted cardiac arrest outside a hospital. Am J Cardiol. 2011;108(5):634638.Google Scholar
Nolan, JP, Lyon, RM, Sasson, C, et al. Advances in the hospital management of patients following an out of hospital cardiac arrest. Heart. 2012;98(16):12011206.Google Scholar
Sideris, G, Voicu, S, Dillinger, JG, et al. Value of post-resuscitation electrocardiogram in the diagnosis of acute myocardial infarction in out-of-hospital cardiac arrest patients. Resuscitation. 2011;82(9):11481153.Google Scholar
Busto, R, Dietrich, WD, Globus, MY, Ginsberg, MD. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett. 1989;101(3):299304.Google Scholar
Buchan, A, Pulsinelli, WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci. 1990;10(1):311316.Google Scholar
Colbourne, F, Grooms, SY, Zukin, RS, Buchan, AM, Bennett, MV. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc Natl Acad Sci USA. 2003;100(5):29062910.Google Scholar
Chopp, M, Chen, H, Dereski, MO, Garcia, JH. Mild hypothermic intervention after graded ischemic stress in rats. Stroke. 1991;22(1):3743.Google Scholar
Leonov, Y, Sterz, F, Safar, P, et al. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab. 1990;10(1):5770.Google Scholar
Sterz, F, Safar, P, Tisherman, S, Radovsky, A, Kuboyama, K, Oku, K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit Care Med. 1991;19(3):379389.Google Scholar
Nozari, A, Safar, P, Stezoski, SW, et al. Mild hypothermia during prolonged cardiopulmonary cerebral resuscitation increases conscious survival in dogs. Crit Care Med. 2004;32(10):21102116.Google Scholar
Sick, TJ, Xu, G, Perez-Pinzon, MA. Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat. Stroke. 1999;30(11):24162421; discussion 2422.Google Scholar
Erecinska, M, Thoresen, M, Silver, IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J Cereb Blood Flow Metab. 2003;23(5):513530.Google Scholar
Busto, R, Globus, MY, Dietrich, WD, Martinez, E, Valdes, I, Ginsberg, MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20(7):904910.Google Scholar
Harada, K, Maekawa, T, Tsuruta, R, et al. Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion. J Neurosci Res. 2002;67(5):664669.Google Scholar
Globus, MY, Alonso, O, Dietrich, WD, Busto, R, Ginsberg, MD. Glutamate release and free radical production following brain injury: Effects of posttraumatic hypothermia. J Neurochem. 1995;65(4):17041711.Google Scholar
Zheng, Z, Yenari, MA. Post-ischemic inflammation: Molecular mechanisms and therapeutic implications. Neurol Res. 2004;26(8):884892.Google Scholar
Fukuda, H, Tomimatsu, T, Watanabe, N, et al. Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia. Brain Res. 2001;910(1–2):187191.Google Scholar
Hamann, GF, Burggraf, D, Martens, HK, et al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke. 2004;35(3):764769.Google Scholar
Group. HaCAS. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549556.Google Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557563.Google Scholar
Peberdy, MA, Callaway, CW, Neumar, RW, et al. Part 9: Post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3): S768786.Google Scholar
Nielsen, N, Wetterslev, J, Cronberg, T, et al. Targeted temperature management at 33° C versus 36° C after cardiac arrest. N Engl J Med. 2013;369(23):21972206.Google Scholar
Castren, M, Nordberg, P, Svensson, L, et al. Intra-arrest transnasal evaporative cooling: A randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation. 2010;122(7):729736.Google Scholar
Laurent, I, Monchi, M, Chiche, JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40(12):21102116.Google Scholar
Kilgannon, JH, Roberts, BW, Reihl, LR, et al. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410416.Google Scholar
Spivey, WH AN, Safar, P, et al. Correlation of blood pressure with mortality and neurologic recovery in comatose postresuscitation patients (abstract). Ann Emerg Med. 1991;20:453.Google Scholar
Martin, DR PD, Brown, CG, et al. Relation between initial post-resuscitation systolic blood pressure and neurologic outcome following cardiac arrest (abstract). Ann Emerg Med. 1993;22:206.Google Scholar
Mullner, M SF, Binder, M, Hellwagner, K, Meron, G, Herkner, H, Laggner, A. Arterial blood pressure after human cardiac arrest and neurologic recovery. Stroke. 1996;27:5962.Google Scholar
Beylin, ME, Perman, SM, Abella, BS, et al. Higher mean arterial pressure with or without vasoactive agents is associated with increased survival and better neurological outcomes in comatose survivors of cardiac arrest. Intensive Care Med. 2013;39(11):19811988.Google Scholar
Nishizawa, H, Kudoh, I. Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest. Acta Anaesthesiol Scan. 1996;40:11491153.Google Scholar
Sundgreen, C LF, Herzog, TM, Knudsen, GM, Boesgaard, S, Aldershvie, J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128132.Google Scholar
Sterz, F, Leonov, Y, Safar, P, Radovsky, A, Tisherman, S, Oku, K. Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke. 1990;21:11781184.Google Scholar
Safar, P, Xiao, F, Radovsky, A, et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke. 1996. 1996;27:105113.Google Scholar
Dellinger, RP, Carlet, JM, Masur, H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32(3):858873.Google Scholar
Sunde, K, Dunlop, O, Rostrup, M, Sandberg, M, Sjoholm, H, Jacobsen, D. Determination of prognosis after cardiac arrest may be more difficult after introduction of therapeutic hypothermia. Resuscitation. 2006;69(1):2932.Google Scholar
Gaieski, DF, Band, RA, Abella, BS, et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation. 2009;80(4):418424.Google Scholar
Tagami, T, Hirata, K, Takeshige, T, et al. Implementation of the fifth link of the chain of survival concept for out-of-hospital cardiac arrest. Circulation. 2012;126(5):589597.Google Scholar
Caplan, LR. Cardiac arrest and other hypoxic ischemic insults. In Caplan, LR, Hurst, JW, Chimowitz, M, eds. Clinical Neurocardiology. New York: Marcel Dekker; 1999, 134.Google Scholar
Adams, JH, Brierley, JB, Connor, RC, Treip, CS. The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain. 1966;89(2):235268.Google Scholar
Smith, ML, Auer, RN, Siesjo, BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. 1984;64(4):319332.Google Scholar
Takemoto, O, Tomimoto, H, Yanagihara, T. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils. Stroke. 1995;26(9):16391648.Google Scholar
Bottiger, BW, Schmitz, B, Wiessner, C, Vogel, P, Hossmann, KA. Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab. 1998;18(10):10771087.Google Scholar
Steriade, M, Glenn, LL. Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J Neurophysiol. 1982;48(2):352371.Google Scholar
Parvizi, J, Damasio, A. Consciousness and the brainstem. Cognition. 2001;79(1–2):135160.Google Scholar
Berridge, CW. Noradrenergic modulation of arousal. Brain Res Rev. 2008;58(1):117.Google Scholar
Vogt, BA, Hof, PR, Friedman, DP, Sikes, RW, Vogt, LJ. Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct. 2008;212(6):465479.Google Scholar
Fisher, CM. The neurological examination of the comatose patient. Acta Neurol Scand. 1969;45:Suppl 36:3156.Google Scholar
Dooling, EC, Richardson, EP Jr. Delayed encephalopathy after strangling. Arch Neurol. 1976;33(3):196199.Google Scholar
Jennett, B, Plum, F. Persistent vegetative state after brain damage. A syndrome in search of a name. Lancet. 1972;1(7753):734737.Google Scholar
Adams, JH, Graham, DI, Jennett, B. The neuropathology of the vegetative state after an acute brain insult. Brain. 2000;123(Pt 7):13271338.Google Scholar
Dougherty, JH Jr., Rawlinson, DG, Levy, DE, Plum, F. Hypoxic-ischemic brain injury and the vegetative state: Clinical and neuropathologic correlation. Neurology. 1981;31(8):991997.Google Scholar
Jennett, B, Plum, F. Persistent vegetative state after brain damage. RN. 1972;35(10):ICU14.Google Scholar
Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (2). N Engl J Med. 1994;330(22):15721579.Google Scholar
Giacino, JT, Kalmar, K. Diagnostic and prognostic guidelines for the vegetative and minimally conscious states. Neuropsychol Rehabil. 2005;15(3–4):166174.Google Scholar
Laureys, S, Celesia, GG, Cohadon, F, et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010;8:68.Google Scholar
Bardin, JC, Fins, JJ, Katz, DI, et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain. 2011;134(3):769782.Google Scholar
Monti, MM, Vanhaudenhuyse, A, Coleman, MR, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362(7):579589.Google Scholar
Giacino, JT, Ashwal, S, Childs, N, et al. The minimally conscious state: Definition and diagnostic criteria. Neurology. 2002;58(3):349353.Google Scholar
Luaute, J, Maucort-Boulch, D, Tell, L, et al. Long-term outcomes of chronic minimally conscious and vegetative states. Neurology. 2010;75(3):246252.Google Scholar
Jennett, B, Adams, JH, Murray, LS, Graham, DI. Neuropathology in vegetative and severely disabled patients after head injury. Neurology. 2001;56(4):486490.Google Scholar
Given, CA 2nd, Burdette, JH, Elster, AD, Williams, DW 3rd. Pseudo-subarachnoid hemorrhage: A potential imaging pitfall associated with diffuse cerebral edema. AJNR Am J Neuroradiol. 2003;24(2):254256.Google Scholar
Phan, TG, Wijdicks, EF, Worrell, GA, Fulgham, JR. False subarachnoid hemorrhage in anoxic encephalopathy with brain swelling. J Neuroimaging. 2000;10(4):236238.Google Scholar
Han, BK, Towbin, RB, De Courten-Myers, G, McLaurin, RL, Ball, WS Jr. Reversal sign on CT: Effect of anoxic/ischemic cerebral injury in children. AJNR Am J Neuroradiol. 1989;10(6):11911198.Google Scholar
Lovblad, KO, Wetzel, SG, Somon, T, et al. Diffusion-weighted MRI in cortical ischaemia. Neuroradiology. 2004;46(3):175182.Google Scholar
Siskas, N, Lefkopoulos, A, Ioannidis, I, Charitandi, A, Dimitriadis, AS. Cortical laminar necrosis in brain infarcts: Serial MRI. Neuroradiology. 2003;45(5):283288.Google Scholar
Komiyama, M, Nakajima, H, Nishikawa, M, Yasui, T. Serial MR observation of cortical laminar necrosis caused by brain infarction. Neuroradiology. 1998;40(12):771777.Google Scholar
Wanko, M, Garavelli, M, Bernardi, F, Niehaus, TA, Frauenheim, T, Elstner, M. A global investigation of excited state surfaces within time-dependent density-functional response theory. J Chem Phys. 2004;120(4):16741692.Google Scholar
Mlynash, M, Campbell, DM, Leproust, EM, et al. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke. 2010;41(8):16651672.Google Scholar
Levy, DE, Caronna, JJ, Singer, BH, Lapinski, RH, Frydman, H, Plum, F. Predicting outcome from hypoxic-ischemic coma. JAMA. 1985;253(10):14201426.Google Scholar
Wijdicks, EF, Hijdra, A, Young, GB, Bassetti, CL, Wiebe, S. Practice parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67(2):203210.Google Scholar
De Georgia, M, Raad, M. Prognosis of coma after cardiac arrest in the era of hypothermia. Continuum (Minneap Minn). 2012;18(3):515531.Google Scholar
Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. N Engl J Med. 1986;314(7):397403.Google Scholar
Zandbergen, EG, Hijdra, A, Koelman, JH, et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66(1):6268.Google Scholar
Al Thenayan, E, Savard, M, Sharpe, M, Norton, L, Young, B. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology. 2008;71(19):15351537.Google Scholar
Cronberg, T, Rundgren, M, Westhall, E, et al. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology. 2011;77(7):623630.Google Scholar
Rossetti, AO, Oddo, M, Logroscino, G, Kaplan, PW. Prognostication after cardiac arrest and hypothermia: A prospective study. Ann Neurol. 2010;67(3):301307.Google Scholar
Samaniego, EA, Mlynash, M, Caulfield, AF, Eyngorn, I, Wijman, CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113119.Google Scholar
Edgren, E, Hedstrand, U, Kelsey, S, Sutton-Tyrrell, K, Safar, P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet. 1994;343(8905):10551059.Google Scholar
Lee, YC, Phan, TG, Jolley, DJ, Castley, HC, Ingram, DA, Reutens, DC. Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: A meta-analysis. Neurology. 2010;74(7):572580.Google Scholar
Schefold, JC, Storm, C, Kruger, A, Ploner, CJ, Hasper, D. The Glasgow Coma Score is a predictor of good outcome in cardiac arrest patients treated with therapeutic hypothermia. Resuscitation. 2009;80(6):658661.Google Scholar
Young, GB, Gilbert, JJ, Zochodne, DW. The significance of myoclonic status epilepticus in postanoxic coma. Neurology. 1990;40(12):18431848.Google Scholar
Lance, JW, Adams, RD. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain. 1963;86:111136.Google Scholar
Celesia, GG, Grigg, MM, Ross, E. Generalized status myoclonicus in acute anoxic and toxic-metabolic encephalopathies. Arch Neurol. 1988;45(7):781784.Google Scholar
Young, GB. The EEG in coma. J Clin Neurophysiol. 2000;17(5):473485.Google Scholar
Scollo-Lavizzari, G, Bassetti, C. Prognostic value of EEG in post-anoxic coma after cardiac arrest. Eur Neurol. 1987;26(3):161170.Google Scholar
Snyder, BD, Hauser, WA, Loewenson, RB, Leppik, IE, Ramirez-Lassepas, M, Gumnit, RJ. Neurologic prognosis after cardiopulmonary arrest: III. Seizure activity. Neurology. 1980;30(12):12921297.Google Scholar
Rossetti, AO, Urbano, LA, Delodder, F, Kaplan, PW, Oddo, M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.Google Scholar
Wijdicks, EF, Parisi, JE, Sharbrough, FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35(2):239243.Google Scholar
Rossetti, AO, Logroscino, G, Liaudet, L, et al. Status epilepticus: An independent outcome predictor after cerebral anoxia. Neurology. 2007;69(3):255260.Google Scholar
Rossetti, AO, Oddo, M, Liaudet, L, Kaplan, PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72(8):744749.Google Scholar
Rundgren, M, Westhall, E, Cronberg, T, Rosen, I, Friberg, H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):18381844.Google Scholar
Abend, NS, Topjian, A, Ichord, R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72(22):19311940.Google Scholar
Legriel, S, Bruneel, F, Sediri, H, et al. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: A pilot study. Neurocrit Care. 2009;11(3):338344.Google Scholar
Robinson, LR, Micklesen, PJ, Tirschwell, DL, Lew, HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960967.Google Scholar
Bouwes, A, Binnekade, JM, Zandstra, DF, et al. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73(18):14571461.Google Scholar
Leithner, C, Ploner, CJ, Hasper, D, Storm, C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology. 2010;74(12):965969.Google Scholar
Kane, NM, Butler, SR, Simpson, T. Coma outcome prediction using event-related potentials: P(3) and mismatch negativity. Audiol Neurootol. 2000; 5(3–4):186191.Google Scholar
Young, GB, Wang, JT, Connolly, JF. Prognostic determination in anoxic–ischemic and traumatic encephalopathies. J Clin Neurophysiol. 2004;21(5):379390.Google Scholar
Rundgren, M, Karlsson, T, Nielsen, N, Cronberg, T, Johnsson, P, Friberg, H. Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation. 2009;80(7):784789.Google Scholar
Shinozaki, K, Oda, S, Sadahiro, T, et al. Serum S-100B is superior to neuron-specific enolase as an early prognostic biomarker for neurological outcome following cardiopulmonary resuscitation. Resuscitation. 2009;80(8):870875.Google Scholar
Oksanen, T, Tiainen, M, Skrifvars, MB, et al. Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia. Resuscitation. 2009;80(2):165170.Google Scholar
Fugate, JE, Wijdicks, EF, Mandrekar, J, et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68(6):907914.Google Scholar
Steffen, IG, Hasper, D, Ploner, CJ, et al. Mild therapeutic hypothermia alters neuron specific enolase as an outcome predictor after resuscitation: 97 prospective hypothermia patients compared to 133 historical non-hypothermia patients. Crit Care. 2010;14(2):R69.Google Scholar
Randall, J, Mortberg, E, Provuncher, GK, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study. Resuscitation. 2013;84(3):351356.Google Scholar
Torbey, MT, Selim, M, Knorr, J, Bigelow, C, Recht, L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke. 2000;31(9):21632167.Google Scholar
Inamasu, J, Miyatake, S, Suzuki, M, et al. Early CT signs in out-of-hospital cardiac arrest survivors: Temporal profile and prognostic significance. Resuscitation. 2010;81(5):534538.Google Scholar
Wijdicks, EF, Campeau, NG, Miller, GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol. 2001;22(8):15611565.Google Scholar
Jarnum, H, Knutsson, L, Rundgren, M, et al. Diffusion and perfusion MRI of the brain in comatose patients treated with mild hypothermia after cardiac arrest: A prospective observational study. Resuscitation. 2009;80(4):425430.Google Scholar
Els, T, Kassubek, J, Kubalek, R, Klisch, J. Diffusion-weighted MRI during early global cerebral hypoxia: A predictor for clinical outcome? Acta Neurol Scand. 2004;110(6):361367.Google Scholar
Wijman, CA, Mlynash, M, Caulfield, AF, et al. Prognostic value of brain diffusion-weighted imaging after cardiac arrest. Ann Neurol. 2009;65(4):394402.Google Scholar
Luyt, CE, Galanaud, D, Perlbarg, V, et al. Diffusion tensor imaging to predict long-term outcome after cardiac arrest: A bicentric pilot study. Anesthesiology. 2012;117(6):13111321.Google Scholar
Bogousslavsky, J, Regli, F. Unilateral watershed cerebral infarcts. Neurology. 1986;36(3):373377.Google Scholar
Chaves, CJ, Silver, B, Schlaug, G, Dashe, J, Caplan, LR, Warach, S. Diffusion- and perfusion-weighted MRI patterns in borderzone infarcts. Stroke. 2000;31(5):10901096.Google Scholar
Adams, JH, Brierley, JB, Connor, RC, Treip, CS. The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain. 1966;89(2):235268.Google Scholar
Howard, R, Trend, P, Russell, RW. Clinical features of ischemia in cerebral arterial border zones after periods of reduced cerebral blood flow. Arch Neurol. 1987;44(9):934940.Google Scholar
Brierley, JB, Excell, BJ. The effects of profound systemic hypotension upon the brain of M. rhesus: Physiological and pathological observations. Brain. 1966;89(2):269298.Google Scholar
Rabinstein, A, Resnick, A. Hypoxic-ischemic brain damage. In Rabinstein, A, Resnick, A, eds. Practical Neuroimaging in Stroke: A Case-Based Approach. Philadelphia: Saunders Elsevier; 2009, 117.Google Scholar
Caplan, LR, Hennerici, M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55(11):14751482.Google Scholar
Moustafa, RR, Izquierdo-Garcia, D, Jones, PS, et al. Watershed infarcts in transient ischemic attack/minor stroke with > or = 50% carotid stenosis: Hemodynamic or embolic? Stroke. 2010;41(7):14101416.Google Scholar
Mohr, JP. Neurological complications of cardiac valvular disease and cardiac surgery including systemic hypotension. In Vinken, PJ, Bruyn, GW, eds. Handbook of Clinical Neurology, vol 38. Neurological Manifestations of Systemic Disease. Amsterdam: North Holland Publishing; 1979, 143171.Google Scholar
Balint, R. Seelenlahmung des Schauens, optische Ataxie, raumliche Storung der Aufmerksamheit. Z Psychiatr Neurol 1909;25:5181.Google Scholar
Tyler, HR. Cerebral Disturbance of Vision in Neuro-Ophthalmology, Vol 4. St. Louis: Mosby, 1968.Google Scholar
Hecaen, H, De Ajuriaguerra, J. Balint’s syndrome (psychic paralysis of visual fixation) and its minor forms. Brain. 1954;77(3):373400.Google Scholar
Benson, DF, Davis, RJ, Snyder, BD. Posterior cortical atrophy. Arch Neurol. 1988;45(7):789793.Google Scholar
Caronna, JJ, Finklestein, S. Neurological syndromes after cardiac arrest. Stroke. 1978;9(5):517520.Google Scholar
Volpe, BT, Hirst, W. The characterization of an amnesic syndrome following hypoxic ischemic injury. Arch Neurol. 1983;40(7):436440.Google Scholar
Cummings, JL, Tomiyasu, U, Read, S, Benson, DF. Amnesia with hippocampal lesions after cardiopulmonary arrest. Neurology. 1984;34(5):679681.Google Scholar
Petito, CK, Feldmann, E, Pulsinelli, WA, Plum, F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987;37(8):12811286.Google Scholar
Zulch, K. On the circulatory disturbances in the borderline zones of the cerebral and spinal vessels Paper presented at: Proceedings of the Second International Congress on Neuropathology 1955; Amsterdam.Google Scholar
Romanul, F, Abramowicz, A. Changes in brain and pial vessels in arterial border zones. Arch Neurol 1974;11:4065.Google Scholar
Sage, JI, Van Uitert, RL. Man-in-the-barrel syndrome. Neurology. 1986;36(8):11021103.Google Scholar
Silver, JR, Buxton, PH. Spinal stroke. Brain. 1974;97(3):539550.Google Scholar
Karch, DL, Logan, J, McDaniel, D, Parks, S, Pate, lN. Surveillance for violent deaths – National Violent Death Reporting System, 16 States, 2009. MMWR Surveill Summ. 2012;61:143.Google Scholar
Clement, R, Redpath, M, Sauvageau, A. Mechanism of death in hanging: A historical review of the evolution of pathophysiological hypotheses. J Forensic Sci. 2010;55(5):12681271.Google Scholar
Miyamoto, O, Auer, RN. Hypoxia, hyperoxia, ischemia, and brain necrosis. Neurology. 2000;54(2):362371.Google Scholar
Ames, A 3rd, Nesbett, FB. Pathophysiology of ischemic cell death: I. Time of onset of irreversible damage; importance of the different components of the ischemic insult. Stroke. 1983;14(2):219226.Google Scholar
Matsuyama, T, Okuchi, K, Seki, T, Murao, Y. Prognostic factors in hanging injuries. Am J Emerg Med. 2004;22(3):207210.Google Scholar
Hanna, SJ. A study of 13 cases of near-hanging presenting to an accident and emergency department. Injury. 2004;35(3):253256.Google Scholar
Vander Krol, L, Wolfe, R. The emergency department management of near-hanging victims. J Emerg Med. 1994;12(3):285292.Google Scholar
Salim, A, Martin, M, Sangthong, B, Brown, C, Rhee, P, Demetriades, D. Near-hanging injuries: A 10-year experience. Injury. 2006;37(5):435439.Google Scholar
Hald, JK, Brunberg, JA, Dublin, AB, Wootton-Gorges, SL. Delayed diffusion-weighted MR abnormality in a patient with an extensive acute cerebral hypoxic injury. Acta Radiol. 2003;44(3):343346.Google Scholar
Borgquist, O, Friberg, H. Therapeutic hypothermia for comatose survivors after near-hanging-a retrospective analysis. Resuscitation. 2009;80(2):210212.Google Scholar
Legriel, S, Bouyon, A, Nekhili, N, et al. Therapeutic hypothermia for coma after cardiorespiratory arrest caused by hanging. Resuscitation. 2005;67(1):143144.Google Scholar
Baldursdottir, S, Sigvaldason, K, Karason, S, Valsson, F, Sigurdsson, GH. Induced hypothermia in comatose survivors of asphyxia: A case series of 14 consecutive cases. Acta Anaesthesiol Scand. 2010;54(7):821826.Google Scholar
Centers for Disease Control and Prevention. Available from http://www.cdc.gov/injury/wisqars. Accessed (cited 2014, June 16).Google Scholar
DeNicola, LK, Falk, JL, Swanson, ME, Gayle, MO, Kissoon, N. Submersion injuries in children and adults. Crit Care Clin. 1997;13(3):477502.Google Scholar
van Beeck, EF, Branche, CM, Szpilman, D, Modell, JH, Bierens, JJ. A new definition of drowning: Towards documentation and prevention of a global public health problem. Bull World Health Organ. 2005;83(11):853856.Google Scholar
Orlowski, JP, Abulleil, MM, Phillips, JM. The hemodynamic and cardiovascular effects of near-drowning in hypotonic, isotonic, or hypertonic solutions. Ann Emerg Med. 1989;18(10):10441049.Google Scholar
Tipton, MJ, Golden, FS. A proposed decision-making guide for the search, rescue and resuscitation of submersion (head under) victims based on expert opinion. Resuscitation. 2011;82(7):819824.Google Scholar
Handley, AJ. Drowning. BMJ. 2014;348:g1734.Google Scholar
Vanden Hoek, TL, Morrison, LJ, Shuster, M, et al. Part 12: Cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S829861.Google Scholar
Szpilman, D. Near-drowning and drowning classification: A proposal to stratify mortality based on the analysis of 1,831 cases. Chest. 1997;112(3):660665.Google Scholar
Manolios, N, Mackie, I. Drowning and near-drowning on Australian beaches patrolled by life-savers: A 10-year study, 1973–1983. Med J Aust. 1988;148(4):165167, 170161.Google Scholar
Chochinov, AH, Baydock, BM, Bristow, GK, Giesbrecht, GG. Recovery of a 62-year-old man from prolonged cold water submersion. Ann Emerg Med. 1998;31(1):127131.Google Scholar
Siebke, H, Rod, T, Breivik, H, Link, B. Survival after 40 minutes; submersion without cerebral sequelae. Lancet. 1975;1(7919):12751277.Google Scholar
Guenther, U, Varelmann, D, Putensen, C, Wrigge, H. Extended therapeutic hypothermia for several days during extracorporeal membrane-oxygenation after drowning and cardiac arrest. Two cases of survival with no neurological sequelae. Resuscitation. 2009;80(3):379381.Google Scholar
Kilgannon, JH, Jones, AE, Parrillo, JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):27172722.Google Scholar
Christophe, C, Fonteyne, C, Ziereisen, F, et al. Value of MR imaging of the brain in children with hypoxic coma. AJNR Am J Neuroradiol. 2002;23(4):716723.Google Scholar
Topjian, AA, Berg, RA, Bierens, JJ, et al. Brain resuscitation in the drowning victim. Neurocrit Care. 2012;17(3):441467.Google Scholar
Eggink, WF, Bruining, HA. Respiratory distress syndrome caused by near- or secondary drowning and treatment by positive end-expiratory pressure ventilation. Neth J Med. 1977;20(4–5):162167.Google Scholar
Weaver, LK. Carbon monoxide poisoning. Crit Care Clin. 1999;15(2):297317.Google Scholar
Hardy, KR, Thom, SR. Pathophysiology and treatment of carbon monoxide poisoning. J Toxicol Clin Toxicol. 1994;32(6):613629.Google Scholar
Miro, O, Casademont, J, Barrientos, A, Urbano-Marquez, A, Cardellach, F. Mitochondrial cytochrome c oxidase inhibition during acute carbon monoxide poisoning. Pharmacol Toxicol. 1998;82(4):199202.Google Scholar
Thom, SR. Carbon monoxide-mediated brain lipid peroxidation in the rat. J Appl Physiol. 1990;68(3):9971003.Google Scholar
Kalay, N, Ozdogru, I, Cetinkaya, Y, et al. Cardiovascular effects of carbon monoxide poisoning. Am J Cardiol. 2007;99(3):322324.Google Scholar
Lou, M, Jing, CH, Selim, MH, Caplan, LR, Ding, MP. Delayed substantia nigra damage and leukoencephalopathy after hypoxic-ischemic injury. J Neurol Sci. 2009;277(1–2):147149.Google Scholar
Scott, BL, Jankovic, J. Delayed-onset progressive movement disorders after static brain lesions. Neurology. 1996;46(1):6874.Google Scholar
Plum, F, Posner, JB, Hain, RF. Delayed neurological deterioration after anoxia. Arch Intern Med. 1962;110:1825.Google Scholar
Weinberger, LM, Schmidley, JW, Schafer, IA, Raghavan, S. Delayed postanoxic demyelination and arylsulfatase-A pseudodeficiency. Neurology. 1994;44(1):152154.Google Scholar
Gottfried, JA, Mayer, SA, Shungu, DC, Chang, Y, Duyn, JH. Delayed posthypoxic demyelination. Association with arylsulfatase A deficiency and lactic acidosis on proton MR spectroscopy. Neurology. 1997;49(5):14001404.Google Scholar
Kriegstein, AR, Shungu, DC, Millar, WS, et al. Leukoencephalopathy and raised brain lactate from heroin vapor inhalation (”chasing the dragon”). Neurology. 1999;53(8):17651773.Google Scholar
Parkinson, RB, Hopkins, RO, Cleavinger, HB, et al. White matter hyperintensities and neuropsychological outcome following carbon monoxide poisoning. Neurology. 2002;58(10):15251532.Google Scholar
Gale, SD, Hopkins, RO, Weaver, LK, Bigler, ED, Booth, EJ, Blatter, DD. MRI, quantitative MRI, SPECT, and neuropsychological findings following carbon monoxide poisoning. Brain Inj. 1999;13(4):229243.Google Scholar
Min, SK. A brain syndrome associated with delayed neuropsychiatric sequelae following acute carbon monoxide intoxication. Acta Psychiatr Scand. 1986;73(1):8086.Google Scholar
Ferrier, D, Wallace, CJ, Fletcher, WA, Fong, TC. Magnetic resonance features in carbon monoxide poisoning. Can Assoc Radiol J. 1994;45(6):466468.Google Scholar
Tuchman, RF, Moser, FG, Moshe, SL. Carbon monoxide poisoning: Bilateral lesions in the thalamus on MR imaging of the brain. Pediatr Radiol. 1990;20(6):478479.Google Scholar
Kawanami, T, Kato, T, Kurita, K, Sasaki, H. The pallidoreticular pattern of brain damage on MRI in a patient with carbon monoxide poisoning. J Neurol Neurosurg Psychiatry. 1998;64(2):282.Google Scholar
Mascalchi, M, Petruzzi, P, Zampa, V. MRI of cerebellar white matter damage due to carbon monoxide poisoning: Case report. Neuroradiology. 1996;38 Suppl 1:S73S74.Google Scholar
O’Donnell, P, Buxton, PJ, Pitkin, A, Jarvis, LJ. The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol. 2000;55(4):273280.Google Scholar
Vieregge, P, Klostermann, W, Blumm, RG, Borgis, KJ. Carbon monoxide poisoning: Clinical, neurophysiological, and brain imaging observations in acute disease and follow-up. J Neurol. 1989;236(8):478481.Google Scholar
Pracyk, JB, Stolp, BW, Fife, CE, Gray, L, Piantadosi, CA. Brain computerized tomography after hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea Hyperb Med. 1995;22(1):17.Google Scholar
Porter, SS, Hopkins, RO, Weaver, LK, Bigler, ED, Blatter, DD. Corpus callosum atrophy and neuropsychological outcome following carbon monoxide poisoning. Arch Clin Neuropsychol. 2002;17(2):195204.Google Scholar
Kesler, SR, Hopkins, RO, Blatter, DD, Edge-Booth, H, Bigler, ED. Verbal memory deficits associated with fornix atrophy in carbon monoxide poisoning. J Int Neuropsychol Soc. 2001;7(5):640646.Google Scholar
Prockop, LD, Chichkova, RI. Carbon monoxide intoxication: An updated review. J Neurol Sci. 2007;262(1–2):122130.Google Scholar
Stoller, KP. Hyperbaric oxygen and carbon monoxide poisoning: A critical review. Neurol Res. 2007;29(2):146155.Google Scholar
Sunde, K, Pytte, M, Jacobsen, D, et al. Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation. 2007;73(1):2939.Google Scholar
Rittenberger, JC, Guyette, FX, Tisherman, SA, DeVita, MA, Alvarez, RJ, Callaway, CW. Outcomes of a hospital-wide plan to improve care of comatose survivors of cardiac arrest. Resuscitation. 2008;79(2):198204.Google Scholar
Oba, Y, Salzman, GA. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury. N Engl J Med. 2000;343(11):813; author reply 813814.Google Scholar
Kress, JP, Pohlman, AS, O’Connor, MF, Hall, JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):14711477.Google Scholar
Girard, TD, Kress, JP, Fuchs, BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): A randomised controlled trial. Lancet. 2008;371(9607):126134.Google Scholar
Barr, J, Fraser, GL, Puntillo, K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263306.Google Scholar
Ruokonen, E, Parviainen, I, Jakob, SM, et al. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med. 2009;35(2):282290.Google Scholar
Rovlias, A, Kotsou, S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery. 2000;46(2):335342; discussion 342333.Google Scholar
Charpentier, C, Audibert, G, Guillemin, F, et al. Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage. Stroke. 1999;30(7):14021408.Google Scholar
Badjatia, N, Topcuoglu, MA, Buonanno, FS, et al. Relationship between hyperglycemia and symptomatic vasospasm after subarachnoid hemorrhage. Crit Care Med. 2005;33(7):16031609.Google Scholar
Dorhout Mees, SM, van Dijk, GW, Algra, A, Kempink, DR, Rinkel, GJ. Glucose levels and outcome after subarachnoid hemorrhage. Neurology. 2003;61(8):11321133.Google Scholar
van den Berghe, G, Wouters, P, Weekers, F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):13591367.Google Scholar
Van den Berghe, G, Schoonheydt, K, Becx, P, Bruyninckx, F, Wouters, PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64(8):13481353.Google Scholar
Vespa, P, Boonyaputthikul, R, McArthur, DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34(3):850856.Google Scholar
Wiener, RS, Wiener, DC, Larson, RJ. Benefits and risks of tight glucose control in critically ill adults: A meta-analysis. JAMA. 2008;300(8):933944.Google Scholar
Oddo, M, Schmidt, JM, Carrera, E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: A microdialysis study. Crit Care Med. 2008;36(12):32333238.Google Scholar
Zetterling, M, Hillered, L, Enblad, P, Karlsson, T, Ronne-Engstrom, E. Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. J Neurosurg. 2011;115(1):6674.Google Scholar
Hajat, C, Hajat, S, Sharma, P. Effects of poststroke pyrexia on stroke outcome: A meta-analysis of studies in patients. Stroke. 2000;31(2):410414.Google Scholar
Guyatt, GH, Akl, EA, Crowther, M, Gutterman, DD, Schuunemann, HJ. Executive summary: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):7S47S.Google Scholar
Claassen, J, Silbergleit, R, Weingart, SD, Smith, WS. Emergency neurological life support: Status epilepticus. Neurocrit Care. 2012;17 Suppl 1:S73S78.Google Scholar
Frucht, S, Fahn, S. The clinical spectrum of posthypoxic myoclonus. Mov Disord. 2000;15 Suppl 1:27.Google Scholar
Wheless, JW, Sankar, R. Treatment strategies for myoclonic seizures and epilepsy syndromes with myoclonic seizures. Epilepsia. 2003;44 Suppl 11:2737.Google Scholar
Dijk, JM, Tijssen, MA. Management of patients with myoclonus: Available therapies and the need for an evidence-based approach. Lancet Neurol. 2010;9(10):10281036.Google Scholar
Muslu, B, Kiklci, O, Horasani, E, Dikmen, B. Dramatic effect of leveracetam on posthypoxic myoclonus: Difficult weaning from mechanical ventilation. Clin Neuropharmacol. 2009;32(4):236.Google Scholar
Goldstein, LB. Common drugs may influence motor recovery after stroke. The Sygen In Acute Stroke Study Investigators. Neurology. 1995;45(5):865871.Google Scholar
Meythaler, JM, Brunner, RC, Johnson, A, Novack, TA. Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: A pilot double-blind randomized trial. J Head Trauma Rehabil. 2002;17(4):300313.Google Scholar
Giacino, JT, Whyte, J, Bagiella, E, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819826.Google Scholar
Pariente, J, Loubinoux, I, Carel, C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol. 2001;50(6):718729.Google Scholar
Clauss, RP, van der Merwe, CE, Nel, HW. Arousal from a semi-comatose state on zolpidem. S Afr Med J. 2001;91(10):788789.Google Scholar
Brefel-Courbon, C, Payoux, P, Ory, F, et al. Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy. Ann Neurol. 2007;62(1):102105.Google Scholar
Schiff, ND, Posner, JB. Another “Awakenings”. Ann Neurol. 2007;62(1):57.Google Scholar
Schiff, ND, Fins, JJ. Deep brain stimulation and cognition: Moving from animal to patient. Curr Opin Neurol. 2007;20(6):638642.Google Scholar
Schiff, ND. Central thalamic deep-brain stimulation in the severely injured brain: Rationale and proposed mechanisms of action. Ann N Y Acad Sci. 2009;1157:101116.Google Scholar
Heidenreich, PA, Albert, NM, Allen, LA, et al. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606619.Google Scholar
Choi, BR, Kim, JS, Yang, YJ, et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97(9):13651369.Google Scholar
Caplan, LR. Cardiac encephalopathy and congestive heart failure: A hypothesis about the relationship. Neurology. 2006;66(1):99101.Google Scholar
Caplan, LR. Encephalopathies and neurological effects of drugs used in cardiac patients. In Caplan, LR, Hurst, JW, Chimowitz, MI, eds. Clinical Neurocardiology. New York: Marcel Dekker; 1999, 186225.Google Scholar
Cohn, JN, Levine, TB, Olivari, MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819823.Google Scholar
Woo, MA, Kumar, R, Macey, PM, Fonarow, GC, Harper, RM. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail. 2009;15(3):214223.Google Scholar
Garcia, CA, Tweedy, JR, Blass, JP. Underdiagnosis of cognitive impairment in a rehabilitation setting. J Am Geriatr Soc. 1984;32(5):339342.Google Scholar
Schall, RR, Petrucci, RJ, Brozena, SC, Cavarocchi, NC, Jessup, M. Cognitive function in patients with symptomatic dilated cardiomyopathy before and after cardiac transplantation. J Am Coll Cardiol. 1989;14(7):16661672.Google Scholar
Bornstein, RA, Starling, RC, Myerowitz, PD, Haas, GJ. Neuropsychological function in patients with end-stage heart failure before and after cardiac transplantation. Acta Neurol Scand. 1995;91(4):260265.Google Scholar
Friedmann, E, Thomas, SA, Liu, F, Morton, PG, Chapa, D, Gottlieb, SS. Relationship of depression, anxiety, and social isolation to chronic heart failure outpatient mortality. Am Heart J. 2006;152(5):940948.Google Scholar
Jiang, W, Alexander, J, Christopher, E, et al. Relationship of depression to increased risk of mortality and rehospitalization in patients with congestive heart failure. Arch Intern Med. 2001;161(15):18491856.Google Scholar
Koenig, HG. Depression in hospitalized older patients with congestive heart failure. Gen Hosp Psychiatry. 1998;20(1):2943.Google Scholar
Havranek, EP, Ware, MG, Lowes, BD. Prevalence of depression in congestive heart failure. Am J Cardiol. 1999;84(3):348350.Google Scholar
Freedland, KE, Rich, MW, Skala, JA, Carney, RM, Davila-Roman, VG, Jaffe, AS. Prevalence of depression in hospitalized patients with congestive heart failure. Psychosom Med. 2003;65(1):119128.Google Scholar
Zuccala, G, Cattel, C, Manes-Gravina, E, Di Niro, MG, Cocchi, A, Bernabei, R. Left ventricular dysfunction: A clue to cognitive impairment in older patients with heart failure. J Neurol Neurosurg Psychiatry. 1997;63(4):509512.Google Scholar
Kumar, R, Woo, MA, Macey, PM, Fonarow, GC, Hamilton, MA, Harper, RM. Brain axonal and myelin evaluation in heart failure. J Neurol Sci. 2011;307(1–2):106113.Google Scholar
Vogels, RL, van der Flier, WM, van Harten, B, et al. Brain magnetic resonance imaging abnormalities in patients with heart failure. Eur J Heart Fail. 2007;9(10):10031009.Google Scholar
Siachos, T, Vanbakel, A, Feldman, DS, Uber, W, Simpson, KN, Pereira, NL. Silent strokes in patients with heart failure. J Card Fail. 2005;11(7):485489.Google Scholar
Russo, C, Jin, Z, Homma, S, et al. Subclinical left ventricular dysfunction and silent cerebrovascular disease: The Cardiovascular Abnormalities and Brain Lesions (CABL) Study. Circulation. 2013;128(10):11051111.Google Scholar
Fazekas, F, Kleinert, R, Offenbacher, H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):16831689.Google Scholar

References

Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008.Google Scholar
Ojemann, RG, Fisher, CM, Rich, JC: Spontaneous dissecting aneurysms of the internal carotid artery. Stroke 1972;3:434440.Google Scholar
Fisher, CM, Ojemann, RG, Roberson, GH: Spontaneous dissection of cervicocerebral arteries. Can J Neurol Sci 1978;5:919.Google Scholar
Baumgartner, RW, Bogousslavsky, J, Caso, V, Paciaroni, M (eds): Handbook on Cerebral Artery Dissection. Basel: Karger, 2005.Google Scholar
Caplan, LR: Dissections of brain-supplying arteries. Nat Clin Pract Neurol 2008;4:3442.Google Scholar
Debette, S, Leys, D: Cervical-artery dissections: Predisposing factors, diagnosis, and outcome. Lancet Neurol 2009;8:668678.Google Scholar
Caplan, LR, Zarins, C, Hemmatti, M: Spontaneous dissection of the extracranial vertebral artery. Stroke 1985;16:10301038.Google Scholar
Mokri, B, Houser, OW, Sandok, BA, Piepgras, DG: Spontaneous dissection of the vertebral arteries. Neurology 1988;38:880885.Google Scholar
Caplan, LR, Tettenborn, B: Vertebrobasilar occlusive disease: Review of selected aspects: I. Spontaneous dissection of extracranial and intracranial posterior circulation arteries. Cerebrovasc Dis 1992;2:256265.Google Scholar
Barbour, PJ, Castaldo, JE, Rae-Grant, AD, et al: Internal carotid artery redundancy is significantly associated with dissection. Stroke 1994;25:12011206.Google Scholar
Giossi, A, Ritelli, M, Costa, P, et al: Connective tissue anomalies in patients with spontaneous cervical artery dissection. Neurology 2014;83:20322037.Google Scholar
Brandt, T, Hausser, I, Orberk, E, et al: Ultrastructural connective tissue abnormalities in patients with spontaneous cervicocerebral artery dissections. Ann Neurol 1998;44:281285.Google Scholar
Arnold, M, Fischer, U, Nedeltchev, K: Carotid artery dissection and sports. Kardiovaskuläre Medizin 2009;12:209213.Google Scholar
Guillon, B, Peynet, J, Bertrand, M, et al: Do extracellular-matrix-regulating enzymes play a role in cervical artery dissections? Cerebrovasc Dis 2007;23:299303.Google Scholar
Hart, RG, Easton, JD: Dissection of cervical and cerebral arteries. In Barnett, HJM (ed): Neurologic Clinics, vol 1. Philadelphia: Saunders, 1983, pp 155182.Google Scholar
Friedman, WA, Day, AL, Quisling, RG, et al: Cervical carotid dissecting aneurysms. Neurosurgery 1980;7:207214.Google Scholar
Silbert, PL, Mokri, B, Schievink, WI: Headache and neck pain in spontaneous internal carotid and vertebral artery dissection. Neurology 1995;45:15171522.Google Scholar
Bogousslavsky, J, Despland, PA, Regli, F: Spontaneous carotid dissection with acute stroke. Arch Neurol 1987;44:137140.Google Scholar
Biousse, V, Schaison, M, Touboul, P-J, et al: Ischemic optic neuropathy associated with internal carotid artery dissection. Arch Neurol 1998;55:715719.Google Scholar
Pozzali, E, Giuliani, G, Poppi, M, Faenza, A: Blunt traumatic carotid dissection with delayed symptoms. Stroke 1989;20:412416.Google Scholar
Sturzenegger, M: Ultrasound findings in spontaneous carotid artery dissection: The value of duplex sonography. Arch Neurol 1991;48:10571063.Google Scholar
Alecu, C, Fortrat, JO, Ducrocq, X, et al: Duplex scanning diagnosis of internal carotid artery dissections. Cerebrovasc Dis 2007;23:441447.Google Scholar
Hennerici, M, Steinke, W, Rautenberg, W: High-resistance Doppler flow pattern in extracranial ICA dissection. Arch Neurol 1989;46:670672.Google Scholar
Touboul, PJ, Mas, JL, Bousser, M-G, Laplane, D: Duplex scanning in extracranial vertebral artery dissection. Stroke 1987;18:116121.Google Scholar
Caplan, LR, Gonzalez, RG, Buonanno, FS: Case 18–2012: A 35-year-old man with neck pain, hoarseness, and dysphagia. N Engl J Med 2012;366:23062313.Google Scholar
Krueger, BR, Okazaki, H: Vertebral-basilar distribution infarction following chiropractic cervical manipulation. Mayo Clin Proc 1980;55:322332.Google Scholar
Sherman, DG, Hart, RG, Easton, JD: Abrupt change in head position and cerebral infarction. Stroke 1981;12:26.Google Scholar
Caplan, LR: Posterior circulation disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell Science, 1996.Google Scholar
Cook, JW, Sanstead, JK: Wallenberg’s syndrome following self-induced manipulation. Neurology 1991;41:16951696.Google Scholar
Rothrock, JF, Hesselink, JR, Teacher, TM: Vertebral artery occlusion and stroke from cervical self-manipulation. Neurology 1991;41:16961697.Google Scholar
Tramo, MJ, Hainline, B, Petito, F, et al: Vertebral artery injury and cerebellar stroke while swimming: Case report. Stroke 1985;16:10391042.Google Scholar
Hope, EE, Bodensteiner, JB, Barnes, P: Cerebral infarction related to neck position in an adolescent. Pediatrics 1983;72:335337.Google Scholar
Bostrom, K, Liliequist, B: Primary dissecting aneurysm of the extracranial part of the internal carotid and vertebral arteries. Neurology 1967;17:179186.Google Scholar
Grossman, FI, Davis, KR: Positional occlusion of the vertebral artery: A rare cause of embolic stroke. Neuroradiology 1982;23:227230.Google Scholar
Tettenborn, B, Caplan, LR, Sloan, MA, et al: Postoperative brainstem and cerebellar infarcts. Neurology 1993;43:471477.Google Scholar
Giroud, M, Gras, P, Dumas, R, Becker, F: Spontaneous vertebral artery dissection initially revealed by a pain in one upper arm. Stroke 1993;24:480481.Google Scholar
Dubard, T, Pouchot, J, Lamy, C, et al: Upper limb peripheral motor deficits due to extracranial vertebral artery dissection. Cerebrovasc Dis 1994;4:8891.Google Scholar
Goldsmith, P, Rowe, D, Jager, R, Kapoor, R: Focal vertebral artery dissection causing Brown–Séquard syndrome. J Neurol Neurosurg Psychiatry 1998;64:416417.Google Scholar
Yonas, H, Agamanolis, D, Takaoka, Y, White, RJ: Dissecting intracranial aneurysms. Surg Neurol 1977;8:407415.Google Scholar
Caplan, LR, Baquis, G, Pessin, MS, et al: Dissection of the intracranial vertebral artery. Neurology 1988;38:868879.Google Scholar
Anson, J, Crowell, RM: Cervicocranial arterial dissection. Neurosurg 1991;29:8996.Google Scholar
O’Connell, B, Towfighi, J, Brennan, R, et al: Dissecting aneurysms of head and neck. Neurology 1985;35:993997.Google Scholar
Chaves, C, Estol, C, Esnaola, MM, et al: Spontaneous intracranial internal carotid artery dissection. Arch Neurol 2002;59:977981.Google Scholar
Caplan, LR, Estol, CJ, Massaro, AR: Dissection of the posterior cerebral arteries. Arch Neurol 2005;62:11381143.Google Scholar
de Bray, JM, Marc, G, Pautot, G, et al: Fibromuscular dysplasia may herald symptomatic recurrence of cervical artery dissection. Cerebrovasc Dis 2007;23:448452.Google Scholar
Schievink, WI: The treatment of spontaneous carotid and vertebral artery dissections. Curr Opin Carotid 2000;15:316321.Google Scholar
Caprio, FZ, Bernstein, RA, Alberts, MJ, et al: Efficacy and safety of novel oral anticoagulants in patients with cervical artery dissections. Cerebrovasc Dis 2014;38:247253.Google Scholar
Kasner, SE, Hankins, LL, Bratina, P, Morganstern, LB: Magnetic resonance angiography demonstrates vascular healing of carotid and vertebral artery dissections. Stroke 1997;28:19931997.Google Scholar
Leclerc, X, Lucas, C, Godefroy, O, et al: Helical CT for the follow-up of cervical internal carotid artery dissections. AJNR Am J Neuroradiol 1998;19:831837.Google Scholar
Engelter, ST, Brandt, T, Debette, S, et al: Antiplatelets versus anticoagulation in cervical artery dissection. Cervical Artery Dissection in Ischemic Stroke Patients 5(CADISP) Study Group. Stroke 2007;38:26052611.Google Scholar
Georgiadis, D, Lanczik, O, Schwab, S, et al: IV thrombolysis in patients with acute stroke due to spontaneous carotid dissection. Neurology 2005;64:16121614.Google Scholar
Biller, J, Sacco, R, Albuquerque, FC, et al: Cervical arterial dissections and association with cervical manipulative therapy: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014;45:31553174.Google Scholar
Kadkhodayan, Y, Jeck, DT, Moran, CJ, et al: Angioplasty and stenting in carotid artery dissection with or without associated pseudoaneurysm. AJNR Am J Neuroradiol 2005;26:23282335.Google Scholar
Lavallee, PC, Mazighi, M, Saint-Maurice, J-P, et al: Stent-assisted endovascular thrombolysis versus intravenous thrombolysis in internal carotid artery dissection with tandem internal carotid and middle cerebral artery occlusion. Stroke 2007;38:22702274.Google Scholar
Ansari, SA, Thompson, BG, Gemmete, JJ, Gandhi, D: Endovascular treatment of distal cervical and intracranial dissections with the neuroform stent. Neurosurgery 2008;62:636646.Google Scholar
Janjua, N, Qureshi, AI, Kirmani, J, Pullicino, P: Stent-supported angioplasty for acute stroke caused by carotid dissection. Neurocrit Care 2006;4:4753.Google Scholar
Caplan, LR: Fibromuscular dysplasia. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 491495.Google Scholar
Slovut, DP, Olin, JW: Fibromuscular dysplasia. N Engl J Med 2004;350:18621871.Google Scholar
So, EL, Toole, JF, Dalal, P, et al: Cephalic fibromuscular dysplasia in 32 patients. Arch Neurol 1981;38:619622.Google Scholar
Corrin, LS, Sandok, BA, Houser, OW: Cerebral ischemic events in patients with carotid artery fibromuscular dysplasia. Arch Neurol 1981;38:616618.Google Scholar
Sandok, BA: Fibromuscular dysplasia of the internal carotid artery. Neurol Clin 1983;1:1726.Google Scholar
Luscher, TF, Lie, JT, Stanson, AW, et al: Arterial fibromuscular dysplasia. Mayo Clin Proc 1987;62:931952.Google Scholar
Kubis, N, von Langsdorrff, D, Petitjean, C, et al: Thrombotic carotid megabulb: Fibromuscular dysplasia, septae, and ischemic stroke. Neurology 1999;52:883886.Google Scholar
Mettinger, K, Ericson, K: Fibromuscular dysplasia and the brain. Stroke 1982;13:4652.Google Scholar
Olin, JW, Froehlich, J, Gux, , et al: The United States Registry for Fibromuscular Dysplasia: Results in the first 447 patients. Circulation 2012;125:31823190.Google Scholar
Finsterer, J, Strassegger, J, Haymerle, A, Hagmuller, G: Bilateral stenting and asymptomatic internal carotid artery stenosis due to fibromuscular dysplasia. J Neurol Neurosurg Psychiatry 2000;69:683686.Google Scholar
Assadian, A, Senekowitsch, C, Assadian, O, et al: Combined open and endovascular stent grafting of internal carotid artery fibromuscular dysplasia: Long-term results. Eur J Vasc Endovasc Surg 2005;29:345349.Google Scholar
Olin, JW, Gornik, HL, Bacharach, JM, Biller, J, et al: Fibromusclar dysplasia: State of the science and critical unanswered questions. A Scientific Statement from the American Heart Association. Circulation 2014;129:10481078.Google Scholar
Pessin, MS, Chung, C-S: Eales disease and Gröenblad-Strandberg disease (pseudoxanthoma elasticum). In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes. Cambridge: Cambridge University Press, 1995, pp 443447.Google Scholar
Lebwohl, MG, Distefano, D, Prioleau, PG, et al: Pseudoxanthoma elasticum and mitral-valve prolapse. N Engl J Med 1982;307:228231.Google Scholar
Caplan, LR, Chung, C-S: Pseudoxanthoma elasticum. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 135138.Google Scholar
Laube, S, Moss, C: Pseudoxanthoma elasticum. Arch Dis Child 2005;90:754756.Google Scholar
Strole, WE, Margolis, R: Case records of the Massachusetts General Hospital: Case 10–1983. N Engl J Med 1983;308:579585.Google Scholar
Altman, LK, Fialkow, PJ, Parker, F, et al: Pseudoxanthoma elasticum: An underdiagnosed genetically heterogenous disorder with protean manifestations. Arch Intern Med 1974;134:10481054.Google Scholar
Rios-Montenegro, E, Behrens, MM, Hoyt, WF: Pseudoxanthoma elasticum: Association with bilateral carotid rete mirabile and unilateral carotid-cavernous sinus fistula. Arch Neurol 1972;26:151155.Google Scholar
Roach, ES: Ehlers–Danlos syndrome. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 139144.Google Scholar
Byers, PH: Ehlers–Danlos syndrome type IV: A genetic disorder in many guises. J Invest Dermatol 1995;105:311313.Google Scholar
Leier, CV, Call, TD, Fulkerson, PK, Wooley, CF: The spectrum of cardiac defects in the Ehlers–Danlos syndrome types I and III. Ann Intern Med 1980;92:171178.Google Scholar
Pretorius, ME, Butler, IJ: Neurologic manifestations of Ehlers–Danlos syndrome. Neurology 1983;33:10871089.Google Scholar
Lach, B, Nair, SG, Russell, NA, Benoit, BG: Spontaneous carotid-cavernous fistula and multiple arterial dissections in type IV Ehlers–Danlos syndrome. J Neurosurg 1987;66:462467.Google Scholar
Sareli, AE, Janssen, WJ, Sterman, D, et al: What’s the connection? N Engl J Med 2008;358:626632.Google Scholar
North, KN, Whiteman, DAH, Pepin, MG, Byers, PH: Cerebrovascular complications in Ehlers–Danlos syndrome type IV. Ann Neurol 1995;38:960964.Google Scholar
Schievink, WI, Limburg, M, Oorthuys, JW, et al: Cerebrovascular disease in Ehlers–Danlos syndrome type IV. Stroke 1990;21:626632.Google Scholar
Schievink, WI, Parisi, JE, Piepgras, DG, Michels, VV: Intracranial aneurysms in Marfan’s syndrome: An autopsy study. Neurosurgery 1997;41:866870.Google Scholar
Conway, JE, Hutchins, GM, Tamargo, RJ: Marfan syndrome is not associated with intracranial aneurysms. Stroke 1999;30:16321636.Google Scholar
Pyeritz, RE: The Marfan syndrome. Annu Rev Med 2000;51:481510.Google Scholar
Cunha, L: Marfan’s syndrome. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 131134.Google Scholar
Kainulainen, K, Pulkkinen, L, Savolainen, A, et al: Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med 1990;323:935939.Google Scholar
Schievink, WI, Björnsson, J, Piepgras, DG: Coexistence of fibromuscular dysplasia and cystic medial necrosis in a patient with Marfan’s syndrome and bilateral carotid artery dissections. Stroke 1994;12:24922496.Google Scholar
Youl, BD, Coutellier, A, Dubois, B, et al: Three cases of spontaneous extracranial vertebral artery dissection. Stroke 1990;4:618625.Google Scholar
van den Berg, JS, Limburg, M, Hennekam, RC: Is Marfan syndrome associated with symptomatic intracranial aneurysms? Stroke 1996;27:1012.Google Scholar
Loeys, BL, Chen, J, Neptune, ER, et al: A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005;37:275281.Google Scholar
Loeys, BL, Schwarze, U, Holm, T, et al: Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 2006;355:788798.Google Scholar
LeMaire, SA, Pannu, H, Tran-Fadulu, V, et al: Severe aortic and arterial aneurysms associated with TGFBR2 mutation. Nat Clin Pract Cardiovasc Med 2007;4:167171.Google Scholar
Savitz, S, Caplan, LR: Dilatative arteriopathy (dolichoectasia). In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 479482.Google Scholar
Lou, M, Caplan, LR: Vertebrobasilar dilatative arteriopathy (dolichoectasia). Ann NY Acad Sci 2010;1184:121133.Google Scholar
Smoker, WR, Price, MJ, Keyes, WD, et al: High-resolution computed tomography of the basilar artery: 1. Normal size and position. AJNR Am J Neuroradiol 1986;7:5560.Google Scholar
Pico, F, Labreuche, J, Cohen, A, et al: Intracranial arterial dolichoectasia is associated with enlarged descending thoracic aorta. Neurology 2004;63:20162021.Google Scholar
Read, D, Esiri, MM: Fusiform basilar artery aneurysm in a child. Neurology 1979;29:10451049.Google Scholar
Hirsch, CS, Roessmann, U: Arterial dysplasia with ruptured basilar artery aneurysm: Report of a case. Hum Pathol 1975;6:749758.Google Scholar
Makos, MM, McComb, RD, Hart, MN, Bennett, DR: Alpha-glucosidase deficiency and basilar artery aneurysm: Report of a sibship. Ann Neurol 1987;22:629633.Google Scholar
Schwartz, A, Rautenberg, W, Hennerici, M: Dolichoectatic intracranial arteries: Review of selected aspects. Cerebrovasc Dis 1993;3:273279.Google Scholar
Caplan, LR: Dilatative arteriopathy (dolichoectasia): What is known and not known. Ann Neurol 2005;57:469471.Google Scholar
Pico, F, Labreuche, J, Touboul, PJ, Amarenco, P: Intracranial arterial dolichoectasia and its relation with atherosclerosis and stroke subtype. Neurology 2003;61:17361742.Google Scholar
Pico, F, Labreuche, J, Touboul, PJ, et al: Intracranial arterial dolichoectasia and small-vessel disease in stroke patients. Ann Neurol 2005;57:472479.Google Scholar
Pessin, MS, Chimowitz, MI, Levine, SR, et al: Stroke in patients with fusiform vertebrobasilar aneurysms. Neurology 1989;39:1621.Google Scholar
Moseley, IF, Holland, IM: Ectasia of the basilar artery: The breadth of the clinical spectrum and the diagnostic value of computed tomography. Neuroradiology 1979;18:8391.Google Scholar
Little, JR, St Louis, P, Weinstein, M, et al: Giant fusiform aneurysms of the cerebral arteries. Stroke 1981;12:183188.Google Scholar
Echiverri, HC, Rubino, FA, Gupta, SR, Gujrati, M: Fusiform aneurysm of the vertebrobasilar arterial system. Stroke 1989;20:17411747.Google Scholar
Nishizaki, T, Tamaki, N, Takeda, N, et al: Dolichoectatic basilar artery: A review of 23 cases. Stroke 1986;17:12771281.Google Scholar
Shokunbi, MT, Vinters, HV, Kaufmann, JC: Fusiform intracranial aneurysms: Clinicopathologic features. Surg Neurol 1988;29:263270.Google Scholar
Savitz, SI, Ronthal, M, Caplan, LR: Vertebral artery compression of the medulla. Arch Neurol 2006;63:234241.Google Scholar
DeGeorgia, M, Belden, J, Pao, L, et al: Thrombus in vertebrobasilar dolichoectatic artery treated with intravenous urokinase. Cerebrovasc Dis 1999;9:2833.Google Scholar
Cohen, MM, Hemalatha, CP, D’Addario, RT, Goldman, HW: Embolism from a fusiform middle cerebral artery aneurysm. Stroke 1980;11:158161.Google Scholar
Aichner, FT, Felber, SR, Birhamer, GG, Posch, A: Magnetic resonance imaging and magnetic resonance angiography of vertebrobasilar dolichoectasia. Cerebrovasc Dis 1993;3:280284.Google Scholar
Hennerici, M, Rautenberg, W, Schwartz, A: Trans-cranial Doppler ultrasound for the assessment of intracranial arterial flow velocity: II. Evaluation of intracranial arterial disease. Surg Neurol 1987;27:523532.Google Scholar
Passero, S, Rossi, S: Natural history of vertebrobasilar dolichoectasia. Neurology 2008;70:6672.Google Scholar
Vinters, HV: Cerebral amyloid angiopathy: A critical review. Stroke 1987;18:311324.Google Scholar
Cordonnier, C, Leys, D: Cerebral amyloid angiopathies. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 455464.Google Scholar
Vinters, HV, Gilbert, JJ: Cerebral amyloid angiopathy: Incidence and complications in the aging brain: II. The distribution of amyloid vascular changes. Stroke 1983;14:924928.Google Scholar
Okazaki, H, Reagan, TJ, Campbell, RJ: Clinicopathological studies of primary cerebral amyloid angiopathy. Mayo Clin Proc 1979;54:2231.Google Scholar
Cosgrove, G, Leblanc, R, Meagher-Villemure, K, et al: Cerebral amyloid angiopathy. Neurology 1985;34:625631.Google Scholar
Gilbert, JJ, Vinters, HV: Cerebral amyloid angiopathy: Incidence and complications in the aging brain: I. Cerebral hemorrhage. Stroke 1983;14:915923.Google Scholar
Kase, CS: Cerebral amyloid angiopathy. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 179200.Google Scholar
Viswanathan, A, Greenberg, SM: Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011;70:871880.Google Scholar
Greenberg, SM, Eng, JA, Ning, M, et al: Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:14151420.Google Scholar
Greenberg, SM, Finklestein, SP, Schaefer, PW: Petechial hemorrhages accompanying lobar hemorrhage: Detection by gradient-echo MRI. Neurology 1996;46:17511754.Google Scholar
Kumar, S, Goddeau, RP, Selim, MH, et al. Atraumatic convexal subarachnoid hemorrhage: Clinical presentation, imaging patterns, and etiologies. Neurology 2010;74:893899.Google Scholar
Beitzke, M, Gattringer, T, Enzinger, C, Wagner, G, Niederkorn, K, Fazekas, F: Clinical presentation and long term prognosis in patients with nontraumatic convexal subarachnoid hemorrhage. Stroke 2011;42:30553060.Google Scholar
Linn, J, Herms, J, Bruckmann, H, Fesl, G, Freilinger, T, Wiesmann, M: Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol 2008;29:184186.Google Scholar
Linn, J, Halpin, A, Demaerel, P, et al: Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010;74:13461350.Google Scholar
Shoamanesh, A, Martinez-Ramirez, S, Oliveira-Filho, J, et al: Interrelationship of superficial siderosis and microbleeds in cerebral amyloid angiopathy. Neurology 2014;83:18381843.Google Scholar
Greenberg, SM, Hyman, BT: Cerebral amyloid angiopathy and apolipoprotein E: Bad news for the good allele? Ann Neurol 1997;41:701702.Google Scholar
O’Donnell, HC, Rosand, J, Knudsen, KA, et al: Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med 2000;342:240245.Google Scholar
McCarron, MO, Nicoll, JA, Ironside, JW, et al: Cerebral amyloid angiopathy-related hemorrhage. I. Interaction of APOE ε2 with putative clinical risk factors. Stroke 1999;30:16431646.Google Scholar
Smith, DB, Hitchcock, M, Philpott, PJ: Cerebral amyloid angiopathy presenting as transient ischemic attacks: Case report. J Neurosurg 1985;63:963964.Google Scholar
Gray, F, Dubas, F, Roullet, E, Escourolle, R: Leukoencephalopathy in diffuse hemorrhagic cerebral amyloid angiopathy. Ann Neurol 1985;18:5459.Google Scholar
Loes, DJ, Biller, J, Yuh, WTC, et al: Leukoencephalopathy in cerebral amyloid angiopathy: MR imaging in four cases. AJNR Am J Neuroradiol 1990;11:485488.Google Scholar
DeWitt, LD, Louis, DN: Case records of the Massachusetts General Hospital: Case 27–1991. N Engl J Med 1991;325:4254.Google Scholar
Greenberg, SM, Vonsattel, JPG, Stakes, JW, et al: The clinical spectrum of cerebral amyloid angiopathy: Presentations without lobar hemorrhage. Neurology 1993;43:20732079.Google Scholar
Grubb, A, Jensson, O, Gudmundsson, G, et al: Abnormal metabolism of Y-trace alkaline microprotein: The basic defect in hereditary cerebral hemorrhage with amyloidosis. N Engl J Med 1984;311:15471549.Google Scholar
Stefansson, K, Antel, JP, Ojer, J, et al: Autosomal dominant cerebrovascular amyloidosis: Properties of peripheral blood lymphocytes. Ann Neurol 1980;7:436440.Google Scholar
Fountain, NB, Eberhard, DA: Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy: Report of two cases and review of the literature. Neurology 1996;46:190197.Google Scholar
Caplan, LR: Case records of the Massachusetts General Hospital. Case 10–2000. N Engl J Med 2000;342:957964.Google Scholar
Eng, JA, Frosch, MP, Choi, K, et al: Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 2004;55:250256.Google Scholar
Marotti, JD, Savitz, SI, Kim, W-K, et al: Cerebral amyloid angiitis progressing to generalized angiitis and leucoencephalitis. Neuropathol Appl Neurobiol 2007;33:15.Google Scholar
Scolding, NJ, Joseph, F, Kirby, PA, et al: Aβ-related angiitis: Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy.Brain 2005;128:500515.Google Scholar
Chung, KK, Anderson, NE, Hutchinson, D, Syneck, B, Barbar, PA: Cerebral amyloid angiopathy related inflammation: Three case reports and a review. J Neurol Neurosurg Psychiatry 2011;82:2026.Google Scholar
Salvarani, C, Hunder, GG, Morris, JM, Brown, RD Jr, Christianson, T, Giannini, C: Aβ-related angiitis: comparison with CAA without inflammation and primary CNS vasculitis. Neurology 2013;81:15961603.Google Scholar
Greene, GM, Godersky, JC, Biller, J, et al: Surgical experience with intracerebral hemorrhage secondary to cerebral amyloid angiopathy. Stroke 1990;21:170.Google Scholar
Izumihara, A, Ishihara, T, Iwamoto, N, et al: Postoperative outcome of 37 patients with lobar intracerebral hemorrhage related to cerebral amyloid angiopathy. Stroke 1999;30:2933.Google Scholar
Greenberg, SM: Cerebral amyloid angiopathy. Prospects for clinical diagnosis and treatment. Neurology 1998;51:690694.Google Scholar
Greenberg, SM, Salman, RA-S, Biessels, GJ, et al: Outcome markers for clinical trials in cerebral amyloid angiopathy. Lancet Neurol 2014;13:419428.Google Scholar
van de Beek, D, de Gans, J, Spanjaard, L, et al: Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 2004;351:18491859.Google Scholar
van de Beek, D, de Gans, J, Tunkel, AR, et al: Community-acquired bacterial meningitis in adults. N Engl J Med 2006;354:4453.Google Scholar
Bentley, P, Quadri, F, Wild, EJ, et al: Vasculitic presentation of staphylococcal meningitis. Arch Neurol 2007;64:17881789.Google Scholar
O’Farrell, R, Thornton, J, Brennan, P, et al: Spinal cord infarction and tetraplegia – Rare complications of meningococcal meningitis. Br J Anesth 2000;84:514517.Google Scholar
van de Beek, D, Patel, R, Wijdicks, EFM: Meningococcal meningitis with brainstem infarction. Arch Neurol 2007;64:13501351.Google Scholar
Weinstein, AJ, Schianone, WA, Furlan, AJ: Listeria rhomboencephalitis. Arch Neurol 1982;39:514516.Google Scholar
Brown, RH, Sobel, RA: Case records of the Massachusetts General Hospital. N Engl J Med 1989;321:739750.Google Scholar
Frayne, J, Gates, P: Listeria rhomboencephalitis. Clin Exp Neurol 1987;24:175179.Google Scholar
Silvestri, N, Ajani, Z, Savitz, S, Caplan, LR: A 73-year-old woman with an acute illness causing fever and cranial nerve abnormalities. Rev Neurol Dis 2006; 3:2930, 3537.Google Scholar
Windsor, JJ: Cat-scratch disease: Epidemiology, aetiology and treatment. Br J Biomed Sci 2001;58:101110.Google Scholar
Selby, G, Walker, GL: Cerebral arteritis in cat-scratch disease. Neurology 1979;29:14131418.Google Scholar
Davis, LE, Graham, GD: Neurosyphilis and stroke. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 3540.Google Scholar
Flint, AC, Liberato, BB, Anziska, Y, et al: Meningovascular syphilis as a cause of basilar artery stenosis. Neurology 2005;64:391392.Google Scholar
Gaa, J, Weidauer, S, Sitzer, M, et al: Cerebral vasculitis due to treponema pallidum infection: MRI and MRA findings. Eur Radiol 2004;14:746747.Google Scholar
Golden, MR, Marra, CM, Holmes, KK: Update on syphilis: Resurgence of an old problem. JAMA 2003;290:15101514.Google Scholar
Rahn, DW, Malawista, SE: Lyme disease: Recommendations for diagnosis and treatment. Ann Intern Med 1991;114:472481.Google Scholar
Steere, AC, Sikand, VK: The presenting manifestations of Lyme disease and the outcomes of treatment. N Engl J Med 2003;348:24722474.Google Scholar
Halperin, JJ, Luft, BJ, Anand, AK, et al: Lyme neuroboreliosis: Central nervous system manifestations. Neurology 1989;39:753759.Google Scholar
Pachner, AR, Duray, P, Steere, AC: Cerebral nervous system manifestations of Lyme disease. Arch Neurol 1989;46:790795.Google Scholar
Uldry, PA, Regli, F, Bogousslavsky, J: Cerebral angiopathy and recurrent strokes following Borrelia burgdorferi infection. J Neurol Neurosurg Psychiatry 1987;50:17031704.Google Scholar
Schmiedel, J, Gahn, G, von Kummer, R, Reichmann, H: Cerebral vasculitis with multiple infarcts caused by Lyme disease. Cerebrovasc Dis 2004;17:7981.Google Scholar
Halperin, JJ: Stroke in Lyme disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 5966.Google Scholar
Katrak, SM: Vasculitis and stroke due to tuberculosis. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 4146.Google Scholar
Leiguarda, R, Berthier, M, Starkstein, S, et al: Ischemic infarction in 25 children with tuberculous meningitis. Stroke 1988;19:200204.Google Scholar
Katrak, SM, Shembalkar, PK, Bijwe, SR, Bhandarkar, LD: The clinical, radiological and pathological profile of tuberculous meningitis in patients with and without human deficiency virus infection. J Neurol Sci 2000;181:118126.Google Scholar
Bernaerts, A, Vanhoenacker, FM, Parizel, PM, et al: Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol 2003;13:18761890.Google Scholar
Chan, KH, Cheung, RT, Lee, R, et al: Cerebral infarcts complicating tuberculous meningitis. Cerebrovasc Dis 2005;19:391395.Google Scholar
Hier, DB, Caplan, LR: Stroke due to fungal infections. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 4752.Google Scholar
Kobayashi, RM, Coil, M, Niwayama, G, Trauner, D: Cerebral vasculitis in coccidioidal meningitis. Ann Neurol 1977;1:281284.Google Scholar
Walsh, TJ, Hier, DB, Caplan, LR: Fungal infection of the central nervous system: Comparative analysis of the risk factors and clinical signs in 57 patients. Neurology 1985;35:16541657.Google Scholar
Walsh, TJ, Hier, DB, Caplan, LR: Aspergillosis of the central nervous system: Clinicopathological analysis of 17 patients. Ann Neurol 1985;18:574582.Google Scholar
Kleinschmidt-DeMasters, BK: Central nervous system aspergillosis: A 20 year retrospective series. Hum Pathol 2002;33:116124.Google Scholar
Rangel-Guerra, R, Martinez, HR, Saenz, C, et al: Rhinocerebral and systemic mucormycosis. Clinical experience in 36 cases. J Neurol Sci 1996;143:1930.Google Scholar
Moore, PM, Cupps, TR: Neurologic complications of vasculitis. Ann Neurol 1983;14:155167.Google Scholar
Bischof, M, Baumgartner, RW: Varicella-zoster and other virus-related cerebral vasculopathy. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 1726.Google Scholar
Gilden, DH, Kleinschmidt-DeMasters, BK, Wellish, M, et al: Varicella-zoster virus, a cause of waxing and waning vasculitis: The New England Journal of Medicine case 5–1995 revisited. Neurology 1996;47:14411446.Google Scholar
Bourdette, DN, Rosenberg, NL, Yatsu, FM: Herpes zoster ophthalmicus and delayed ipsilateral cerebral infarction. Neurology 1983;33:14281432.Google Scholar
Hilt, DC, Buchholz, D, Krumholz, A, et al: Herpes zoster ophthalmicus and delayed contralateral hemiparesis caused by cerebral angiitis: Diagnosis and management approaches. Ann Neurol 1983;14:543553.Google Scholar
Doyle, PW, Gibson, G, Dolman, C: Herpes zoster ophthalmicus with contralateral hemiplegia: Identification of cause. Ann Neurol 1983;14:8485.Google Scholar
Nagel, MA, Cohrs, RJ, Mahalingam, R, et al: The varicella zoster virus vasculopathies. Clinical, CSF, imaging and virologic features. Neurology 2008;70:853860.Google Scholar
Powers, JM: Herpes zoster maxillaris with delayed occipital infarction. J Clin Neuroophthalmol 1986;2:113115.Google Scholar
Snow, BJ, Simcock, JP: Brainstem infarction following cervical herpes zoster. Neurology 1988;38:1331.Google Scholar
Ross, MH, Abend, WK, Schwartz, RB, Samuels, MA: A case of C2 herpes zoster with delayed bilateral pontine infarction. Neurology 1991;41:16851686.Google Scholar
Caekebeke, JFV, Peters, ACB, Vandvik, B, et al: Cerebral vasculopathy associated with primary varicella infection. Arch Neurol 1990;47:10331035.Google Scholar
Askalan, R, Laughlin, S, Mayank, S, et al: Chickenpox and stroke in childhood: A study of frequency and causation. Stroke 2001;32:12571262.Google Scholar
Hausler, MG, Ramaekers, VT, Reul, J, et al: Early and late onset manifestations of cerebral vasculitis related to varicella zoster. Neuropediatrics 1998;29:202207.Google Scholar
Lanthier, S, Armstrong, D, Domi, T, deVeber, G: Post-varicella arteriopathy of childhood. Neurology 2005;64:660663.Google Scholar
Melanson, M, Chalk, C, Georgevich, L, et al: Varicella-zoster virus DNA in CSF and arteries in delayed contralateral hemiplegia: Evidence for viral invasion of cerebral arteries. Neurology 1996;47:569570.Google Scholar
Saito, K, Moskowitz, MA: Contributions from the upper cervical dorsal roots and trigeminal ganglia to the feline circle of Willis. Stroke 1989;20:524526.Google Scholar
Pinto, AN: AIDS and cerebrovascular disease. Stroke 1996;27:538543.Google Scholar
Gillams, AR, Allen, E, Hrieb, K, et al: Cerebral infarction in patients with AIDS. AJNR Am J Neuroradiol 1997;18:15811585.Google Scholar
Cole John, W, Pinto, AN, Hebel, JR, et al: Acquired immunodeficiency syndrome and the risk of stroke. Stroke 2004;35:5156.Google Scholar
Berger, JR: AIDS and stroke risk. Lancet Neurol 2004;3:206207.Google Scholar
Fritz, V, Bryer, A: Stroke in persons infected with HIV. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 93100.Google Scholar
Dubrovsky, T, Curless, R, Scott, G, et al: Cerebral aneurysmal arteriopathy in childhood AIDS. Neurology 1998;51:560565.Google Scholar
Lipton, J, Rivkin, MJ: Kawasaki disease: Cerebrovascular and neurologic complications. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 8186.Google Scholar
Amano, S, Hazama, F, Hamashima, Y: Pathology of Kawasaki disease: II. Distribution and incidence of the vascular lesions. Jpn Circ J 1979;43:741748.Google Scholar
Amano, S, Hazama, F, Kubagawa, H, et al: General pathology of Kawasaki disease. On the morphological alterations corresponding to the clinical manifestations. Acta Pathol Jpn 1980;30:681694.Google Scholar
Del Bruto, OH: Stroke and vasculitis in patients with cysticercosis. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 5358.Google Scholar
García, HH, Del Brutto, OH: Neurocysticercosis: Updated concepts about an old disease. Lancet Neurol 2005;4:653661.Google Scholar
Escobar, A, Weidenheim, KM: The pathology of neurocysticercosis. In Singh, G, Prabhakar, S (eds): Taenia Solium Cysticercosis. From Basic to Clinical Science. Wallingford, Oxon, UK: CAB International, 2002, pp 289305.Google Scholar
Caplan, LR: How to manage patients with neurocysticercosis. Eur Neurol 1997;37:124131.Google Scholar
Rodriguez-Carbajal, J, del Brutto, OH, Penagos, P, et al: Occlusion of the middle cerebral artery due to cysticercotic angiitis. Stroke 1989;20:10951099.Google Scholar
Monteiro, L, Almeida-Pinto, J, Leite, I, et al: Cerebral cysticercus arteritis: Five angiographic cases. Cerebrovasc Dis 1994;4:125133.Google Scholar
Barinagarrementaria, F, Cantu, C: Frequency of cerebral arteritis in subarachnoid cysticercosis. An angiographic study. Stroke 1998;29:123125.Google Scholar
Cantu, C, Villarreal, J, Soto, JL, Barinagarrementaria, F: Cerebral cysticercotic arteriits: Detection and follow-up by transcranial Doppler. Cerebrovasc Dis 1998;8:27.Google Scholar
Bang, OY, Heo, JH, Choi, SA, Kim, DI: Large cerebral infarction during praziquantel therapy in neurocysticercosis. Stroke 1997;28:211213.Google Scholar
Newton, CR, Warrell, DA: Neurological manifestations of falciparum malaria. Ann Neurol 1998;43:695702.Google Scholar
Gall, C, Spuler, A, Fraunberger, P: Subarachnoid hemorrhage in a patient with cerebral malaria. N Engl J Med 1999 341:611613.Google Scholar
Omanga, U, Ntihinyurwa, M, Shako, D, Mashako, M: Les hemiplegies au cours de l’acces pernicieux a Plasmodium falciparum de l’enfant. Ann Pediatr (Paris) 1983;30:294296.Google Scholar
Newton, CR, Marsh, K, Peshu, N, Kirkham, FJ: Perturbations of cerebral hemodynamics in Kenyan children with cerebral malaria. Pediatr Neurol 1996;15:4149.Google Scholar
Massaro, AR: Cerebrovascular problems in Chagas disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 8792.Google Scholar
Carod-Artal, FJ, Vargas, AP, Melo, M, Horan, TA: American trypanosomiasis (Chagas’ disease): An unrecognised cause of stroke. J Neurol Neurosurg Psychiatry 2003;74:516518.Google Scholar
Carod-Artal, FJ, Vargas, AP, Horan, TA, Nunes, LG: Chagasic cardiomyopathy is independently associated with ischemic stroke in Chagas disease. Stroke 2005;36:965970.Google Scholar
Leon-Sarmiento, FE, Mendoza, E, Torres-Hillera, M, et al: Trypanosoma cruzi-associated cerebrovascular disease: A case-control study in Eastern Colombia. J Neurol Sci 2004;217:6164.Google Scholar
Oliveira-Filho, J, Viana, LC, Vieira de Melo, RM, et al: Chagas disease is an independent risk factor for stroke: Baseline characteristics of a Chagas disease cohort. Stroke 2005;36:20152017.Google Scholar
Carod-Artal, FJ, Gascon, J: Chagas disease and stroke. Lancet Neurol 2010;9:533542.Google Scholar
Fauci, AS, Haynes, BF, Katz, P: The spectrum of vasculitis: Clinical, pathologic, immunologic and therapeutic considerations. Ann Intern Med 1978;89:660676.Google Scholar
Moore, PM, Richardson, B: Neurology of the vasculitides and connective tissue disease. J Neurol Neurosurg Psychiatry 1998;65:1022.Google Scholar
Scott, DG: Classification and treatment of systemic vasculitis. Br J Rheumatol 1988;27:251257.Google Scholar
Moore, PM, Fauci, AS: Neurologic manifestations of systemic vasculitis: A retrospective and prospective study of the clinico-pathologic features and responses to therapy in 25 patients. Am J Med 1981;71:517524.Google Scholar
Kissel, JT, Rammohan, KW: Pathology and therapy of nervous system vasculitis. Clin Neuropharmacol 1991;14:2848.Google Scholar
Moore, PM, Richardson, B: Neurology of the vasculitides and connective tissue diseases. J Neurol Neurosurg Psychiatry 1998;65:1022.Google Scholar
Villringer, A, Moore, PM: Vasculitides and other nonatherosclerotic vasculopathies of the nervous system. In Brandt, T, Caplan, LR, Dichgans, J, et al. (eds): Neurological Disorders. San Diego: Academic Press, 1996, pp 305327.Google Scholar
Reichhart, MD, Meuli, R, Bogousslavsky, J: Microscopic polyangiitis (MPA) and polyarteritis nodosa (PAN). In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 311330.Google Scholar
Caplan, LR, Hedley-White, ET: Case records of the Massachusetts General Hospital: Case 5–1995. N Engl J Med 1995;332:452459.Google Scholar
Mehdirrata, M, Caplan, LR: Churg–Strauss syndrome. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 331334.Google Scholar
Churg, J, Strauss, L: Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol 1951;27:277301.Google Scholar
Chumbley, LC, Harrison, EG, DeRemee, RA: Allergic granulomatosis and angiitis (Churg–Strauss syndrome): Report and analysis of 30 cases. Mayo Clin Proc 1977;52:477484.Google Scholar
Sehgal, M, Swanson, JW, DeRemee, RA, Colby, TV: Neurologic manifestations of Churg–Strauss syndrome. Mayo Clin Proc 1995;70:337341.Google Scholar
Hauser, SL, Shahani, B, Hedley-White, ET: Case records of the Massachusetts General Hospital: Case 38–1990. N Engl J Med 1990;323:812822.Google Scholar
Jennette, JC, Falk, RJ: Small-vessel vasculitis. N Engl J Med 1997;337:15121523.Google Scholar
Savitz, S, Caplan, LR: Cerebrovascular complications of Henoch– Schönlein purpura. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 309310.Google Scholar
Chiaretti, A, Caresta, E, Piastra, M, et al: Cerebral hemorrhage in Henoch– Schönlein syndrome. Childs Nerv Syst 2002;18:365367.Google Scholar
Eun, SH, Kim, SJ, Cho, DS, et al: Cerebral vasculitis in Henoch– Schönlein purpura: MRI and MRA findings, treated with plasmapharesis alone. Pediatr Int 2003;45:484487.Google Scholar
Fauci, AS, Haynes, BF, Katz, P, Wolff, SM: Wegener’s granulomatosis: Prospective clinical and therapeutic experience with 85 patients for 21 years. Ann Intern Med 1983;98:7685.Google Scholar
Haynes, BF, Fishman, ML, Fauci, AS, Wolff, SM: The ocular manifestations of Wegener’s granulomatosis: Fifteen years’ experience and review of the literature. Am J Med 1977;63:131141.Google Scholar
Lapresle, J, Lasjaunias, P: Cranial nerve ischemic arterial syndromes. Brain 1985;109:207215.Google Scholar
Palaic, M, Yeadon, C, Moore, S, Cashman, N: Wegener’s granulomatosis mimicking temporal arteritis. Neurology 1991;41:16941695.Google Scholar
Frohman, LP, Lama, P: Annual review of systemic diseases: 1995–1996, part 1. J Neuroophthalmol 1998;18:6779.Google Scholar
Satoh, J, Miyasaka, N, Yamada, T, et al: Extensive cerebral infarction due to involvement of both anterior cerebral arteries by Wegener’s granulomatosis. Ann Rheum Dis 1988;47:606611.Google Scholar
Provenzale, JM, Allen, NB: Wegener granulomatosis: CT and MR findings. AJNR Am J Neuroradiol 1996;17:785792.Google Scholar
Nölle, B, Specks, U, Lüdemann, J, et al: Anticytoplasmic autoantibodies: Their immunodiagnostic value in Wegener’s granulomatosis. Ann Intern Med 1989;111:2840.Google Scholar
Feinglass, EJ, Arnett, SC, Dorsch, CA, et al: Neuropsychiatric manifestations of systemic lupus erythematosus: Diagnosis, clinical spectrum, and relationship to other features of the disease. Medicine (Baltimore) 1976;55:323339.Google Scholar
Futrell, N: Systemic lupus erythematosus. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 335342.Google Scholar
Johnson, RT, Richardson, EP: The neurological manifestations of systemic lupus erythematosus: A clinical–pathological study of 24 cases and review of the literature. Medicine (Baltimore) 1968;47:337369.Google Scholar
Devinsky, O, Petito, C, Alonso, D: Clinical and neuropathological findings in systemic lupus erythematosus: The role of vasculitis, heart emboli, and thrombotic thrombocytopenic purpura. Ann Neurol 1988;23:380384.Google Scholar
Alsen, AM, Gabrulsen, TO, McCune, WJ: MR imaging of systemic lupus erythematosus involving the brain. AJNR Am J Neuroradiol 1985;6:197201.Google Scholar
Trevor, RF, Sondheimer, FK, Fessel, WJ, et al: Angiographic demonstration of major cerebral vessel occlusion in systemic lupus erythematosus. Neuroradiology 1972;4:202207.Google Scholar
Hart, R, Miller, V, Coull, B, et al: Cerebral infarction associated with lupus anticoagulants: Preliminary report. Stroke 1984;15:114118.Google Scholar
McVerry, BA, Machin, SJ, Parry, H, et al: Reduced prostacycline activity in systemic lupus erythematosus. Ann Rheum Dis 1980;39:524525.Google Scholar
Galve, E, Candell-Riera, J, Pigrau, C, et al: Prevalence, morphological types, and evaluation of cardiac valvular disease in systemic lupus erythematosus. N Engl J Med 1988;319:817823.Google Scholar
Moncayo-Gaete, J: Thrombotic thrombocytopenic purpura. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 301308.Google Scholar
Petitt, RM: Thrombotic thrombocytopenic purpura: A thirty year review. Semin Thromb Hemost 1980;6:350355.Google Scholar
Kwaan, HC: Clinicopathological features of thrombotic thrombocytopenic purpura. Semin Hematol 1987;24:7181.Google Scholar
Silverstein, A: Thrombotic thrombocytopenic purpura: The initial neurological manifestations. Arch Neurol 1968;18:358362.Google Scholar
Rinkel, G, Wijdicks, E, Hene, RJ: Stroke in relapsing thrombotic thrombocytopenic purpura. Stroke 1991;22:10871088.Google Scholar
Kelly, PJ, McDonald, CT, Neill, GO, et al: Middle cerebral artery main stem thrombosis in two siblings with familial thrombocytopenic purpura. Neurology 1998;50:11571160.Google Scholar
Bakshi, R, Shaikh, ZA, Bates, VE, Kinkel, PR: Thrombotic thrombocytopenic purpura: Brain CT and MRI findings in 12 patients. Neurology 1999;52:12851288.Google Scholar
Hinchey, J, Chaves, C, Apignani, B, et al: A reversible posterior leukoencephalopathy syndrome. N Engl J Med 1996;334:494500.Google Scholar
Bennett, CL, Weinberg, PD, Rozenberg-Ben-Dror, K, et al: Thrombotic thrombocytopenic purpura associated with ticlopidine. A review of 60 cases. Ann Intern Med 1998;128, 541544.Google Scholar
Bennett, CL, Connors, JM, Carwile, JM, et al: Thrombotic thrombocytopenic purpura associated with clopidogrel. N Engl J Med 2000;342:17731777.Google Scholar
Zakarija, A, Bennett, C: Drug-induced thrombotic microangiopathy. Semin Thromb Hemost 2005;31:681690.Google Scholar
Shepard, KV, Bukowski, RM: The treatment of thrombotic thrombocytopenic purpura with exchange transfusions, plasma infusions and plasma exchange. Semin Hematol 1987;24:178193.Google Scholar
Rubens, E, Savitz, S: Rheumatoid arthritis and cerebrovascular disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 343346.Google Scholar
Ramos, M, Mandybur, TI: Cerebral vasculitis in rheumatoid arthritis. Arch Neurol 1975;32:271275.Google Scholar
Watson, P: Intracranial hemorrhage with vasculitis in rheumatoid arthritis. Arch Neurol 1979;36:58.Google Scholar
Watson, P, Fekete, J, Dick, J: Central nervous system vasculitis in rheumatoid arthritis. Can J Neurol Sci 1977;4:269271.Google Scholar
Takeda, Y: Studies of the metabolism and distribution of fibrinogen in patients with rheumatoid arthritis. J Lab Clin Med 1967;69:624633.Google Scholar
Jasin, HE, LoSpalluto, J, Ziff, M: Rheumatoid hyperviscosity syndrome. Am J Med 1970;49:484493.Google Scholar
Alexander, EL, Provost, TT, Stevens, MB, Alexander, GE: Neurologic complications of primary Sjögren’s syndrome. Medicine (Baltimore) 1982;61:247257.Google Scholar
Alexander, GE, Provost, TT, Stevens, MB, Alexander, EL: Sjögren syndrome: Central nervous system manifestations. Neurology 1981;31:13911396.Google Scholar
Alexander, EL, Beall, S, Gordon, B, et al: Magnetic resonance imaging of cerebral lesions in patients with the Sjögren syndrome. Ann Intern Med 1988;108:815823.Google Scholar
Alexander, EL, Malinow, K, Lijewski, JE, et al: Primary Sjögren syndrome with central nervous system disease mimicking multiple sclerosis. Ann Intern Med 1986;104:323330.Google Scholar
Rubens, E: Scleroderma. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 429431.Google Scholar
Estey, E, Lieberman, A, Pinto, R, et al: Cerebral arteritis in scleroderma. Stroke 1979;10:595597.Google Scholar
Pathak, R, Gabor, AJ: Scleroderma and central nervous system vasculitis. Stroke 1991;22:410413.Google Scholar
Olugemo, O, Stern, BJ: Stroke and neurosarcoidosis. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 7580.Google Scholar
Newman, LS, Rose, CS, Maier, LA: Sarcoidosis. N Engl J Med 1997;336:12241234.Google Scholar
Scott, TF: Neurosarcoidosis: Progress and clinical aspects. Neurology 1993;43:812.Google Scholar
Stern, BJ, Krumholz, A, Johns, C, et al: Sarcoidosis and its neurological manifestations. Arch Neurol 1985;42:909917.Google Scholar
Caplan, LR, Corbett, J, Goodwin, J, et al: Neuro-ophthalmological signs in the angiitic form of neurosarcoidosis. Neurology 1983;33:11301135.Google Scholar
Meyer, J, Foley, J, Campagna-Pinto, D: Granulomatous angiitis of the meninges in sarcoidosis. Arch Neurol Psychiatry 1953;69:587600.Google Scholar
Alajouanine, T, Bertrand, J, Degos, R, et al: Sarcoidose ganglionaire, cutanee et oculaire, avec atteinte secondaire diffuse, peripherique et centrale du système nerveux. Rev Neurol (Paris) 1958;99:421447.Google Scholar
Urich, H: Neurosarcoidosis or granulomatous angiitis: A problem of definition. Mt Sinai J Med 1977;44:718725.Google Scholar
Karmi, A: Ophthalmic changes in sarcoidosis. Acta Ophthalmol 1979;141(Suppl):194.Google Scholar
Stewart, SS, Ashizawa, T, Dudley, AW Jr, et al: Cerebral vasculitis in relapsing poychondritis. Neurology 1988;38:150.Google Scholar
Thevathasan, AW, Davis, SM: Temporal arteritis. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 916.Google Scholar
Melson, MR, Weyland, CM, Newman, NJ, Biousse, V: The diagnosis of giant cell arteritis. Rev Neurol Dis 2007;4:128142.Google Scholar
Goodwin, J: Temporal arteritis. In Vinken, P, Bruyn, G (eds): Handbook of Clinical Neurology, vol 39, part 2. Amsterdam: North Holland, 1980, pp 313342.Google Scholar
Klein, RG, Hunder, GG, Stanson, AW, et al: Large artery involvement in giant cell arteritis. Ann Intern Med 1975;83:806812.Google Scholar
Wilkinson, I, Russel, R: Arteries of the head and neck in giant cell arteritis. Arch Neurol 1972;27:378391.Google Scholar
Thielen, KR, Wijdicks, EFM, Nichols, DA: Giant cell (temporal) arteritis: Involvement of the vertebral and internal carotid arteries. Mayo Clin Proc 1998;73:444446.Google Scholar
Enzmann, D, Scott, WR: Intracranial involvement of giant-cell arteritis. Neurology 1977;27:794797.Google Scholar
Casselli, RJ: Giant cell (temporal) arteritis: A treatable cause of multi-infarct dementia. Neurology 1990;40:753755.Google Scholar
Schmidt, WA, Kraft, HE, Vorpahl, K, et al: Color Duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med 1997;337:13361342.Google Scholar
Zuber, M: Isolated angiitis of the central nervous system. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 18.Google Scholar
Salvarani, C, Brown, RD, Calamia, KT, et al: Primary central nervous system vasculitis of 101 patients. Ann Neurol 2007;62:442451.Google Scholar
Hankey, GJ: Isolated angiitis/angiopathy of the central nervous system. Cerebrovasc Dis 1991;1:215.Google Scholar
Kolodny, EH, Rebeiz, JJ, Caviness, VS, Richardson, EP: Granulomatous angiitis of the central nervous system. Arch Neurol 1968;19:510524.Google Scholar
Vollmer, TL, Guarnaccia, J, Harrington, W, et al: Idiopathic granulomatous angiitis of the central nervous system. Diagnostic challenges. Arch Neurol 1993;50:925930.Google Scholar
Moore, PM: Diagnosis and management of isolated angiitis of the central nervous system. Neurology 1989;39:167173.Google Scholar
Burger, PC, Burch, JG, Vogel, FS: Granulomatous angiitis: An unusual etiology of stroke. Stroke 1977;8:2935.Google Scholar
Harris, KG, Tran, DD, Sickels, WJ, et al: Diagnosing intracranial vasculitis: The role of MR and angiography. AJNR Am J Neuroradiol 1994;15:317330.Google Scholar
Alhalabi, M, Moore, PM: Serial angiography in isolated angiitis of the central nervous system. Neurology 1994;44:12211226.Google Scholar
Shinohara, Y: Takayasu disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 2732.Google Scholar
Shimizuki, K, Sano, K: Pulseless disease. J Neuropathol Clin Neurol 1951;1:3747.Google Scholar
Ask-Upmark, E: On the pulseless disease outside of Japan. Acta Med Scand 1954;149:161178.Google Scholar
Subramanyan, R, Joy, J, Balakrishnan, KG: Natural history of aortoarteritis (Takayasu’s disease). Circulation 1989;80:429437.Google Scholar
Lupi-Herrera, E, Sanchez-Torres, G, Marcushamer, J, et al: Takayasu’s arteritis: Clinical study of 107 cases. Am Heart J 1977;93:94103.Google Scholar
Ishikawa, K: Natural history and classification of occlusive thromboaortopathy (Takayasu’s disease). Circulation 1978;57:2735.Google Scholar
Sano, K, Alga, T, Saito, I: Angiography in pulseless disease. Radiology 1970;94:6974.Google Scholar
Hall, S, Barr, W, Lee, JT, et al: Takayasu arteritis: A study of 32 North American patients. Medicine (Baltimore) 1985;54:8999.Google Scholar
Hargraves, RW, Spetzler, RF: Takayasu’s arteritis: Case report. Barrow Neurol Inst Q 1991;7:2023.Google Scholar
Kerr, GS, Hallahan, CW, Giordano, J, et al: Takayasu’s arteritis. Ann Intern Med 1994;120:919929.Google Scholar
Naritomi, H: Takayasu’s arteritis. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes. Cambridge: Cambridge University Press, 1995, pp 437442.Google Scholar
Klos, K, Flemming, KD, Petty, GW, Luthra HS: Takayasu’s arteritis with arteriographic evidence of intracranial vessel involvement. Neurology 2003;60:15501551.Google Scholar
Talwar, KK, Kumar, K, Chopra, P, et al: Cardiac involvement in nonspecific aortoarteritis (Takayasu’s arteritis). Am Heart J 1991;122:16661670.Google Scholar
Sun, Y, Yip, P-K, Jeng, J-S, et al: Ultrasonographic study and long-term follow-up of Takayasu’s arteritis. Stroke 1996;27:21782182.Google Scholar
Ishikawa, K, Uyama, M, Asayama, K: Occlusive thromboaortopathy (Takayasu’s disease): Cervical occlusive stenosis, retinal artery pressure, retinal microaneurysms and prognosis. Stroke 1983;14:730735.Google Scholar
Takagi, A, Tada, Y, Sato, O, et al: Surgical treatment for Takayasu’s arteritis: A long-term follow-up study. J Cardiovasc Surg 1989;30:553558.Google Scholar
Fraga, A, Mintz, G, Valle, L, Flores-Izquierdo, G: Takayasu’s arteritis: Frequency of systemic manifestations (study of 22 patients) and favorable response to maintenance steroid therapy with adrenocorticosteroids (12 patients). Arthritis Rheum 1972;15:617624.Google Scholar
Biller, J, Asconape, J, Challa, V, et al: A case for cerebral thromboangiitis obliterans. Stroke 1981;12:585689.Google Scholar
Kumral, E: Behçet’s disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 6774.Google Scholar
Chajek, T, Fainaro, M: Behçet’s disease: Report of 41 cases and a review of the literature. Medicine (Baltimore) 1975;54:179195.Google Scholar
Shimizu, T, Ehrlich, GE, Inaba, G, et al: Behçet’s disease (Behçet’s syndrome). Semin Arthritis Rheum 1979;8:223260.Google Scholar
Wechsler, B, Davatchi, F, Mizushima, Y, et al: Criteria for diagnosis of Behçet’s disease. Lancet 1990;335:10781080.Google Scholar
International Study Group for Behçet’s Disease: Evaluation of diagnostic (“classification”) criteria in Behçet’s disease: Towards internationally agreed criteria. Br J Rheum 1992;31:299308.Google Scholar
Serdaroglu, P, Yazici, H, Ozdemir, C, et al: Neurologic involvement in Behçet’s syndrome: A prospective study. Arch Neurol 1989;46:265269.Google Scholar
Herskovitz, S, Lipton, RB, Lantos, G: Neuro-Behçet’s disease: CT and clinical correlates. Neurology 1988;38:17141720.Google Scholar
Bousser, M-G, Wechsler, B: Behçet’s disease. In Bogousslavsky, J, Caplan, LR (eds): Stroke Syndromes. Cambridge: Cambridge University Press, 1995, pp 460465.Google Scholar
Al Kawi, MZ, Bohlega, S, Banna, M: MRI findings in neuro-Behçet’s disease. Neurology 1991;41:405408.Google Scholar
Banna, M, El-Ramahi, K: Neurologic involvement in Behçet’s disease: Imaging findings in 16 patients. AJNR Am J Neuroradiol 1991;12:791796.Google Scholar
Pamir, MN, Kansu, T, Erbengi, A, Zileli, T: Papilledema in Behçet’s syndrome. Arch Neurol 1981;38:643645.Google Scholar
Bousser, MG, Chiras, J, Bories, J, Castaigne, P: Cerebral venous thrombosis: A review of 38 cases. Stroke 1985;16:199213.Google Scholar
Wechsler, B, Vidailhet, M, Piette, JC, et al: Cerebral venous thrombosis in Behçet’s disease: Clinical study and long-term follow-up of 25 cases. Neurology 1992;42:614618.Google Scholar
Sharief, MK, Hentges, R, Thomas, E: Significance of CSF immunoglobulins in monitoring neurologic disease in Behçet’s disease. Neurology 1991;41:13981401.Google Scholar
Cogan, DG: Syndrome of nonsyphilitic interstitial keratitis and vestibulo-auditory symptoms. Arch Ophthalmol 1945;33:144149.Google Scholar
Calvetti, O, Biousse, V: Cogan’s syndrome. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 259262.Google Scholar
Cheson, BD, Bluming, AZ, Alroy, J: Cogan’s syndrome: A systemic vasculitis. Am J Med 1976;60:549555.Google Scholar
Peeters, GJ, Pinckers, AJ, Cremers, CW, Hoefnagels, WH: Atypical Cogan’s syndrome: An autoimmune disease. Ann Otol Rhinol Laryngol 1986;95:173175.Google Scholar
Romain, PL, Aretz, HT: Case records of the Massachusetts General Hospital: Case 6–1999. N Engl J Med 1999;340:635641.Google Scholar
Albayram, MS, Wityk, R, Yousem, DM, Zinreich, SJ: The cerebral angiographic findings in Cogan syndrome. AJNR Am J Neuroradiol 2001;22:751754.Google Scholar
Eales, H: Case of retinal hemorrhage, associated with epistaxis and constipation. Birmingham Med Rev 1880;9:262273.Google Scholar
Biousse, V: Eales retinopathy. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 235236.Google Scholar
Biswas, J, Sharma, T, Gopal, L, et al: Eales disease – An update. Surv Ophthalmol 2002;47:197214.Google Scholar
Miller, NR: Walsh and Hoyt’s Clinical Neuroophthalmology, vol 4, 4th ed. Baltimore: Williams & Wilkins, 1991.Google Scholar
Raizman, MB, Haas, JJ: Case records of the Massachusetts General Hospital: Case 4–1998. N Engl J Med 1998;338:313319.Google Scholar
Gordon, MF, Coyle, PK, Golub, B: Eales disease presenting as stroke in the young adult. Ann Neurol 1988;24:264266.Google Scholar
Herson, RN, Squier, M: Retinal perivasculitis with neurological involvement. J Neurol Sci 1978;36:111117.Google Scholar
Singhal, BS, Dastur, DK: Eales disease with neurological involvement. J Neurol Sci 1976; 27:312321, 323345.Google Scholar
White, RH: The etiology and neurological complications of retinal vasculitis. Brain 1961;84:262273.Google Scholar
Susac, J, Hardman, J, Selhorst, J: Microangiopathy of the brain and retina. Neurology 1979;29:313316.Google Scholar
Susac, JO: Susac’s syndrome: The triad of microangiopathy of the brain and retina with hearing loss in young women. Neurology 1994;44:591593.Google Scholar
Papo, T, Biousse, V, Lehoang, P, et al: Susac syndrome. Medicine (Baltimore) 1998;77:311.Google Scholar
Henriques, I, Bogousslavsky, J, Caplan, LR: Microangiopathy of the retina, inner ear, and brain: Susac’s syndrome. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 247254.Google Scholar
Petty, G, Engel, A, Younge, BR, et al: Retinocochleocerebral vasculopathy. Medicine (Baltimore) 1998;77:122140.Google Scholar
Coppeto, J, Currie, J, Monteiro, M, et al: A syndrome of arterial-occlusive retinopathy and encephalopathy. Am J Ophthalmol 1984;98:189202.Google Scholar
Swanson, R, Mario, L, Monteiro, M, et al: A microangiopathic syndrome of encephalopathy, hearing loss and retinal artery occlusion. Neurology 1985;35(Suppl 1):145.Google Scholar
Bogousslavsky, J, Gaio, JM, Caplan, LR, et al: Encephalopathy, deafness, and blindness in young women: A distinct retino-cochleo-cerebral arteriolopathy. J Neurol Neurosurg Psychiatry 1989;52:4346.Google Scholar
Reichhart, M: Acute posterior multifocal placoid pigment epitheliopathy (APMPPE). In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 237246.Google Scholar
Gass, JDM: Acute posterior multifocal placoid pigment epitheliopathy. Arch Ophthalmol 1968;80:177185.Google Scholar
Gass, JD: Acute posterior multifocal placoid pigment epitheliopathy. Retina 2003;23:177185.Google Scholar
Jones, NP: Acute posterior multifocal placoid pigment epitheliopathy. Br J Ophthalmol 1995;79:384389.Google Scholar
Comu, S, Verstraeten, T, Rinkoff, JS, Busis, NA: Neurological manifestations of acute posterior multifocal placoid pigment epitheliopathy. Stroke 1996;27:9961001.Google Scholar
Smith, CH, Savino, PJ, Beck, RW, et al: Acute posterior multifocal placoid pigment epitheliopathy and cerebral vasculitis. Arch Neurol 1983;40:4850.Google Scholar
Weinstein, JM, Bresnick, GH, Bell, CL, et al: Acute posterior multifocal placoid pigment epitheliopathy with cerebral vasculitis. J Clin Neuroophthalmol 1988;8:195201.Google Scholar
Bewermeyer, H, Nelles, G, Huber, M, et al: Pontine infarction in acute posterior multifocal placoid pigment epitheliopathy. J Neurol 1993;241:2226.Google Scholar
Wilson, CA, Choromokos, EA, Sheppard, R: Acute posterior multifocal placoid pigment epitheliopathy and cerebral vasculitis. Arch Ophthalmol 1988;106:796800.Google Scholar
Manor, RS: Vogt–Koyanagi–Harada syndrome and related diseases. In Vinken, P, Bruyn, G, Klawans, H (eds): Handbook of Clinical Neurology, vol 34, part 2. Amsterdam: North Holland, 1978, pp 513544.Google Scholar
Andreoli, CM, Foster, CS: Vogt–Koyanagi–Harada disease. Int Ophthalmol Clin 2006;46:111122.Google Scholar
Kato, Y, Kurimura, M, Yahata, Y, et al: Vogt–Koyanagi–Harada’s disease presenting polymorphonuclear pleocytosis in the cerebrospinal fluid at the early active stage. Intern Med 2006;45:779781.Google Scholar
Khoury, T, Gonzalez-Fernandez, F, Munschauer, FE 3rd, Ostrow, P: A 47-year-old man with sudden onset of blindness, pleocytosis, and temporary hearing loss. Vogt–Koyanagi–Harada syndrome (Uveomeningoencephalitic syndrome). Arch Pathol Lab Med 2006;130:10701072.Google Scholar
De Reuck, JL, De Bleecker, JL: Sneddon’s syndrome. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 405412.Google Scholar
Sneddon, B: Cerebro-vascular lesions and livedo reticularis. Br J Dermatol 1965;77:180185.Google Scholar
Tourbah, A, Piette, JC, Iba-Zizen, MT, et al: The natural course of cerebral lesions in Sneddon syndrome. Arch Neurol 1997;54:5360.Google Scholar
Thomas, DJ, Kirby, JD, Britton, KE, Galton, DJ: Livedo reticularis and neurological lesions. Br J Dermatol 1982;106:711712.Google Scholar
Rebollo, M, Val, JF, Garijo, F, et al: Livedo reticularis and cerebrovascular lesions (Sneddon’s syndrome). Brain 1983;106:965979.Google Scholar
Stockhammer, G, Felber, SR, Zelger, B, et al: Sneddon syndrome: Diagnosis by skin biopsy and MRI in 17 patients. Stroke 1993;24:685690.Google Scholar
Pettee, AD, Wasserman, BA, Adams, NL, et al: Familial Sneddon’s syndrome: Clinical, hematologic, and radiographic findings in two brothers. Neurology 1994;44:399405.Google Scholar
Levine, SR, Langer, SL, Albers, JW, Welch, KMA: Sneddon’s syndrome: An antiphospholipid antibody syndrome? Neurology 1988;38:798800.Google Scholar
Cornett, O, Rosenbaum, DH: Kohlmeier–Degos disease (malignant atrophic papulosis). In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 377380.Google Scholar
Caviness, VS Jr, Sagar, P, Israel, EJ, et al: Case 38–2006: A 5-year-old boy with headache and abdominal pain. N Engl J Med 2006;355:25752584.Google Scholar
Petit, WA, Soso, MJ, Higman, H: Degos disease: Neurologic complications and cerebral angiography. Neurology 1982;32:13051309.Google Scholar
Strole, WE, Clark, WH, Isselbacher, KJ: Progressive arterial occlusive disease (Kohlmeier–Degos). N Engl J Med 1967;276:195201.Google Scholar
Subbiah, P, Wijdicks, E, Muenter, M, et al: Skin lesion with a fatal neurologic outcome (Degos’ disease). Neurology 1996;46:636640.Google Scholar
Caplan, LR: Drugs. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 201220.Google Scholar
Brust, JC: Stroke and substance abuse. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 365370.Google Scholar
Brust, J, Richter, R: Stroke associated with addiction to heroin. J Neurol Neurosurg Psychiatry 1978;39:194199.Google Scholar
Woods, B, Strewler, G: Hemiparesis occurring six hours after intravenous heroin injection. Neurology 1972;22:863866.Google Scholar
Caplan, LR, Hier, DB, Banks, G: Current concepts in cerebrovascular disease – stroke: Stroke and drug abuse. Stroke 1982;13:869872.Google Scholar
Brust, JC: Stroke and drugs. In Vinker, P, Bruyn, G, Klawans, H (eds): Handbook of Clinical Neurology, vol 11. Amsterdam: Elsevier, 1989, pp 517531.Google Scholar
Pearson, J, Richter, R: Addiction to opiates: Neurologic aspects. In Vinken, P, Bruyn, G (eds): Handbook of Clinical Neurology, vol 37. Amsterdam: North Holland, 1979, pp 365400.Google Scholar
Citron, B, Halpern, M, McCarron, M, et al: Necrotizing angiitis associated with drug abuse. N Engl J Med 1970;283:10031011.Google Scholar
Rumbaugh, C, Bergeron, R, Gang, H, et al: Cerebral vascular changes secondary to amphetamine abuse in the experimental animal. Radiology 1971;101:345351.Google Scholar
Rumbaugh, C, Bergeron, R, Gang, H, et al: Cerebral angiographic changes in the drug abuse patient. Radiology 1971;101:335344.Google Scholar
Caplan, LR, Thomas, C, Banks, G: Central nervous system complications of “T’s and Blues” addiction. Neurology 1982;32:623628.Google Scholar
Szwed, JJ: Pulmonary angiothrombosis caused by “blue velvet” addiction. Ann Intern Med 1970;73:771774.Google Scholar
Atlee, W: Talc and cornstarch emboli in the eyes of drug abusers. JAMA 1972;219:4951.Google Scholar
Mizutami, T, Lewis, R, Gonatas, N: Medial medullary syndrome in a drug abuser. Arch Neurol 1980;37:425428.Google Scholar
Schoenberger, SD, Agarwal, A: Talc retinopathy. N Engl J Med 2013;368:852.Google Scholar
Kaku, D, Lowenstein, DH: Emergence of recreational drug abuse as a major risk factor for stroke in young adults. Ann Intern Med 1990;133:821827.Google Scholar
Levine, SR, Welch, KM: Cocaine and stroke: Current concepts of cardiovascular disease. Stroke 1988;19:779783.Google Scholar
Daras, M, Tuchman, AJ, Marks, S: Central nervous system infarction related to cocaine abuse. Stroke 1991;22:13201325.Google Scholar
Levine, SR, Washington, JM, Jefferson, ME, et al: “Crack” cocaine-associated stroke. Neurology 1987;37:18491853.Google Scholar
Levine, SR, Brust, JC, Futrell, N, et al: A comparative study of the cerebrovascular complications of cocaine-alkaloidal versus hydrochloride – a review. Neurology 1991;41:11731177.Google Scholar
Rowley, HA, Lowenstein, DH, Rowbotham, MC, Simon, RP: Thalamomesencephalic strokes after cocaine abuse. Neurology 1989;39:428430.Google Scholar
Di Lazzaro, V, Restuccia, D, Oliviero, A, et al: Ischaemic myelopathy associated with cocaine: Clinical, neurophysiological, and neuroradiological features. J Neurol Neurosurg Psychiatry 1997;63:531533.Google Scholar
Isner, JM, Estes, NA, Thompson, PD, et al: Acute cardiac events temporally related to cocaine. N Engl J Med 1986;315:14381443.Google Scholar
Brust, JCM: Neurological Aspects of Substance Abuse, 2nd ed. Boston: Butterworth–Heinemann, 2004.Google Scholar
Kaufman, MJ, Levin, JM, Ross, MH, et al: Cocaine-induced cerebral vasoconstriction detected in humans with magnetic resonance angiography. JAMA 1998;279:376380.Google Scholar
Nolte, KB, Brass, LM, Fletterick, CF: Intracranial hemorrhage associated with cocaine abuse: A prospective study. Neurology 1996;46:12911296.Google Scholar
Savitz, S, Caplan, LR: Migraine and migraine-like conditions. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 529531.Google Scholar
Singhal, AB, Koroshetz, WF, Caplan, LR: Reversible cerebral vasoconstriction syndromes. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 505514.Google Scholar
Caplan, LR: Migraine in Posterior Circulation Disease: Diagnosis, Clinical Findings, and Management. Boston: Blackwell Science, 1996.Google Scholar
Kruit, MC, van Buchem, MA, Hofman, PA, et al: Migraine as a risk factor for subclinical brain lesions. JAMA 2004;291:427434.Google Scholar
Rothrock, JF, Walicke, P, Swendon, M, et al: Migrainous stroke. Arch Neurol 1988;45:6367.Google Scholar
Bogousslavsky, J, Regli, F, Van Melle, G, et al: Migraine stroke. Neurology 1988;38:223227.Google Scholar
Caplan, LR: Migraine and vertebrobasilar ischemia. Neurology 1991;41:5561.Google Scholar
Rothrock, J, North, J, Madden, K, et al: Migraine and migrainous stroke: Risk factors and prognosis. Neurology 1993;43:24732476.Google Scholar
Henrich, JB, Horwitz, RI: A controlled study of ischemic stroke risk in migraine patients. J Clin Epidemiol 1989;42:773780.Google Scholar
Stang, PE, Carson, AP, Rose, KM, et al: Headache, cerebrovascular symptoms, and stroke: The Atherosclerosis Risk in Communities Study. Neurology 2005;64:15731577.Google Scholar
Etminan, M, Takkouche, B, Isorna, FC, Samii, A: Risk of ischaemic stroke in people with migraine: Systematic review and meta-analysis of observational studies. BMJ 2005;330:63.Google Scholar
Donaghy, M, Chang, CL, Poulter, N: European Collaborators of The World Health Organisation Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception: Duration, frequency, recency, and type of migraine and the risk of ischaemic stroke in women of childbearing age. J Neurol Neurosurg Psychiatry 2002;73:747750.Google Scholar
Solomon, S, Lipton, RB, Harris, PY: Arterial stenosis in migraine: Spasm or arteriopathy? Headache 1990;30:5261.Google Scholar
Pessin, MS, Lathi, ES, Cohen, MB, et al: Clinical features and mechanisms of occipital infarction in the posterior cerebral artery territory. Ann Neurol 1987;21:290299.Google Scholar
Fisher, CM: Late-life migraine accompaniments as a cause of unexplained transient ischemic attacks. Can J Neurol Sci 1980;7:917.Google Scholar
Fisher, CM: Late-life migraine accompaniments: Further experience. Stroke 1986;17:10331042.Google Scholar
Wijman, CAC, Wolf, PA, Kase, CS, et al: Migrainous visual accompaniments are not rare in late life. The Framingham Study. Stroke 1998;29:15391543.Google Scholar
Caplan, LR, Chedru, F, Lhermitte, F, Mayman, C: Transient global amnesia and migraine. Neurology 1981;31:11671170.Google Scholar
Caplan, LR: Transient global amnesia: Characteristic features and overview. In Markowitsch, HJ (ed): Transient Global Amnesia and Related Disorders. Toronto: Hogrife and Huber, 1990, pp 1527.Google Scholar
Call, GK, Fleming, MC, Sealfon, S, et al: Reversible cerebral segmental vasoconstriction. Stroke 1988;19:11591170.Google Scholar
Bogousslavsky, J, Despland, PA, Regli, F, Dubuis, PY: Postpartum cerebral angiopathy: Reversible vasoconstriction assessed by transcranial Doppler ultrasound. Eur Neurol 1989;29:102105.Google Scholar
Chen, S-P, Fuh, J-L, Lirng, J-F, et al: Recurrent primary thunderclap headache and benign CNS angiopathy. Neurology 2006;67:21642169.Google Scholar
Ducros, A, Boukobza, M, Porcher, R, et al: The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain 2007;130:30913101.Google Scholar
Lopez-Valdes, E, Chang, H-M, Pessin, MS, Caplan, LR: Cerebral vasoconstriction after carotid surgery. Neurology 1997;49:303304.Google Scholar
Calabrese, LH, Dodick, DW, Schwedt, TJ, et al: Narrative reviews: Reversible cerebral vasoconstriction syndrome. Ann Intern Med. 2007;146:3444.Google Scholar
Moustafa, RR, Allen, CMC, Baron, J-C: Call–Fleming syndrome associated with subarachnoid haemorrhage: Three new cases. J Neurol Neurosurg Psychiatry 2008;79:602605.Google Scholar
Ducros, A: Reversible cerebral vasoconstriction syndrome. Lancet Neurol 2012;11:906917.Google Scholar
French, KF, Hoesch, RE, Allred, J, et al: Repetitive use of intra-arterial verapamil in the treatment of reversible cerebral vasoconstriction syndrome. J Clin Neurosci 2012;19:174–76.Google Scholar
Bartleson, JD, Swanson, JW, Whisnant, JP: A migrainous syndrome with cerebrospinal fluid pleocytosis. Neurology 1981;31:12571262.Google Scholar
Gomez-Aranda, F, Canadillas, F, Marti-Masso, JF, et al: Pseudomigraine with temporary neurological symptoms and lymphocytic pleocytosis. A report of 50 cases. Brain 1997;120:11051113.Google Scholar
Martin-Balbuena, S, Arpa-Gutierrez, FJ: Pseudomigraine with cerebrospinal fluid pleocytosis or syndrome of headache, temporary neurological deficit and cerebrospinal fluid. A historical review. Rev Neurol 2007;45:624630.Google Scholar
Emond, H, Schnorf, H, Poloni, C, Vulliemoz, S, Lalive, PH: Syndrome of transient headache and neurological deficits with CSF lymphocytosis (HaNDL) associated with recent human herpesvirus-6 infection. Cephalalgia. 2009;29:487491.Google Scholar
Black, DF, Bartleson, JD, Bell, ML, Lachner, DH: SMART: Stroke-like migraine attacks after radiation therapy. Cephalgia 2006;26:11371142.Google Scholar
Pruitt, A, Dalmau, J, Detre, J, et al: Episodic neurologic dysfunction with migraine and reversible imaging findings after radiation. Neurology 2006;67:676678.Google Scholar
Black, DF, Morris, JM, Lindell, EP, et al: Stroke-like migraine attacks after radiation therapy (SMART) syndrome is not always completely reversible: A case series. Am J Neuroradiol 2013;36:16.Google Scholar
Wang, N, Prasad, S: SMART syndrome. Stroke-like migraine attacks after radiation therapy. Neurol Clin Pract 2014;1:530531.Google Scholar
Cole, AJ, Aube, M: Migraine with vasospasm and delayed intracerebral hemorrhage. Arch Neurol 1990;47:5356.Google Scholar
Gautier, JC, Majdalani, A, Juillard, JB, et al: Hemorragies cerebrales au cours de la migraine. Rev Neurol (Paris) 1993;149:407410.Google Scholar
Caplan, LR: Intracerebral hemorrhage revisited. Neurology 1988;38:624627.Google Scholar
Digre, K, Varner, M, Caplan, LR: Eclampsia and stroke during pregnancy and the puerperium. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 515528.Google Scholar
Siderov, E, Feng, W, Caplan, LR: Stroke in pregnant and postpartum women. Expert Rev Cardiovasc Ther 2011;9:12351247.Google Scholar
Edlow, JA, Caplan, LR, O’Brien, K, Tibbles, C: Diagnosis of acute neurological emergencies in pregnant and postpartum women. Lancet Neurol 2013;12:175185.Google Scholar
Hoffmann, M, Keiseb, J, Moodley, J, Corr, P: Appropriate neurological evaluation and multimodality magnetic resonance imaging in eclampsia. Acta Neurol Scand 2002;106:159167.Google Scholar
Neudecker, S, Stock, K, Krasnianski, M: Call–Fleming postpartum angiopathy in the puerperium: A reversible cerebral vasoconstriction syndrome. Obstet Gynecol 2006;107:446449.Google Scholar
Duncan, R, Hadley, D, Bone, I, et al: Blindness in eclampsia: CT and MR imaging. J Neurol Neurosurg Psychiatry 1998;52:899902.Google Scholar
Easton, JD, Mas, J-L, Lamy, C, et al: Severe preeclampsia/eclampsia: hypertensive encephalopathy of pregnancy? Cerebrovasc Dis 1998;8:5358.Google Scholar
Hinchey, J, Chaves, C, Appignani, B, et al: A reversible posterior leukoencephalopathy syndrome. N Engl J Med 1996;334:494500.Google Scholar
Schwartz, RB, Feske, SK, Polak, JF, et al: Preeclampsia-eclampsia: Clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology 2000;217:371376.Google Scholar
Hinchey, JA: Reversible leukoencephalopathy syndrome: what have we learned in the past 10 years. Arch Neurol 2008;65:175176.Google Scholar
Adams, H, Davis, P, Hennerici, M: Moyamoya. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 465478.Google Scholar
Suzuki, J, Kodama, N: Moyamoya disease – a review. Stroke 1983;14:104109.Google Scholar
Suzuki, J: Moyamoya Disease. Berlin: Springer, 1986.Google Scholar
Kuroda, S, Hashimoto, N, Yoshimoto, T, et al: Radiological findings, clinical course, and outcome in aymptomatic moyamoya disease. Stroke 2007;38:14301435.Google Scholar
Chiu, D, Shedden, P, Bratina, P, Grotta, JC: Clinical features of moyamoya disease in the United States. Stroke 1998;29:13471351.Google Scholar
Taveras, JM: Multiple progressive intracranial arterial occlusions: A syndrome of children and young adults. AJR Am J Roentgenol 1969;106:235268.Google Scholar
Bruno, A, Adams, HOP, Bilbe, J, et al: Cerebral infarction due to moyamoya disease in young adults. Stroke 1988;19:826833.Google Scholar
Mauro, AJ, Johnson, ES, Chikos, PM, Alvord, EC: Lipohyalinosis and miliary microaneurysms causing cerebral hemorrhage in a patient with moyamoya. A clinicopathological study. Stroke 1980;11:405412.Google Scholar
Ikeda, E: Systemic vascular changes in spontaneous occlusion of the circle of Willis. Stroke 1991;22:13581362.Google Scholar
Southerland, AM, Meschia, JF, Worrall, BB: Shared associations of nonatherosclerotic, large-vessel, cerebrovascular arteriopathies: Considering intracranial aneurysms, cervical artery dissection, moyamoya disease and fibromuscular dysplasia. Curr Opin Neurol 2013;26:1328.Google Scholar
Ueki, K, Meyer, FB, Mellinger, JF: Moyamoya disease: The disorder and surgical treatment. Mayo Clin Proc 1994;69:749757.Google Scholar
Herreman, F, Nathal, E, Yasui, N, Yonekawa, Y: Intracranial aneurysms in moyamoya disease: Report of ten cases and review of the literature. Cerebrovasc Dis 1994;4:329336.Google Scholar
Robertson, RL, Burrows, PE, Barnes, PD, et al: Angiographic changes after pial synangiosis in childhood moyamoya disease. AJNR Am J Neuroradiol 1997;18:837845.Google Scholar
Houkin, K, Kamiyama, H, Abe, H, et al: Surgical therapy for adult moyamoya disease. Can surgical revascularization prevent the recurrence of intracerebral hemorrhage? Stroke 1996;27:13421346.Google Scholar
Smith, ER, Scott, RM: Surgical management of moyamoya syndrome. Skull Base 2005;15:1526.Google Scholar
Scott, RM, Smith, ER: Moyamoya disease and moyamoya syndrome. N Engl J Med 2009;360:12261237.Google Scholar
Kamada, F, Aoki, Y, Narisawa, A, et al: A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet 2011;56:3440.Google Scholar
Liu, W, Morito, D, Takashima, S, et al: Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011;6:e22542.Google Scholar
Hart, RG, Kanter, MC: Hematologic disorders and ischemic stroke: A selective review. Stroke 1990;21:11111121.Google Scholar
Markus, HS, Hambley, H: Neurology and the blood: Haematological abnormalities in ischaemic stroke. J Neurol Neurosurg Psychiatry 1998;64:150159.Google Scholar
Adams, RJ: Big strokes in small persons. Arch Neurol 2007;64:15671574.Google Scholar
Switzer, JA, Hess, DC, Nichols, FT, Adams, RJ: Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. Lancet 2006;5:501512.Google Scholar
Rothman, SM, Fulling, KH, Nelson, JS: Sickle cell anemia and central nervous system infarction: A neuropathological study. Ann Neurol 1986;20:684690.Google Scholar
Adams, RJ, Nichols, FT, McKie, V, et al: Cerebral infarction in sickle cell anemia: mechanisms based on CT and MRI. Neurology 1988;38:10121017.Google Scholar
Steen, RG, Langston, JW, Ogg, RJ, et al: Ectasia of the basilar artery in children with sickle cell disease: Relationship to hematocrit and psychometric measures. J Stroke Cerebrovasc Dis 1998;7:3243.Google Scholar
Oguz, M, Aksungur, EH, Soyupak, SK, Yildirim, AU: Vein of Galen and sinus thrombosis with bilateral thalamic infarcts in sickle cell anemia: CT follow-up and angiographic demonstration. Neuroradiology 1994;36:155156.Google Scholar
Adams, RJ: TCD in sickle-cell disease: An important and useful test. Pediatr Radiol 2005;35:229234.Google Scholar
Adams, RJ, McKie, VC, Hsu, L, et al: Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998;339:511.Google Scholar
Hillmen, P, Lewis, SM, Bessler, M, et al: Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1995;333:12531258.Google Scholar
Ziakas, PD, Poulou, LS, Rokas, GI, et al: Thrombosis in paroxysmal nocturnal hemoglobinuria: Sites, risks, outcome. An overview. J Thromb Haemost 2007;5:642645.Google Scholar
Poulou, LS, Vakrinos, G, Pomoni, A, et al: Stroke in paroxysmal nocturnal haemoglobinuria: Patterns of disease and outcome. Thromb Haemost 2007;98:699701.Google Scholar
Murphy, S, Iland, H, Rosenthal, D, Laszlo, J: Essential thrombocythemia: An interim report from the Polycythemia Vera Study Group. Semin Hematol 1986;23:177182.Google Scholar
Jabaily, J, Iland, HJ, Laszlo, J, et al: Neurologic manifestations of essential thrombocythemia. Ann Intern Med 1983;99:513518.Google Scholar
Hehlmann, R, Jahn, M, Baumann, B, Kopcke, W: Essential thrombocythemia. Clinical characteristics and course of 61 cases. Cancer 1988;61:24872496.Google Scholar
Arboix, A, Besses, C, Acin, P, et al: Ischemic stroke as the first manifestation of essential thrombocythemia. Stroke 1995;26:14631466.Google Scholar
Ogata, J, Yonemura, K, Kimura, Y, et al: Cerebral infarction associated with thrombocythemia: An autopsy case study. Cerebrovasc Dis 2005;19:201205.Google Scholar
Wu, K: Platelet hyperaggregability and thrombosis in patients with thrombocythemia. Ann Intern Med 1978;88:711.Google Scholar
Al-Mefty, O, Marano, G, Rajaraman, S, et al: Transient ischemic attacks due to increased platelet aggregation and adhesiveness. J Neurosurg 1979;50:449453.Google Scholar
Trip, MD, Cats, VM, van Capelle, FJL, Vreeken, J: Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 1990;322:15491554.Google Scholar
Védy, D, Schapira, M, Angelillo-Scherrer, A: Bleeding disorders and thrombophilia. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 283300.Google Scholar
Thaler, E, Lechner, K: Antithrombin III deficiency and thromboembolism. Clin Haematol 1981;10:369390.Google Scholar
Camerlingo, M, Finazzi, G, Casto, L, et al: Inherited protein C deficiency and nonhemorrhagic arterial stroke in young adults. Neurology 1991;41:13711373.Google Scholar
Dahlback, B, Carlsson, M, Svensson, PJ: Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: Prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993;90:10041008.Google Scholar
Zoller, B, Dahlback, B: Linkage between inherited resistance to activated protein C and factor V gene mutation in venous thrombosis. Lancet 1994;343:15361538.Google Scholar
Ridker, PM, Miletich, JP, Stampfer, MJ, et al: Factor V Leiden and risks of recurrent idiopathic venous thromboembolism. Circulation 1997;95:17771782.Google Scholar
Poort, SR, Rosendaal, FR, Reitsma, PH, Bertina, RM: A common genetic variation in the 3’ untranslated region of the prothrombin gene is associated with elevated prothrombin levels and an increase in venous thrombosis. Blood 1996;88:36983703.Google Scholar
Huberfeld, G, Kubis, N, Lot, G, et al: G20210A Prothrombin gene mutation in two siblings with cerebral venous thrombosis. Neurology 1998;51:316317.Google Scholar
Martinelli, I, Sacchi, E, Landi, G, et al: High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998;338:17931797.Google Scholar
Estol, C, Pessin, MS, DeWitt, LD, Caplan, LR: Stroke and increased factor VIII activity. Neurology 1989;39(suppl 1):1159.Google Scholar
Kosik, KS, Furie, B: Thrombotic stroke associated with elevated factor VIII. Arch Neurol 1980;8:435437.Google Scholar
De Georgia, MA, Rose, DZ: Stroke in patients who have inflammatory bowel disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 381386.Google Scholar
Talbot, RW, Heppell, J, Dozois, RR, Beart, RW: Vascular complications of inflammatory bowel disease. Mayo Clin Proc 1986;61:140145.Google Scholar
Johns, DR: Cerebrovascular complications of inflammatory bowel disease. Am J Gastroenterol 1991;86:367370.Google Scholar
Sigsbee, B, Rottenberg, DA: Sagittal sinus thrombosis as a complication of regional enteritis. Ann Neurol 1978;3:450452.Google Scholar
Grau, A, Buggle, F, Heindl, S, et al: Recent infection as a risk factor for cerebrovascular ischemia. Stroke 1995;26:373379.Google Scholar
Syrjanen, J, Valtonen, VV, Iivanainen, M, et al: Preceding infection as an important risk factor for ischaemic brain infarction in young and middle aged patients. BMJ 1988;296:11561160.Google Scholar
Grau, A, Buggle, F, Steichen-Wiehn, C, et al: Clinical and histochemical analysis in infection-associated stroke. Stroke 1995;26:15201526.Google Scholar
Grau, A: Infection, inflammation, and cerebrovascular ischemia. Neurology 1997;49(suppl 4):S47S51.Google Scholar
Leira, R, Davalos, A, Castillo, J: Cancer and paraneoplastic strokes. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 371376.Google Scholar
Sack, GH, Levin, J, Bell, WR: Trousseau’s syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasms. Medicine (Baltimore) 1977;56:137.Google Scholar
Graus, F, Rodgers, LR, Posner, JB: Cerebrovascular complications in patients with cancer. Medicine (Baltimore) 1985;64:1635.Google Scholar
Amico, L, Caplan, LR, Thomas, C: Cerebrovascular complications of mucinous cancers. Neurology 1989;39:523526.Google Scholar
Kablau, M, Michael, G, Hennerici, MG, Marc Fatar, M, et al: Stroke and cancer: The importance of cancer-associated hypercoagulation as a possible stroke etiology. Stroke 2012;43:30293034.Google Scholar
Hajjar, K, Francis, CW: Fibrinolysis and thrombolysis. In Lichtman, MA, Beutler, E, Kipps, TJ, Seligsohn, U, Kaushansky, K, Prchal, JT (eds): Williams Hematology, 7th ed. New York: McGraw-Hill, 2006, pp 20892115.Google Scholar
Sloane, MA: Thrombolysis and stroke – past and future. Arch Neurol 1986;44:748768.Google Scholar
Del Zoppo, GH, Zeumer, H, Harker, LA: Thrombolytic therapy in stroke: Possibilities and hazards. Stroke 1986;17:595607.Google Scholar
Francis, RB: Clinical disorders of fibrinolysis. Blut 1989;59:114.Google Scholar
Nilsson, IM, Ljungner, H, Tengborn, L: Two different mechanisms in patients with venous thrombosis and defective fibrinolysis: Low concentrations of plasminogen activator or increased concentration of plasminogen activator inhibitor. BMJ 1985;290:14531456.Google Scholar
Collen, D, Lijnen, HR: The fibrinolytic system in man. Crit Rev Oncol Hematol 1986;4:249301.Google Scholar
Nagayama, T, Shinohara, Y, Nagayama, M, et al: Congenitally abnormal plasminogen in juvenile ischemic cerebrovascular disease. Stroke 1993;24:21042107.Google Scholar
Hunt, FA, Rylatt, DB, Hart, R, Bundesen, PG: Serum cross-linked fibrin (XDP) and fibrinogen/fibrin degradation products (FDP) in disorders associated with activation of the coagulation or fibrinolytic systems. Br J Haematol 1985;60:715722.Google Scholar
Feinberg, WM, Bruck, DC, Ring, ME, Corrigan, JJ: Hemostatic markers in acute stroke. Stroke 1989;20:582587.Google Scholar
Delgado, J, Jimenez-Yuste, V, Hernandez-Navarro, F, Villar, A: Acquired hemophilia. Review and meta-analysis focused on therapy and prognostic factors. Br J Haematol 2003;121:2135.Google Scholar
Johansen, RF, Sorensen, B, Ingerslev, J: Acquired haemophilia: Dynamic whole blood coagulation utilized to guide haemostatic therapy. Haemophilia 2006;12:190197.Google Scholar
Ruggeri, ZM, Zimmerman, TS: von Willebrand factor and von Willebrand disease. Blood 1987;70:895904.Google Scholar
Wilde, JT: Von Willebrand disease. Clin Med 2007;7:629632.Google Scholar
Nurden, P, Nurden, AT: Congenital disorders associated with platelet dysfunctions. Thromb Haemost 2008;99:253263.Google Scholar
Roldan, J, Brey, RL: Antiphospholipid antibody syndrome. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 263274.Google Scholar
Levine, SR, Welch, KMA: Cerebrovascular ischemia associated with lupus anticoagulant. Stroke 1987;18:257263.Google Scholar
DeWitt, LD, Caplan, LR: Antiphospholipid antibodies and stroke. AJNR Am J Neuroradiol 1991;12:454456.Google Scholar
Cervera, R, Piette, JC, Font, J, et al: Antiphospholipid syndrome: Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum 2002;46:10191027.Google Scholar
Coull, BM, Goodnight, SH: Antiphospholipid antibodies, prethrombotic states, and stroke. Stroke 1990;21:13701374.Google Scholar
Levine, SR, Kim, S, Deegan, MI, Welch, KMA: Ischemic stroke associated with anticardiolipin antibodies. Stroke 1987;18:11011106.Google Scholar
Montalban, J, Codina, A, Ordi, J, et al: Antiphospholipid antibodies in cerebral ischemia. Stroke 1991;22:750753.Google Scholar
Pope, JM, Canny, CL, Bell, DA: Cerebral ischemic events associated with endocarditis, retinal vascular disease, and lupus anticoagulant. Am J Med 1991;90:299309.Google Scholar
Antiphospholipid Antibodies in Stroke Study (APASS) Group: Clinical and laboratory findings in patients with antiphospholipid antibodies and cerebral ischemia. Stroke 1990;21:12681273.Google Scholar
Lopez, LR, Dier, KJ, Lopez, D, et al: Anti-beta 2-glycoprotein I and antiphosphatidylserine antibodies are predictors of arterial thrombosis in patients with antiphospholipid syndrome. Am J Clin Pathol 2004;121:142149.Google Scholar
Atsumi, T, Ieko, M, Bertolaccini, ML, et al: Association of autoantibodies against the phosphatidylserine-prothrombin complex with manifestations of the antiphospholipid syndrome and with the presense of lupus anticoagulant. Arthritis Rheum 2000;43:19821993.Google Scholar
Feldmann, E, Levine, SR: Cerebrovascular disease with antiphospholipid antibodies: Immune mechanisms, significance, and therapeutic options. Ann Neurol 1995;37(suppl 1):S114S130.Google Scholar
Levine, SR, Salowich-Palm, L, Sawaya, KL, et al: IgG anticardiolipin antibody titer 40 GPL and the risk of subsequent thrombo-occlusive events and death. A prospective cohort study. Stroke 1997;28:16601665.Google Scholar
Verro, P, Levine, SR, Tietjen, GE: Cerebrovascular ischemic events with high positive anticardiolipin antibodies. Stroke 1998;29:22452253.Google Scholar
Provenzale, JM, Barboriak, DP, Allen, NB, Ortel, TL: Antiphospholipid antibodies: Findings at arteriography. AJNR Am J Neuroradiol 1998;19:611616.Google Scholar
Bick, RL: Disseminated intravascular coagulation and related syndromes: A clinical review. Semin Thromb Hemost 1988;14:299338.Google Scholar
Wen, PY, Sobel, RA: Case records of the Massachusetts General Hospital: Case 36–1991. N Engl J Med 1991;325:714726.Google Scholar
Colman, RW, Rubin, RN: Disseminated intravascular coagulation due to malignancy. Semin Oncol 1990;17:172186.Google Scholar
Schwartzman, RJ, Hill, JB: Neurologic complications of disseminated intravascular coagulation. Neurology 1982;32:791797.Google Scholar
Schwartzman, RJ, Kumar, M: Disseminated intravascular disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 275282.Google Scholar
Dashe, J: Hyperviscosity and stroke. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 347356.Google Scholar
Grotta, J, Ackerman, R, Correia, J, et al: Whole blood viscosity parameters and cerebral blood flow. Stroke 1982;13:296301.Google Scholar
Coull, BM, Beamer, N, de Garmo, P, et al: Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 1991;22:162168.Google Scholar
Ernst, E, Resch, KL: Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med 1993;118:956963.Google Scholar
Fahey, JL, Barth, WF, Solomon, A: Serum hyperviscosity syndrome. JAMA 1965;192:464467.Google Scholar
Rosenson, RS, Baker, AL, Chow, M, Hay, R: Hyperviscosity syndrome in a hypercholesterolemic patient with primary biliary cirrhosis. Gastroenterology 1990;98:13511357.Google Scholar
Fauci, A, Haynes, BF, Costa, J, et al: Lymphatoid granulomatosis: Prospective clinical and therapeutic experience over 10 years. N Engl J Med 1982;306:6874.Google Scholar
Hogan, PJ, Greenberg, MK, McCarty, GE: Neurologic complications of lymphomatoid granulomatosis. Neurology 1981;31:619620.Google Scholar
Hochberg, EP, Gilman, MD, Hasserjian, RP: Case records of the Massachusetts General Hospital. Case 17–2006 – a 34-year-old man with cavitary lung lesions. N Engl J Med 2006;354:24852493.Google Scholar
Mizuno, T, Takanashi, Y, Onodera, H, et al: A case of lymphomatoid granulomatosis/angiocentric immunoproliferative lesion with long clinical course and diffuse brain involvement. J Neuro Sci 2003;213:6776.Google Scholar
Rubens, EO: Intravascular lymphoma. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 533537.Google Scholar
Petito, CK, Gottlieb, GJ, Dougherty, JH, Petito, FA: Neoplastic angioendotheliosis: Ultrastructural study and review of the literature. Ann Neurol 1978;3:393399.Google Scholar
Beal, MF, Fisher, CM: Neoplastic angioendotheliosis. J Neurol Sci 1982;53:359375.Google Scholar
Reinglass, JL, Miller, J, Wissman, S: Central nervous system angioendotheliosis. Stroke 1977;8:218221.Google Scholar
Raroque, HG, Mandler, RN, Griffey, MS, et al: Neoplastic angioendotheliomatosis. Arch Neurol 1990;47:929930.Google Scholar
Glass, J, Hochberg, FH, Miller, DC: Intravascular lymphomatosis – a systemic disease with neurologic manifestations. Cancer 1993;71:31563164.Google Scholar
Hamada, K, Hamada, T, Satoh, M, et al: Two cases of neoplastic angioendotheliomatosis presenting with myelopathy. Neurology 1991;41:11391140.Google Scholar
Kanegane, H, Ito, Y, Ohshima, K, et al: X-linked lymphoproliferative syndrome presenting with systemic lymphocytic vasculitis. Am J Hematol 2005;78:130133.Google Scholar
Natowicz, M, Kelley, RI: Mendelian etiologies of stroke. Ann Neurol 1987;22:175192.Google Scholar
Albert, M: Genetics of Cerebrovascular Disease. Armonk, NY: Futura, 1999.Google Scholar
Alberts, MJ: Genetics of cerebrovascular disease. Stroke 2004;35:342344.Google Scholar
Meschia, JF, Worrall, BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Neurol Neurosci Rep 2004;4:420426.Google Scholar
Hoy, A, Leininger-Muller, B, Poirier, O, et al: Myeloperoxidase polymorphisms in brain infarction. Association with infarct size and functional outcome. Atherosclerosis 2003;167:223230.Google Scholar
Hirt, L: MELAS and other mitochondrial disorders. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 149154.Google Scholar
Pavlakis, SG, Phillips, PC, DiMauro, S, et al: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes: A distinctive clinical syndrome. Ann Neurol 1984;16:481488.Google Scholar
Morgan-Hughes, JA: Mitochondrial diseases. In Engel, AG, Franzini-Armstrong, C (eds): Myology, vol 2, 2nd ed. New York: McGraw-Hill, 1994, pp 16101660.Google Scholar
Kuriyama, M, Umezaki, H, Fukuda, Y, et al: Mitochondrial encephalomyopathy with lactate-pyruvate elevation and brain infarctions. Neurology 1984;34:7277.Google Scholar
Allard, JC, Tilak, C, Carter, AP: CT and MR of MELAS syndrome. AJNR Am J Neuroradiol 1988;9:12341238.Google Scholar
Koo, B, Becker, LE, Chuang, S, et al: Mitochondrial encephalomyopathy, lactic acidosis, stroke like episodes (MELAS): Clinical, radiological, and genetic observations. Ann Neurol 1993;34:2532.Google Scholar
Matthews, PM, Tampieri, D, Berkovic, SF, et al: Magnetic resonance imaging shows specific abnormalities in the MELAS syndrome. Neurology 1991;41:10431046.Google Scholar
Clark, JM, Marks, MP, Adalsteinsson, E, et al: MELAS: Clinical and pathological correlations with MRI, Xenon/CT, and MR spectroscopy. Neurology 1996;46:223227.Google Scholar
Sue, CM, Crimmins, DS, Soo, YS, et al: Neuroradiological features of six kindreds with MELAS tRNALeu A3243 G point mutation: Implications for pathogenesis. J Neurol Neurosurg Psychiatry 1998;65:233240.Google Scholar
Mitsias, P, Levine, SR: Cerebrovascular complications of Fabry’s disease. Ann Neurol 1996;40:817.Google Scholar
Mitsias, P, Papamitsakis, NIH, Amory, CF, Levine, SR: Cerebrovascular complications of Fabry disease. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 123130.Google Scholar
Brady, RO, Gal, AE, Bradley, RM, et al: Enzymatic defect in Fabry’s disease: Ceramide trihexosidase deficiency. N Engl J Med 1967;276:11631167.Google Scholar
Dawson, DM, Miller, DC: Case records of the Massachusetts General Hospital: Case 2–1984. N Engl J Med 1984;310:106114.Google Scholar
Kint, JA: Fabry’s disease: Alpha-galactosidase deficiency. Science 1970;167:12681269.Google Scholar
Eng, CM, Guffon, N, Wilcox, WR, et al: Safety and efficacy of recombinant human alpha-galactosidase A – replacement therapy in Fabry’s disease. N Engl J Med 2001;5:345:916.Google Scholar
Desnick, RJ, Brady, R, Barranger, J, et al: Fabry disease, an under-recognized multi-systemic disorder: Expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 2003;138:338346.Google Scholar
Kolodny, E, Fellgiebel, A, Hilz, MJ, et al: Cerebrovascular involvement in Fabry disease. Current status of knowledge. Stroke 2015;46:302313.Google Scholar
Chabriat, H, Bousser, M-G: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 115122.Google Scholar
Tournier-Lasserve, E, Iba-Zizen, M-T, Romero, N, Bousser, M-G: Autosomal dominant syndrome with stroke-like episodes and leukoencephalopathy. Stroke 1991;22:12971302.Google Scholar
Mas, JL, Dilouya, A, de Recondo, J: A familial disorder with subcortical ischemic strokes, dementia, and leukoencephalopathy. Neurology 1992;42:10151019.Google Scholar
Hutchinson, M, O’Riordan, J, Javed, M, et al: Familial hemiplegic migraine and autosomal dominant arteriopathy with leukoencephalopathy (CADASIL). Ann Neurol 1995;38:817824.Google Scholar
Ragno, M, Tournier-Lasserve, E, Fiori, MG, et al: An Italian kindred with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Ann Neurol 1995;38:231236.Google Scholar
Dichgans, M, Mayer, M, Uttner, I, et al: The phenotypic spectrum of CADASIL: Clinical findings in 102 cases. Ann Neurol 1998;44:731739.Google Scholar
Caplan, LR, Arenillas, J, Cramer, SC, et al: Stroke-related translational research (Review). Arch Neurol 2011;68:11101123.Google Scholar
Chabriat, H, Joutel, A, Dichgans, M, et al: CADASIL. Lancet Neurol 2009;8:643653.Google Scholar
Chabriat, H, Levy, C, Taillia, H, et al: Patterns of MRI lesions in CADASIL. Neurology 1998;51:452457.Google Scholar
Joutel, A, Corpechot, C, Ducros, A, et al: Notch 3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707710.Google Scholar
Fukutake, T, Hirayama, K: Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension. Eur Neurol 1995;35:6979.Google Scholar
Fukutake, T: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): From discovery to gene identification. J Stroke Cerebrovasc Dis 2011;20:8593.Google Scholar
Menkes, J: Menkes disease (kinky hair disease). In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 225230.Google Scholar
Menkes, J, Alter, M, Steigleder, G, et al: A sex-linked recessive disorder with retardation of growth, peculiar hair and focal cerebral and cerebellar degeneration. Pediatrics 1962;29:764779.Google Scholar
Moller, JV, Juul, B, Le Maire, M: Structural organization, ion transport, and energy transduction of P-type ATP-ases. Biochem Biophys Acta 1996;1286:151.Google Scholar
Moller, LB, Tumer, Z, Lund, C, et al: Similar splice-site mutations of the ATP7A gene lead to different phenotypes: Classical Menkes disease or occipital horn syndrome. Am J Hum Genet 2000;66:12111220.Google Scholar
Iannaccone, ST, Rosenberg, RN: Menkes disease. In Berg, B (ed): Principles of Child Neurology. New York: McGraw-Hill, 1995, pp 473475.Google Scholar
Morgello, S, Peterson, HD, Kahn, LJ, Laufer, H: Menkes kinky hair disease with “ragged red fibers.” Dev Med Child Neurol 1988;30:812816.Google Scholar
Kaler, S, Holmes, CS, Goldstein, DS, et al: Neonatal diagnosis and treatment of Menkes disease. N Engl J Med 2008;358:605614.Google Scholar
Nedeltchev, N, Mattle, HP: Cerebrovascular manifestations of neurofibromatosis. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 221224.Google Scholar
Taboada, D, Alonso, A, Moreno, J: Occlusion of the cerebral arteries in Recklinghausen’s disease. Neuroradiology 1979;18:281284.Google Scholar
Levinsohn, PM, Mikhael, MA, Rothman, SM: Cerebrovascular changes in neurofibromatosis. Dev Med Child Neurol 1978;20:789793.Google Scholar
Rizzo, JF, Lessell, S: Cerebrovascular abnormalities in neurofibromatosis type l. Neurology 1994;44:10001002.Google Scholar
Boers, GH, Smals, AG, Trijbels, FJ, et al: Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive disease. N Engl J Med 1985;313:709715.Google Scholar
Welch, GN, Loscalzo, J: Homocysteine and atherothrombosis. N Engl J Med 1998;338:10421050.Google Scholar
Caplan, LR, Hurst, JW: Homocysteinemia and homocystinuria. In Caplan, LR, Hurst, JW, Chimowitz, M (eds): Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 431432.Google Scholar
Ueland, PM, Refsum, H, Stabler, SP, et al: Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 1993;39:17641769.Google Scholar
Finkelstein, JD, Martin, JJ, Harris, BJ: Methionine metabolism in mammals: The methionine-sparing effect of cystine. J Biol Chem 1988;263:1175011754.Google Scholar
Mudd, SH, Skovby, F, Levy, HL, et al: The natural history of homocystinuria due to cystathione-beta-synthase deficiency. Am J Hum Genet 1985;37:131.Google Scholar
Vermaak, WJ, Ubbink, JB, Barnard, HC, et al: Vitamin B6 nutrition status and cigarette smoking. Am J Clin Nutr 1990;51:10581061.Google Scholar
Clarke, R, Daly, L, Robinson, K, et al: Hyperhomocysteinemia: An independent risk factor for vascular disease. N Engl J Med 1991;324:11491155.Google Scholar
Evers, S, Koch, H-G, Grotemeyer, K-H, et al: Features, symptoms, and neurophysiological findings in stroke associated with hyperhomocysteinemia. Arch Neurol 1997;54:12761282.Google Scholar
Selhub, J, Jacques, PF, Bostom, AG, et al: Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995;332:286291.Google Scholar
Harker, LA, Slichter, SJ, Scott, CR: Homocysteinemia: Vascular injury and arterial thrombosis. N Engl J Med 1974;291:537543.Google Scholar
Harker, LA, Ross, R, Slichter, SJ, Scott, CR: Homocysteine-induced arteriosclerosis: The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976;58:731741.Google Scholar
Tsai, J-C, Perrella, MA, Yoshizumi, M, et al: Promotion of vascular smooth muscle cell growth by homocysteine: A link to atherosclerosis. Proc Natl Acad Sci U S A 1994;91:63696373.Google Scholar
Roach, ES, Anselm, I, Rosman, NP, Caplan, LR: Progeria. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 145148.Google Scholar
Merideth, MA, Gordon, LB, Clauss, S, et al: Phenotype and course of Hutchinson–Gilford progeria syndrome. N Engl J Med 2008;358:592604.Google Scholar
Delgado Luengo, W, Rojas Martinez, A, Ortiz Lopez, R, et al: Del(1)(q23) in a patient with Hutchinson–Gilford progeria. Am J Med Genet 2002;113:298301.Google Scholar
McClintock, D, Gordon, LB, Djabali, K: Hutchinson–Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-lamin A G608 G antibody. Proc Natl Acad Sci U S A 2006;103:21542159.Google Scholar
Zuber, M: Hereditary hemorrhagic telangiectasia (Osler–Weber–Rendu disease). In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 109114.Google Scholar
Osler, W: On a family form of recurring epistaxis, associated with multiple telengiectases of the skin and mucous membranes. John Hopkins Hosp Bull 1901;12:333337.Google Scholar
Peery, WH: Clinical spectrum of hereditary haemorrhagic telengiectasia (Osler–Weber–Rendu disease). Am J Med 1987;82:989997.Google Scholar
Guttmacher, AE, Marchuk, DA, White, RI: Hereditary hemorrhagic telangiectasia. N Engl J Med 1995;333:918924.Google Scholar
Gould, DB, Phalan, FC, Breedveld, GJ, et al: Mutations in COL4A1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:11671171.CrossRefGoogle ScholarPubMed
Gould, DB, Phalan, FC, van Mil, SE, et al: Role of COL4A1 in small vessel disease and hemorrhagic stroke. N Engl J Med 2006;354:14891496.Google Scholar
Vahedi, K, Boukobza, M, Massin, P, et al: Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 2007;69:15641568.Google Scholar
Meschia, JF, Rosand, J: Fragile vessels. Handle with care. Neurology 2007;69:15601561.Google Scholar
Labrune, P, Lacroix, C, Goutieres, F, et al: Extensive brain calcifications, leukodystrophy, and formation of parenchymal cysts: A new progressive disorder due to diffuse cerebral microangiopathy. Neurology 1996;46:12971301.CrossRefGoogle ScholarPubMed
Corboy, JR, Gault, J, Kleinschmidt-Demasters, BK: An adult case of leukoencephalopathy with intracranial calcifications and cysts. Neurology 2006;67:18901892.CrossRefGoogle ScholarPubMed

References

Rinkel, GJE, Djibuti, M, Algra, A, van Gijn, J: Prevalence and risk of rupture of intracranial aneurysms. A systematic review. Stroke 1998;29:251256.CrossRefGoogle ScholarPubMed
International Study of Unruptured Intracranial Aneurysms Investigators: Unruptured intracranial aneurysms – risk of rupture and risks of surgical intervention. N Engl J Med 1998;339:17251733.CrossRefGoogle Scholar
Mayberg, MR, Batjer, HH, Dacey, R, et al: Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 1994;25:23152328.Google Scholar
Weir, B: Aneurysms Affecting the Central Nervous System. Baltimore: Williams & Wilkins, 1987.Google Scholar
Kaibara, T, Heros, RC: Aneurysms. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 171179.Google Scholar
Parkarinen, S: Incidence, etiology, and prognosis of primary subarachnoid hemorrhage: A study based on 589 cases diagnosed in a defined urban population during a defined period. Acta Neurol Scand 1967;43(suppl 29):1128.Google Scholar
Phillips, LH, Whisnant, JP, O’Fallan, W, et al: The unchanging pattern of subarachnoid hemorrhage in a community. Neurology 1980;30:10341040.Google Scholar
Ingall, TJ, Whisnant, JP, Wiebers, DO, O’Fallon, WM: Has there been a decline in subarachnoid hemorrhage mortality? Stroke 1989;20:718724.Google Scholar
The UCAS Japan Investigators. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 2012;366:24742482.Google Scholar
Wiebers, DO, Whisnant, JP, Huston, J III, et al: Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003;362:103110.Google Scholar
Korja, M, Lehto, H, Juvela, S: Lifelong rupture risk of intracranial aneurysms depends on risk factors: a prospective Finnish Cohort Study. Stroke 2014;45:19581963.Google Scholar
Locksley, HB: Report of the Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage. Sec V, part I: Natural history of subarachnoid hemorrhage, intracranial aneurysms, and arteriovenous malformation-based on 6,368 cases in the cooperative study. J Neurosurg 1966;25:219239.Google Scholar
Locksley, HB: Report of the Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage. Sec V, part II: Natural history of subarachnoid hemorrhage, intracranial aneurysms, and arteriovenous malformation. J Neurosurg 1966;25:321368.Google Scholar
Heros, RC, Kistler, JP: Intracranial arterial aneurysms – an update. Stroke 1983;14:628631.Google Scholar
Winn, WR, Richardson, AE, Jane, JA: The long-term prognosis in untreated cerebral aneurysms: I. The incidence of late hemorrhage in cerebral aneurysms – a ten-year evaluation of 364 patients. Ann Neurol 1977;1:358370.Google Scholar
Kassell, NF, Kongable, GL, Torner, JC, et al: Delay in referral of patients with ruptured aneurysms to neurosurgical attention. Stroke 1985;16:587590.Google Scholar
Bor, ASE, Velthuis, BK, Majoie, CB, Rinkel, GJE: Configuration of intracranial arteries and development of aneurysms. Neurology 2008;70:700705.Google Scholar
Caplan, LR: Subarachnoid hemorrhage, aneurysms, and vascular malformations. In Caplan, LR (ed): Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell, 1996, pp 633685.Google Scholar
Suzuki, J, Onuma, T, Yoshimoto, T: Results of early operations on cerebral aneurysms. Surg Neurol 1979;11:407412.Google Scholar
Bromberg, JE, Rinkel, GJ, Algra, A, et al: Familial subarachnoid hemorrhage: Distinctive features and patterns of inheritance. Ann Neurol 1995;38:929934.Google Scholar
Raaymakers, TW, Rinkel, GJ, Ramos, LM: Initial and follow-up screening for aneurysms in families with familial subarachnoid hemorrhage. Neurology 1998;51:11251130.Google Scholar
Schievink, WI, Schaid, DJ, Rogers, HM, et al: On the inheritance of intracranial aneurysms. Stroke 1994;25:20282037.Google Scholar
Ruigrok, YM, Rinkel, GJE, Wijmenga, C: Genetics of intracranial aneurysms. Lancet Neurology 2005;4:179189.Google Scholar
Ruigrok, YM, Seitz, U, Wolterink, S, et al: Association of polymorphisms and pairwise haplotypes in the elastin gene in Dutch patients with subarachnoid hemorrhage from non-familial aneurysms. Stroke 2004;35:20642068.Google Scholar
Ruigrok, YM, Rinkel, GJE: Genetics of intracranial aneurysms. Stroke 2008;39:10491055.Google Scholar
Nahed, BV, Bydon, M, Ozturk, AK, et al: Genetics of intracranial aneurysms. Neurosurgery 2007;60:213225.Google Scholar
Ruigrok, YM, Rinkel, GJE, Wijmenga, C: The Versican gene and the risk of intracranial aneurysms. Stroke 2006;37:23722374.Google Scholar
Ruigrok, YM, Wijmenga, C, Rinkel, GJE, et al: Genomewide linkage in a large Dutch family with intracranial aneurysms. Stroke 2008;39:10961102.Google Scholar
Van den Berg, JSP, Limburg, M, Pais, G, et al: Some patients with intracranial aneurysms have a reduced type III/type I collagen ratio. Neurology 1997;49:15461551.Google Scholar
Ferguson, GG: Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J Neurosurg 1972;37:666677.Google Scholar
Adams, HP, Kassell, N, Torner, JC, et al: Early management of aneurysmal subarachnoid hemorrhage. J Neurosurg 1981;54:141145.Google Scholar
Ferguson, GG, Peerless, SJ, Drake, CG: Natural history of intracranial aneurysms. N Engl J Med 1981;305:99.Google Scholar
Caplan, LR: Should intracranial aneurysms be treated before they rupture? N Engl J Med 1998; 339:17741775.Google Scholar
Wiebers, DO, Whisnant, JP, O’Fallon, WM: The natural history of unruptured intracranial aneurysms. N Engl J Med 1981;304:696698.Google Scholar
Drake, CG: Giant intracranial aneurysm: Experience with surgical treatment in 174 patients. In Carmel, PW (ed): Clinical Neurosurgery. Baltimore: Williams & Wilkins, 1979, pp 1295.Google Scholar
Kassell, N, Drake, CG: Review of the management of saccular aneurysms. In Barnett, HJM (ed): Neurological Clinics, vol 1. Philadelphia: Saunders, 1983, pp 7386.Google Scholar
Adams, HP, Jergenson, DD, Kassell, NF, Sahs, AL: Pitfalls in the recognition of subarachnoid hemorrhage. JAMA 1980;244:794796.Google Scholar
Edlow, JA, Caplan, LR: Avoiding pitfalls in the diagnosis of subarachnoid hemorrhage. N Engl J Med 2000;342:2936.Google Scholar
Gorelick, PB, Hier, DB, Caplan, LR, Langenberg, P: Headache in acute cerebrovascular disease. Neurology 1986;36:14451450.Google Scholar
Hauerberg, J, Andersen, BB, Eskesen, V, et al: Importance of the recognition of a warning leak as a sign of a ruptured intracranial aneurysm. Acta Neurol Scand 1971;83:6164.Google Scholar
Ostergaard, JR: Warning leak in subarachnoid haemorrhage. BMJ 1990;301:190191.Google Scholar
Drake, CG: The treatment of aneurysms of the posterior circulation. In Carmel, PW (ed): Clinical Neurosurgery. Baltimore: Williams & Wilkins, 1979, pp 96144.Google Scholar
Stewart, RM, Samsom, D, Diehl, J, et al: Unruptured cerebral aneurysms presenting as recurrent transient neurological deficits. Neurology 1980;30:4751.CrossRefGoogle Scholar
Fisher, M, Davidson, RI, Marcus, EM: Transient focal cerebral ischemia as a presenting manifestation of unruptured cerebral aneurysms. Ann Neurol 1980;8:367372.Google Scholar
Sutherland, GR, King, ME, Peerless, SJ, et al: Platelet interaction within giant intracranial aneurysms. J Neurosurg 1982;56:5361.Google Scholar
Weisberg, LA: Ruptured aneurysms of anterior cerebral or anterior communicating arteries. Neurology 1985;35:15621566.CrossRefGoogle ScholarPubMed
Tokuda, Y, Inagawa, T, Katoh, Y, Kumano, K, Ohbayashi, N, Yoshioka, H: Intracerebral hematoma in patients with ruptured cerebral aneurysms. Surg Neurol 1995;43:272277.Google Scholar
Hunt, WE, Hess, RM: Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 1968;28:1420.Google Scholar
Drake, CG, Hunt, WE, Sano, K, et al. Report of World Federation of Neurological Surgeons Committee on a Universal Subarachnoid Hemorrhage Grading Scale. J Neurosurg 1988;68:985986.Google Scholar
van Heuven, AW, Dorhout Mees, SM, Algra, A, Rinkel, GJ: Validation of a prognostic subarachnoid hemorrhage grading scale derived directly from the Glasgow Coma Scale. Stroke 2008;39:13471348.Google Scholar
Teasdale, G, Jennett, B: Assessment of coma and impaired consciousness. A practical scale. Lancet 1974;2:8184.Google Scholar
Teasdale, G, Jennett, B: Assessment and prognosis of coma after head injury. Acta Neurochir (Wien) 1976;34:4555.Google Scholar
Wijdicks, EFM: Clinical scales for comatose patients: The Glasgow Coma Scale in historical context and the new Four Score. Rev Neurol Dis 2006;3:109117.Google Scholar
Weisberg, L: Computed tomography in aneurysmal subarachnoid hemorrhage. Neurology 1979;29:802808.Google Scholar
Liliequist, B, Lindquist, M: Computer tomography in the evaluation of subarachnoid hemorrhage. Acta Radiol Diagn (Stockh) 1980;21:327331.Google Scholar
Van der Jagt, M, Hasan, D, Bijvoet, HWC, et al: Validity of prediction of the site of ruptured intracranial aneurysm with CT. Neurology 1999;52:3439.Google Scholar
Van Gijn, J, van Dongen, KJ, Vermeulan, M, et al: Perimesencephalic hemorrhage: A nonaneurysmal and benign form of subarachnoid hemorrhage. Neurology 1985;35:483487.Google Scholar
Rinkel, GJ, Wijdicks, E, Vermeulen, M, et al: The clinical course of perimesencephalic nonaneurysmal subarachnoid hemorrhage. Ann Neurol 1991;29:463468.Google Scholar
Schievink, WI, Wijdicks, EFM: Pretruncal subarachnoid hemorrhage: An anatomically correct description of the perimesencephalic subarachnoid hemorrhage. Stroke 1997;28:2572.Google Scholar
Van Gijn, J, Rinkel, JE: Subarachnoid hemorrhage syndromes. In Caplan, LR, van Gijn, J (eds), Stroke Syndromes, 3rd ed. Cambridge, Cambridge University Press, 2012, pp 534541.Google Scholar
Kershenovich, A, Rappaport, ZH, Maimon, S: Brain computed tomography angiographic scans as the sole diagnostic examination for excluding aneurysms in patients with perimesencephalic subarachnoid hemorrhage. Neurosurgery 2006;59:798801.Google Scholar
Patel, KC, Finelli, PF: Non-aneurysmal convexity subarachnoid hemorrhage. Neurocrit Care 2006;4:229233.Google Scholar
Spitzer, C, Mull, M, Rohde, V, Kosinski, CM: Non-traumatic cortical subarachnoid haemorrhage: Diagnostic work-up and aetiological background. Neuroradiology 2005;47:525531.Google Scholar
Kumar, S, Goddeau, RP, Selim, MH, et al: Atraumatic convexal subarachnoid hemorrhage: Clinical presentation, imaging patterns, and etiologies. Neurology 2010;74:893899.CrossRefGoogle ScholarPubMed
Nakajima, M, Inatomi, Y, Yonehara, T, Hirano, T, Ando, Y: Nontraumatic convexal subarachnoid hemorrhage concomitant with acute ischemic stroke. J Stroke Cerebrovasc Dis 2014;23:15641570.Google Scholar
Fisher, CM, Kistler, JP, Davis, JM: Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computed tomographic scanning. Neurosurgery 1980;6:19.Google Scholar
Kistler, JP, Crowell, RM, Davis, KR, et al: The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: A prospective study. Neurology 1983;33:424437.Google Scholar
Hijdra, A, van Gijn, J, Nagelkerke, N, et al: Prediction of delayed cerebral ischemia, rebleeding, and outcome after aneurysmal subarachnoid hemorrhage. Stroke 1988;19:12501256.Google Scholar
Brouwers, PJ, Dippel, DW, Vermeulen, M, et al: Amount of blood on computed tomography as an independent predictor after aneurysm rupture. Stroke 1993;24:809814.Google Scholar
Sherlock, M, Agha, A, Thompson, CJ: Aneurysmal subarachnoid hemorrhage. N Engl J Med 2006;354:17551757.Google Scholar
Alberico, RA, Patel, M, Casey, S, et al: Evaluation of the circle of Willis with three-dimensional CT angiography in patients with suspected intracranial aneurysms. AJNR Am J Neuroradiol 1995;16:15711578.Google Scholar
Jayaraman, MV, Mayo-Smith, WW, Tung, GA, et al: Detection of intracranial aneurysms: multi-detector row CT angiography compared with DSA. Radiology 2004;230:510518.Google Scholar
Yoon, DY, Lim, KJ, Choi, CS, et al: Detection and characterization of intracranial aneurysms with 16-channel multidetector row CT angiography: A prospective comparison of volume-rendered images and digital subtraction angiography. AJNR Am J Neuroradiol 2007;28:6067.Google Scholar
Ross, J, Masaryk, T, Modic, M, et al: Intracranial aneurysms: Evaluation by MR angiography. AJNR Am J Neuroradiol 1990;11:449456.Google Scholar
Okahara, M, Kiyosue, H, Yamashita, M, et al: Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: A study of 133 aneurysms. Stroke 2002;33:18031808.Google Scholar
Unlu, E, Cakir, B, Gocer, B, et al: The role of contrast-enhanced MR angiography in the assessment of recently ruptured intracranial aneurysms: A comparative study. Neuroradiology 2005;47:780791.Google Scholar
Caplan, LR, Flamm, ES, Mohr, JP, et al: Lumbar puncture and stroke. Stroke 1987;18:540A544A.Google Scholar
Edlow, JA: Diagnosis of subarachnoid hemorrhage. Neurocrit Care 2005;2:99109.Google Scholar
Van Gign, J, Kerr, RS, Rinkel, GJE: Subarachnoid haemorrhage. Lancet 2007;369:306318.Google Scholar
Van der Meulen, JP: Cerebrospinal fluid xanthochromia: An objective index. Neurology 1966;16:170178.Google Scholar
Perry, JJ, Sivilotti, ML, Stiell, IG, et al: Should spectrophotometry be used to identify xanthochromia in the cerebrospinal fluid of alert patients suspected of having subarachnoid hemorrhage? Stroke 2006;37:24672472.Google Scholar
Hayward, RS: Subarachnoid hemorrhage of unknown etiology. J Neurol Neurosurg Psychiatry 1977;40:926931.Google Scholar
Rinkel, GJE, van Gijn, J, Wijdicks, EFM: Subarachnoid hemorrhage without detectable aneurysm: A review of the causes. Stroke 1993;24:14031409.Google Scholar
Caplan, LR, Brass, LM, DeWitt, LD, et al: Transcranial Doppler ultrasound: Present status. Neurology 1990;40:696700.Google Scholar
Sloan, MA, Alexandrov, AV, Tegeler, CH, et al: Assessment: Transcranial Doppler ultrasonography: Report of the Therapeutics and Technology Assessment. Subcommittee of the American Academy of Neurology. Neurology 2004;62:14681481.Google Scholar
Harders, AG, Gilsbach, JM: Time course of blood velocity changes related to vasospasm in the circle of Willis measured by transcranial Doppler ultrasound. J Neurosurg 1987;66:718728.Google Scholar
Sloan, MA, Haley, EC, Kassell, NF, et al: Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 1989;391:15141518.Google Scholar
Sekhar, L, Wechsler, L, Yonas, H, et al: Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1988;22:813821.Google Scholar
Davis, SM, Andrews, JT, Lichtenstein, M, et al: Correlations between cerebral arterial velocities, blood flow, and delayed ischemia after subarachnoid hemorrhage. Stroke 1992;23:492497.Google Scholar
Davis, S, Andrews, J, Lichtenstein, M, et al: A single-photon emission computed tomography study of hyperperfusion after subarachnoid hemorrhage. Stroke 1990;21:252259.Google Scholar
Chieregato, A, Sabia, G, Tanfani, A, et al: Xenon-CT and transcranial Doppler in poor-grade or complicated aneurysmatic subarachnoid hemorrhage patients undergoing aggressive management of intracranial hypertension. Intensive Care Med 2006;32:11431150.Google Scholar
Hillman, J, Sturnegk, P, Yonas, H, et al: Bedside monitoring of CBF with xenon-CT and a mobile scanner: A novel method in neurointensive care. Br J Neurosurg 2005;19:395401.Google Scholar
Rordorf, G, Koroshetz, WJ, Copen, WA, et al: Diffusion- and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 1999;30:599605.Google Scholar
Condette-Auliac, S, Bracard, S, Anxionnat, R, et al: Vasospasm after subarachnoid hemorrhage: Interest in diffusion-weighted MR imaging. Stroke 2001;32:18181824.Google Scholar
Wijdicks, EFM, Schievink, W, Miller, GM: Pretruncal subarachnoid hemorrhage. Mayo Clin Proc 1998;73:745752.Google Scholar
Rinkel, GJ, Wijdicks, E, Vermeulen, M, et al: Outcome in perimesencephalic (nonaneurysmal) subarachnoid hemorrhage: A follow-up study in 37 patients. Neurology 1990;40:11301132.Google Scholar
Wijdicks, EFM, Schievink, WI: Perimesencephalic nonaneurysmal subarachnoid hemorrhage: First hint of a cause? Neurology 1997;49:634636.Google Scholar
Stein, RW, Kase, CS, Hier, DB, et al: Caudate hemorrhage. Neurology 1984;34:15491554.Google Scholar
Hochberg, F, Fisher, CM, Roberson, G: Subarachnoid hemorrhage caused by rupture of a small superficial artery. Neurology 1974;24:309311.Google Scholar
Lasjaunias, P, Chiu, M, ter Brugge, K, et al: Neurological manifestations of intracranial dural arteriovenous malformations. J Neurosurg 1986;64:724730.Google Scholar
Chang, R, Friedman, DP: Isolated cortical venous thrombosis presenting as subarachnoid hemorrhage: A report of three cases. AJNR Am J Neuroradiol 2004;25:16761679.Google Scholar
Oppenheim, C, Domigo, V, Gauvrit, JY, et al: Subarachnoid hemorrhage as the initial presentation of dural sinus thrombosis. AJNR Am J Neuroradiol 2005;26:614617.Google Scholar
Ohshima, T, Endo, T, Nukui, H, et al: Cerebral amyloid angiopathy as a cause of subarachnoid hemorrhage. Stroke 1990;21:480483.Google Scholar
Thompson, B, Burns, A: Subarachnoid hemorrhages in vasculitis. Am J Kidney Dis 2003;42:582585.Google Scholar
Fomin, S, Patel, S, Alcasid, N, et al: Recurrent subarachnoid hemorrhage in a 17 year old with Wegener granulomatosis. J Clin Rheumatol 2006;12:212213.Google Scholar
Broderick, JP, Brott, TG, Duldner, JE, et al: Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 1994;25:13421347.Google Scholar
Suarez, JI, Tarr, RW, Selman, WR: Aneurysmal subarachnoid hemorrhage. N Engl J Med 2006;354:387396.Google Scholar
Bambidakis, NC, Selman, WR: Subarachnoid hemorrhage. In Suarez, JL (ed): Critical Care Neurology and Neurosurgery. Towata, NJ: Humana Press, 2004, pp 365377.Google Scholar
Clower, BR, Smith, RR, Haining, JL, Lockard, J: Constrictive endarteropathy following experimental subarachnoid hemorrhage. Stroke 1981;12:501508.Google Scholar
Smith, RR, Clower, BR, Grotendorst, GM, et al: Arterial wall changes in early human vasospasm. Neurosurgery 1985;16:171176.Google Scholar
Yamamoto, Y, Smith, RR, Bernanke, DH: Accelerated nonmuscle contraction after subarachnoid hemorrhage: Culture and characterization of myofibroblasts from human cerebral arteries in vasospasm. Neurosurgery 1992;30:337345.Google Scholar
Macdonald, RL, Weir, BKA: A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 1991;22:971982.Google Scholar
Macdonald, RL: Cerebral Vasospasm. In Welch, KMA, Caplan, LR, Reis, DJ, et al. (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 490497.Google Scholar
Hughes, JT, Schianchi, PM: Cerebral artery spasm: A histological study at necropsy of the blood vessels in cases of subarachnoid hemorrhage. J Neurosurg 1978;48:515525.Google Scholar
Conway, LW, McDonald, LW: Structural changes of the intradural arteries following subarachnoid hemorrhage. J Neurosurg 1972;37:715723.Google Scholar
Wellum, GR, Peterson, JW, Zervas, NT: The relevance of in vivo smooth muscle experiments to cerebral vasospasm. Stroke 1985;16:573581.Google Scholar
Kassell, NF, Sasaki, T, Colohan, AR, Nazar, G: Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 1985;16:562572.Google Scholar
Kwak, R, Niizuma, H, Ohi, J, et al: Angiography study of cerebral vasospasm following rupture of intracranial aneurysms: I. Time of the appearance. Surg Neurol 1979;11:257262.Google Scholar
Weir, B, Grace, M, Hansen, J, et al: Time course of vasospasm in man. J Neurosurg 1978;48:173178.Google Scholar
Heros, RC, Zervas, NT, Varsos, V: Cerebral vasospasm after subarachnoid hemorrhage: An update. Ann Neurol 1983;14:599608.Google Scholar
Chaudhary, SR, Ko, N, Dillon, W, et al: Prospective evaluation of multidetector-row CT angiography for the diagnosis of vasospasm following subarachnoid hemorrhage: A comparison with digital subtraction angiography. Cerebrovasc Dis 2008;25:144150.Google Scholar
Pham, M, Johnson, A, Bartsch, AJ, et al: CT perfusion predicts secondary cerebral infarction after aneurismal subarachnoid hemorrhage. Neurology 2007;69:762765.Google Scholar
Sviri, GE, Feinsod, M, Soustiel, JF: Brain natriuretic peptide and cerebral vasospasm in subarachnoid hemorrhage: Clinical and TCD correlations. Stroke 2000;31:118122.Google Scholar
Hop, JW, Rinkel, GJE, Algra, A, van Gijn, J: Initial loss of consciousness and risk of delayed cerebral ischemia after subarachnoid hemorrhage. Stroke 1999;30:22682271.Google Scholar
Lanterna, LA, Ruigrok, Y, Alexander, S, et al: Meta-analysis of APOE genotype and subarachnoid hemorrhage. Neurology 2007;69:766775.Google Scholar
Mizukami, M, Kawase, T, Usami, T, et al: Prevention of vasospasm by early operation with removal of subarachnoid blood. Neurosurgery 1982;10:301307.Google Scholar
Taneda, M: Effect of early operation for ruptured aneurysm in prevention of delayed ischemic symptoms. J Neurosurg 1982;5:622628.Google Scholar
Findlay, JM, Kassell, NF, Weir, BKA, et al: A randomized trial of intraoperative, intracisternal tissue plasminogen activator for prevention of vasospasm. Neurosurgery 1995;37:168178.Google Scholar
Sasaki, T, Kodama, N, Kawakami, M, et al: Urokinase cisternal irrigation therapy of symptomatic vasospasm after aneurismal subarachnoid hemorrhage. Stroke 2000;31:12561262.Google Scholar
Barth, M, Capelle, H-H, Weidauer, S, et al: Effect of nicardipine prolonged-release implants on cerebral vasospasm and clinical outcome after severe aneurismal subarachnoid hemorrhage. A prospective randomized double-blind phase II study. Stroke 2007;38:330336.Google Scholar
Macdonald, RL: Cerebral vasospasm. Neurosurg Quarterly 1995;5:7397.Google Scholar
Kassell, NF, Peerless, SJ, Durward, QJ, et al: Treatment of ischemic deficits from vasospasm with hypervolemia and induced arterial hypertension. Neurosurgery 1982;11:337343.Google Scholar
Solomon, RA, Fink, ME, Lennihan, L: Prophylactic volume expansion therapy for the prevention of delayed cerebral ischemia after early aneurysm surgery. Arch Neurol 1988;45:325332.Google Scholar
Solomon, RA, Post, KD, McMurty, JG: Depression of circulating blood volume in patients after subarachnoid hemorrhage: Implications for the management of symptomatic vasospasm. Neurosurgery 1984;15:354361.Google Scholar
Wood, JH, Simeone, FA, Kron, RE, et al: Rheological aspects of experimental hypervolemic hemodilation with low molecular weight dextran. Neurosurgery 1982;11:739753.Google Scholar
Lennihan, L, Mayer, SA, Fink, ME, et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke 2000;31:383391.Google Scholar
Dankbaar, JW, Slooter, AJC, Rinkel, GJE, van der Schaaf, IC: Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Critical Care 2010;14:R23.Google Scholar
Naidech, AM, Drescher, J, Ault, ML, Shaibani, A, Batjer, HH, Alberts, MJ: Higher hemoglobin is associated with less cerebral infarction, poor outcome, and death after subarachnoid hemorrhage. Neurosurgery 2006;59:775779.Google Scholar
Kramer, AH, Gurka, MJ, Nathan, B, Dumont, AS, Kassell, NF, Bleck, TP: Complications associated with anemia and blood transfusion in patients with aneurysmal subarachnoid hemorrhage. Crit Care Med 2008;36:20702075.Google Scholar
Naidech, AM, Jovanovic, B, Wartenberg, KE, et al: Higher hemoglobin is associated with improved outcome after subarachnoid hemorrhage. Crit Care Med 2007;35:23832389.Google Scholar
Dhar, R, Zazulia, AR, Videen, TO, et al. Red blood cell transfusion increases cerebral oxygen delivery in anemic patients with subarachnoid hemorrhage. Stroke 2009;40:30393044.Google Scholar
Connolly, ES, Rabinstein, AA, Carhuapoma, JR, et al. on behalf of the American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing, Council on Cardiovascular Surgery and Anesthesia, and Council on Clinical Cardiology: Guidelines for the management of aneurysmal subarachnoid hemorrhage. A Guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2012;43:17111737.Google Scholar
Pickard, JD, Murray, GD, Illingworth, R, et al: Effect of oral nimodipine in cerebral infarction and outcome after subarachnoid hemorrhage: British Aneurysm Nimodipine trial. BMJ 1981;298:636642.Google Scholar
Allen, GS: Cerebral arterial spasm: A controlled trial of nimodipine in subarachnoid hemorrhage patients – the Nimodipine Cerebral Arterial Spasm Study Group. Stroke 1983;14:122.Google Scholar
Feigin, VL, Rinkel, GJE, Algra, A, et al: Calcium antagonists in patients with aneurysmal subarachnoid hemorrhage. A systematic review. Neurology 1998;50:876883.Google Scholar
Fraticelli, AT, Cholley, BP, Losser, M-R, et al: Milrinone for the treatment of cerebral vasospasm after aneurismal subarachnoid hemorrhage. Stroke 2008;39:893898.Google Scholar
Higashida, RT, Halbach, VV, Cahan, LD, et al: Transluminal angioplasty for treatment of intracranial arterial vasospasm. J Neurosurg 1989;71:648653.Google Scholar
Hoh, BL, Ogilvy, CS: Endovascular treatment of cerebral vasospasm: Transluminal balloon angioplasty, intra-arterial papaverine, and intra-arterial nicardipine. Neurosurg Clin N Am 2005;16:501516.Google Scholar
Brisman, JL, Eskridge, JM, Newell, DW: Neurointerventional treatment of vasospasm. Neurol Res 2006;28:769776.Google Scholar
Newell, DW, Eskridge, JM, Mayberg, M, et al: Angioplasty for the treatment of symptomatic vasospasm following subarachnoid hemorrhage. J Neurosurg 1989;91:654660.Google Scholar
Leroux, PD, Winn, HR: Timing of surgery and special features of ruptured anterior circulation aneurysms. In Welch, KMA, Caplan, LR, Reis, DJ, et al. (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 450454.Google Scholar
Kirkpatrick, PJ, Turner, CL, Smith, C, Hutchinson, PJ, Murray, GD, STASH Collaborators: Simvastatin in aneurysmal subarachnoid hemorrhage (STASH): A multicenter randomized phase 3 trial. Lancet Neurol 2014;13:666675.Google Scholar
Dorhout Mees, SM, Algra, A, Vandertop, WP et al., MASH-2 Study Group: Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): A randomised placebo-controlled trial. Lancet 2012;380;4449.Google Scholar
Graff-Radford, NR, Torner, J, Adams, HP, Kassell, NF: Factors associated with hydrocephalus after subarachnoid hemorrhage. Arch Neurol 1989;46:744752.Google Scholar
Brouwers, PJ, Wijdicks, EF, Hasan, D, et al: Serial electrocardiographic recording in aneurysmal sub-arachnoid hemorrhage. Stroke 1989;20:11621167.Google Scholar
Caplan, LR, Hurst, JW: Cardiac and cardiovascular findings in patients with nervous system diseases. In Caplan, LR, Hurst, JW, Chimowitz, MI (eds): Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 298312.Google Scholar
Fabinyi, G, Hunt, D, McKinley, L: Myocardial creatine kinase isoenzyme in serum after subarachnoid hemorrhage. J Neurol Neurosurg Psychiatry 1977;40:818820.Google Scholar
Ramappa, P, Thatai, D, Coplin, W, et al: Cardiac troponin-I: A predictor of prognosis in subarachnoid hemorrhage. Neurocrit Care 2008;8:398403.Google Scholar
Kothavale, A, Banki, NM, Kopelnik, A, et al: Predictors of left ventricular regional wall motion abnormalities after subarachnoid hemorrhage. Neurocrit Care 2006;4:199205.Google Scholar
Oppenheimer, SM, Cechetto, DF, Hachinski, VC: Cerebrogenic cardiac arrhythmias. Cerebral electrocardiographic influences and their role in sudden death. Arch Neurol 1990;47:513519.Google Scholar
Di Pasquale, G, Pinelli, G, Andreoli, A, et al: Holter detection of cardiac arrhythmias in intracranial subarachnoid hemorrhage. Am J Cardiol 1987;59:596600.Google Scholar
Di Pasquale, G, Pinelli, G, Andreoli, A, et al: Torsade de pointes and ventricular flutter-fibrillation following spontaneous cerebral subarachnoid hemorrhage. Int J Cardiol 1988;18:163172.Google Scholar
Kolin, A, Norris, JW: Myocardial damage from acute cerebral lesions. Stroke 1984;15:990993.Google Scholar
Samuels, MA: The brain–heart connection. Circulation 2007;116:7784.Google Scholar
Salem, R, Vallée, F, Dépret, F, et al: Subarachnoid hemorrhage induces an early and reversible cardiac injury associated with catecholamine release: One-week follow-up study Critical Care 2014;18:558568.Google Scholar
Tsuchihashi, K, Ueshima, K, Uchida, T, Ohmura, N, Kimura, K: Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina pectoris–myocardial infarction investigations in Japan. J Am Coll Cardiol 2001;38:1118.Google Scholar
Kurisu, S, Sato, H, Kawagoe, T, et al: Takotsubo-like left ventricular dysfunction with ST-segment elevation: A novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J 2002;143:448455.Google Scholar
Bybee, KA, Kara, T, Prasad, A, et al: Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med 2004;141:858865.Google Scholar
Hakeem, A, Marks, AD, Bhatti, S, Chang, SM: When the worst headache becomes the worst heartache! Stroke 2007;38:32923295.Google Scholar
Bybee, KA, Prasad, A: Stress-related cardiomyopathy syndromes. Circulation 2008;118:397409.Google Scholar
Ciongoli, AK, Poser, CM: Pulmonary edema secondary to subarachnoid hemorrhage. Neurology 1972;22:867870.Google Scholar
Weir, BK: Pulmonary edema following fatal aneurysmal rupture. J Neurosurg 1978;49:502507.Google Scholar
Hoff, RG, Rinkel, GJE, Verweij, BH, Algra, A, Kalkman, CJ: Pulmonary edema and blood volume after aneurysmal subarachnoid hemorrhage: A prospreective observational study. Critical Care 2010:14;R43R50.Google Scholar
Takaku, A, Shindo, K, Tanaki, S, et al: Fluid and electrolyte disturbances in patients with intracranial aneurysms. Surg Neurol 1979;11:349356.Google Scholar
Qureshi, AI, Suri, MF, Sung, GY, et al: Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50:749755.Google Scholar
Zheng, B, Qiu, Y, Jin, H, et al: Predictive value of hyponatremia for poor outcome and cerebral infarction in high-grade aneurysmal subarachnoid haemorrhage patients. J Neurol Neurosurg Psychiatry 2011;82:213217.Google Scholar
Rabinstein, AA, Bruder, N: Management of hyponatremia and volume contraction. Neurocrit Care 2011;15:354360.Google Scholar
Katayama, Y, Haraoka, J, Hirabayashi, H, et al: A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurismal subarachnoid hemorrhage. Stroke 2007;38:23732375.Google Scholar
Diringer, MN, Lim, JS, Kirsch, JR, Hawley, DF: Suprasellar and intraventricular blood predict elevated plasma atrial natriuretic factor in subarachnoid hemorrhage. Stroke 1991;22:572581.Google Scholar
Wijdicks, EFM, Ropper, AH, Hunnicutt, EJ, et al: Atrial natriuretic factor and salt wasting after aneurysmal subarchnoid hemorrhage. Stroke 1991;22:15191524.Google Scholar
Schneider, HJ, Kreitschmann-Andermahr, I, Ghiko, E, et al: Hypothalamopituitary dysfunction following traumatic brain injury and aneurismal subarachnoid hemorrhage. A systemic review. JAMA 2007;298:14291438.Google Scholar
Kreitschmann-Andermahr, I, Hoff, C, Niggemeier, S, et al: Pituitary deficiency following aneurismal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2003;74:11331135.Google Scholar
Dimopoulou, I, Kouyialis, AT, Tzanella, M, et al: High incidence of neuroendocrine dysfunction in long-term survivors of aneurismal subarachnoid hemorrhage. Stroke 2004;35:28842489.Google Scholar
Claasen, J, Vu, A, Kreiter, KT, et al: Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Crit Care Med 2004;32:832838.Google Scholar
Adams, HP: Current status of antifibrinolytic therapy for treatment of patients with aneurysmal subarachnoid hemorrhage. Stroke 1982;13:256259.Google Scholar
Ramirez-Laseppas, M: Antifibrinolytic therapy in subarachnoid hemorrhage caused by ruptured intracranial aneurysm. Neurology 1981;31:316322.Google Scholar
Bederson, JB, Connolly, ES Jr, Batjer, HH, et al:. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council of the American Heart Association. Stroke 2009;40:9941025.Google Scholar
Kassell, N, Torner, D, Adams, H: Antifibrinolytic therapy in the acute period following aneurysmal subarachnoid hemorrhage. J Neurosurg 1984;61:225230.Google Scholar
Garde, A: Amnesia after operations on aneurysms of the anterior communicating artery. Surg Neurol 1982;18:4649.Google Scholar
Damasio, AR, Graff-Radford, N, Eslinger, P, et al: Amnesia following basal forebrain lesions. Arch Neurol 1985;42:263271.Google Scholar
Serbinenko, FA: Balloon catheterization and occlusion of major cerebral vessels. J Neurosurg 1974;41:125145.Google Scholar
Guglielmi, G, Vinuela, F, Sepetka, I, Macellari, V: Electrothrombosis of saccular aneurysms via endovascular approach, part 1: Electrochemical basis, technique, and experimental results. J Neurosurg 1991;75:17.CrossRefGoogle ScholarPubMed
Guglielmi, G, Vinuela, F, Dion, J, Duckwiler, G: Electrothrombosis of saccular aneurysms via endovascular approach, part 2: Preliminary clinical experience. J Neurosurg 1991;75:814.Google Scholar
Johnston, SC, Higashida, RT, Barrow, DL, Caplan, LR, et al: Recommendations for the endovascular treatment of intracranial aneurysms. A statement for health care professionals from the Committee on Cerebrovascular Imaging of the American Heart Association Council on Cardiovascular Radiology. Stroke 2002;33:25362544.Google Scholar
Hopkins, LN, Lanzino, G, Guterman, LR: Treating nervous system vascular disorders through a “needle stick”: Origins, evolution, and future of endovascular therapy. Neurosurgery 2001;48:463475.Google Scholar
Lobotesis, K, Mahady, K, Ganesalingam, J, et al: Coiling-associated delayed cerebral hypersensitivity: Is nickel the link? Neurology 2015;84:9799.Google Scholar
Molyneux, AJ, Kerr, RSC, Yu, L-M, et al: International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomized comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 2005;366:809817.Google Scholar
Britz, GW: ISAT trial: Coiling or clipping for intracranial aneurysms? Lancet 2005;366:783785.Google Scholar
Molyneux, AJ, Birks, J, Clarke, A, Sneade, M, Kerr, RSC: The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT). Lancet 2015;385:691697.Google Scholar
Debrun, GM, Aletich, VA, Kehrli, P, et al: Selection of cerebral aneurysms for treatment using Guglielmi detachable coils: The preliminary University of Illinois at Chicago experience. Neurosurgery 1998;43:12811295.Google Scholar
Lanzino, G, Wakhloo, AK, Fessler, RD, et al: Efficacy and current limitations of intravascular stents for intracranial internal carotid, vertebral, and basilar artery aneurysms. J Neurosurg 1999;91:538546.Google Scholar
Greenberg, E, Katz, JM, Janardhan, V, et al: Treatment of a giant vertebrobasilar artery aneurysm using stent grafts. Case report. J Neurosurg 2007;107:165168.Google Scholar
Katsaridis, V, Papagiannaki, C, Violaris, C: Placement of a Neuroform2 stent into the parent vessel by navigating it along the inner wall of the aneurysm sac: A technical case report. Neuroradiology 2007;49:5759.Google Scholar
Pero, G, Denegri, F, Valvassori, L, et al: Treatment of a middle cerebral artery giant aneurysm using a covered stent. Case report. J Neurosurg 2006;104:965968.Google Scholar
Kupersmith, MJ, Stiebel-Kalish, H, Huna-Baron, R, et al: Cavernous carotid aneurysms rarely cause subarachnoid hemorrhage or major neurological morbidity. J Stroke Cerebrovasc Dis 2002;11:914.Google Scholar
Brust, JCM, Dickinson, PCT, Hughes, JEO, Holtzman, RNN: The diagnosis and treatment of cerebral mycotic aneurysms. Ann Neurol 1990;27:238246.Google Scholar
Moskowitz, MA, Rosenbaum, AE, Tyler, HR: Angiographically monitored resolution of cerebral mycotic aneurysms. Neurology 1974;24:11031108.Google Scholar
Johnston, SC, Wilson, CB, Halbach, VV, et al: Endovascular and surgical treatment of unruptured cerebral aneurysms: Comparison of risks. Ann Neurol 2000;48:1119.Google Scholar
Wermer, MJH, van der Schaaf, IC, Algra, A, Rinkel, GJE: Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics. An updated meta-analysis. Stroke 2007;38:14041410.Google Scholar
Sundt, TM, Whisnant, JP: Subarachnoid hemorrhage from intracranial aneurysm. N Engl J Med 1978:299:116122.Google Scholar
Raaymakers, TWM, Rinkel, GJE, Limburg, M, Algra, A: Mortality and morbidity of surgery for unruptured intracranial aneurysms. A meta-analysis. Stroke 1998;29:15311538.Google Scholar
Komotar, RJ, Moccoj, , Solomon, RA: Guidelines for the surgical treatment of unruptured intracranial aneurysms. Neurosurgery 2008;62:183193, discussion 193194.Google Scholar
Stein, BM, Wolpert, SM: Arteriovenous malformations of the brain: I. Current concepts and treatment. Arch Neurol 1980:37:15.Google Scholar
Brown, RD, Wiebers, DO, Torner, JC: Frequency of intracranial hemorrhage as a presenting symptom and subtype analysis: A population-based study of intracranial vascular malformations in Olmstead County, Minnesota. J Neurosurg 1996;85:2932.Google Scholar
Hartmann, A, Mast, H, Choi, JH, et al: Treatment of arteriovenous malformations of the brain. Curr Neurol Neurosci Rep 2007;7:2834.Google Scholar
Tonnis, W, Schiefer, W, Walter, W: Signs and symptoms of supratentorial arteriovenous aneurysms. J Neurosurg 1953;15:471480.Google Scholar
McCormick, WF: The pathology of vascular (“arteriovenous”) malformations. J Neurosurg 1966;24:807816.Google Scholar
McCormick, WF: Pathology of vascular malformations of the brain. In Wilson, CB, Stein, BM (eds): Intracranial Arteriovenous Malformations: Current Neurosurgical Practice. Baltimore: Williams & Wilkins, 1984, pp 4463.Google Scholar
McCormick, WF, Boulter, TR: Vascular malformations (“angiomas”) of the dura mater. J Neurosurg 1966;25:309311.Google Scholar
McCormick, WF: The pathology of angiomas. In Fein, JM, Flamm, ES (eds): Cerebrovascular Surgery, vol IV. New York: Springer, 1985, pp 10731095.Google Scholar
McCormick, WF, Hardman, JM, Boulter, TR: Vascular malformations (“angiomas”) of the brain, with special reference to those occurring in the posterior fossa. J Neurosurg 1968;28:241251.Google Scholar
Arteriovenous Malformations Study Group: Arteriovenous malformations of the brain in adults. N Engl J Med 1999;340:18121818.Google Scholar
Lasjaunias, PL, Landrieu, P, Rodesch, G, et al: Cerebral proliferative angiopathy. Clinical and angiographic description of an entity different from cerebral AVMs. Stroke 2008;39:878885.Google Scholar
Rigamonti, D, Hadley, MN, Drayer, BP, et al: Cerebral cavernous malformations: Incidence and familial occurrence. N Engl J Med 1988;319:343347.Google Scholar
Savoiardo, M, Strada, L, Passerini, A: Intracranial cavernous hemangiomas: Neuroradiologic review of 36 operated cases. AJNR Am J Neuroradiol 1983;4:945950.Google Scholar
Mason, I, Aase, JM, Orrison, WW, et al: Familial cavernous angiomas of the brain in an Hispanic family. Neurology 1988;38:324326.Google Scholar
Metellus, P, Kharkar, S, Lin, D, et al: Cavernous angiomas and developmental venous anomalies. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 189219.Google Scholar
Denier, C, Labauge, P, Brunereau, L, et al: Clinical features of cerebral cavernous malformations patients with KRIT1 mutations. Ann Neurol 2004;55:213220.Google Scholar
Wilms, G, Bleus, E, Demaerel, P, et al: Simultaneous occurrence of developmental venous anomalies and cavernous angiomas. AJNR Am J Neuroradiol 1994;15:12471254.Google Scholar
Abe, T, Singer, RJ, Marks, MP, et al: Coexistence of occult vascular malformations and developmental venous anomalies in the central nervous system: MR evaluation. AJNR Am J Neuroradiol 1998;19:5157.Google Scholar
Omojola, M, Fox, A, Vinuela, F, Debrun, G: Stenosis of afferent vessels of intracranial arteriovenous malformations. AJNR Am J Neuroradiol 1985;6:791793.Google Scholar
Mawad, ME, Hilal, SK, Michelson, J, et al: Occlusive vascular disease associated with cerebral arteriovenous malformations. Radiology 1984;153:401408.Google Scholar
Marks, MP, Lane, B, Steinberg, GK, Snipes, GJ: Intranidal aneurysms in cerebral arteriovenous malformations: Evaluation and endovascular treatment. Radiology 1992;183:355360.Google Scholar
Kondziolka, D, Nixon, BJ, Lasjaunias, P, et al: Cerebral arteriovenous malformations with associated arterial aneurysms: Hemodynamic and therapeutic considerations. Can J Neurol Sci 1988;15:130134.Google Scholar
Miyasaka, Y, Yada, K, Ohwada, T, et al: An analysis of the venous drainage system as an actor in hemorrhage from arteriovenous malformations. J Neurosurg 1992;76:239243.Google Scholar
Vinuela, F, Nombela, L, Roach, MR, et al: Stenotic and occlusive disease of the draining venous system of deep brain AVMs. J Neurosurg 1985;63:180184.Google Scholar
Hsu, FPK, Rigamonti, D, Huhn, SL: Epidemiology of cavernous malformations. In Awad, IA, Barrows, DL (eds): Cavernous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 1323.Google Scholar
Kase, CS: Aneurysms and vascular malformations. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1995, pp 153178.Google Scholar
Perret, G, Nishioka, H: Report on the Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage. Section VI. Arteriovenous malformations. An analysis of 545 cases of cranio-cerebral arteriovenous malformations and fistulae reported to the Cooperative Study. J Neurosurg 1966;25:467490.Google Scholar
Crawford, PM, West, CR, Chadwick, DW, et al: Arteriovenous malformations of the brain: Natural history in unoperated patients. J Neurol Neurosurg Psychiatry 1986;49:110.Google Scholar
Graf, CJ, Perret, GE, Torner, JC: Bleeding from cerebral arteriovenous malformations as part of their natural history. J Neurosurg 1983;58:331337.Google Scholar
Hook, C, Johanson, C: Intracranial arteriovenous aneurysms: A follow-up study with particular attention to their growth. Arch Neurol Psych 1958;80:3954.Google Scholar
Patterson, JH, McKissock, W: A clinical survey of intracranial angiomas with special reference to their mode of progression and surgical treatment: A report of 110 cases. Brain 1965;79:233266.Google Scholar
Friedlander, RM: Arteriovenous malformations of the brain. N Engl J Med 2007;356:27042712.Google Scholar
Hofmeister, C, Stapf, C, Hartman, A, et al: Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke 2000;31:13071310.Google Scholar
Mast, H, Mohr, JP, Osipov, A, et al: “Steal” is an unestablished mechanism for the clinical presentation of cerebral arteriovenous malformations. Stroke 1995;26:12151220.Google Scholar
Chimowitz, MI, Little, JR, Awad, IA, et al: Intracranial hypertension associated with unruptured cerebral arteriovenous malformations. Ann Neurol 1990;27:474479.Google Scholar
DeJong, RN, Hicks, SP: Vascular malformation of the brainstem: Report of a case with long duration and fluctuating course. Neurology 1980;30:995997.Google Scholar
Stahl, SM, Johnson, KP, Malamud, N: The clinical and pathological spectrum of brainstem vascular malformations. Arch Neurol 1980;37:2529.Google Scholar
Caroscio, JT, Brannan, T, Budabin, M, et al: Subarachnoid hemorrhage secondary to spinal arteriovenous malformation and aneurysm. Arch Neurol 1980;37:101103.Google Scholar
Jensen, H, Klinge, H, Lemke, J, et al: Computerized tomography in vascular malformations of the brain. Neurosurg Rev 1980;3:119127.Google Scholar
Daniels, D, Houghton, V, Williams, A, et al: Arteriovenous malformation simulating a cyst on computed tomography. Radiology 1979;133:393394.Google Scholar
Kaibara, T, Heros, RC: Arteriovenous malformations of the brain. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008.Google Scholar
Leblanc, R, Levesque, M, Comair, Y, Ethier, R: Magnetic resonance imaging of cerebral arteriovenous malformations. Neurosurgery 1987;21:1520.Google Scholar
Smith, HJ, Strother, CM, Kikuchi, Y, et al: MR imaging in the management of supratentorial intracranial AVMs. AJR Am J Roentgen 1988;150:11431153.Google Scholar
Rigamonti, D, Drayer, B, Johnson, PC, et al: The MRI appearance of cavernous malformations (angiomas). J Neurosurg 1987;67:518524.Google Scholar
Gomori, JM, Grossman, RI, Hackney, DB, et al: Variable appearances of subacute intracranial hematomas on high-field spin-echo MR. AJR Am J Roentgen 1988;150:171178.Google Scholar
Requena, I, Arias, M, Lopez-Iber, L: Cavernomas of the central nervous system in clinical and neuroimaging manifestations in 47 patients. J Neurol Neurosurg Psychiatry 1991;54:590594.Google Scholar
Perl, J, Ross, JS: Diagnostic imaging of cavernous malformations. In Awad, IA, Barrow, DL (eds): Cavernous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 3748.Google Scholar
Hardjasudarma, M: Cavernous and venous angiomas of the central nervous system. Neuroimaging and clinical controversies. J Neuroimaging 1991;1:191196.Google Scholar
Rigamonti, D, Spetzler, RF, Drayer, BP, et al: Appearance of venous malformations on magnetic resonance imaging. J Neurosurg 1988;69:535539.Google Scholar
Lee, C, Pennington, MA, Kenney, CM: MR evaluation of developmental venous anomalies: medullary venous anatomy of venous angiomas. AJNR Am J Neuroradiol 1996;17:6170.Google Scholar
Diehl, RR, Henkes, H, Nahser, H-C, et al: Blood flow velocity and vasomotor reactivity in patients with arteriovenous malformations. A transcranial Doppler study. Stroke 1994;25:15741580.Google Scholar
Marks, M, Lane, B, Steinberg, G, Chang, P: Vascular characteristics of intracerebral arteriovenous malformations in patients with clinical steal. AJNR 1991;12:489496.Google Scholar
Stapf, C, Mohr, JP, Sciacca, RR, et al: Incident hemorrhage risk of brain arteriovenous malformations located in the arterial borderzones. Stroke 2000;31:23652368.Google Scholar
Mast, H, Young, WL, Koennecke, HC, et al: Risk of spontaneous hemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet 1997;350:10651068.Google Scholar
Mansmann, U, Meisel, J, Brock, M, et al: Factors associated with intracranial hemorrhage in cases of cerebral arteriovenous malformations. Neurosurgery 2000;46:272279.Google Scholar
Drake, CG: Arteriovenous malformations of the brain: The options for management. N Engl J Med 1983;309:308310.Google Scholar
Heros, RC, Tu, Y-K: Is surgical therapy needed for unruptured arteriovenous malformations? Neurology 1987;37:279286.Google Scholar
Drake, CG: Cerebral arteriovenous malformations: Considerations for and experience with surgical treatment in 166 cases. Clin Neurosurg 1979;26:145208.Google Scholar
Forster, DMC, Steiner, L, Hakanson, S: Arteriovenous malformations of the brain: A long-term clinical study. J Neurosurg 1972;37:562570.Google Scholar
Hartmann, A, Mast, H, Mohr, JP, et al: Morbidity of intracranial hemorrhage in patients with cerebral arteriovenous malformation. Stroke 1998;29:931934.Google Scholar
Duong, DH, Young, WL, Vang, MC, et al: Feeding artery pressure and venous drainage pattern are primary determinants of hemorrhage from arteriovenous malformations. Stroke 1998;29:11671176.Google Scholar
Aminoff, MJ: Treatment of unruptured cerebral arteriovenous malformations. Neurology 1987;37:815819.Google Scholar
Mohr, JP, Parides, MK, Stapf, SC, et al. for the International ARUBA Investigators: Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. Lancet 2014;383:614621.Google Scholar
Al-Shahi Salman, R, White, PM, Counsell, CE, et al: Outcomes after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA 2014;311:16611669.Google Scholar
Barrow, DL: Classification and natural history of cerebral vascular malformations: Arteriovenous, cavernous, and venous. J Stroke Cerebrovasc Dis 1997;6:264267.Google Scholar
Robinson, JR, Awad, IA, Little, JR: Natural history of the cavernous angioma. J Neurosurg 1991;75:709714.Google Scholar
Kondziolka, D, Lundsford, LD, Kestle, JRW: The natural history of cerebral cavernous malformations. J Neurosurg 1995;83:820824.Google Scholar
Robinson, JR, Awad, IA: Clinical spectrum and natural course. In Awad, IA, Barrows, DL (eds): Cavernous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 2536.Google Scholar
Moran, NF, Fish, DR, Kitchen, N, et al: Supratentorial cavernous haemangiomas and epilepsy: A review of the literature and case series. J Neurol Neurosurg Psychiatry 1999;66:561568.Google Scholar
Garner, TB, Curling, OD Jr, Kelly, DL Jr, et al: The natural history of intracranial venous angiomas. J Neurosurg 1991;75:715722.Google Scholar
Rigamonti, D, Spetzler, RF, Medina, M, et al: Cerebral venous malformations. J Neurosurg 1990;73:560564.Google Scholar
Naff, NJ, Wemmer, J, Hoenig-Rigamonti, K, Rigamonti, DR: A longitudinal study of patients with venous malformations: Documentation of a negligible hemorrhage risk and benign natural history. Neurology 1998;50:17091714.Google Scholar
Ruiz, DS, Yilmaz, H, Gailloud, P: Cerebral developmental anomalies: Current concepts. Ann Neurol 2009;66:271283.Google Scholar
Castel, JP, Kantor, G: Postoperative morbidity and mortality after microsurgical exclusion of cerebral arteriovenous malformations. Current data and analysis of recent literature. Neurochiurgie 2001;47:369383.Google Scholar
Spetzler, RF, Wilson, CB, Weinstein, P, et al: Normal perfusion pressure breakthrough theory. Clin Neurosurg 1978;25:651672.Google Scholar
Fournier, D, TerBrugge, KG, Willinsky, R, et al: Endovascular treatment of intracerebral arteriovenous malformations: Experience in 49 cases. J Neurosurg 1991;75:228233.Google Scholar
Vinuela, F, Fox, AJ, Debrun, G, et al: Progressive thrombosis of brain arteriovenous malformations after embolization with isobutyl-2-cyanoacrylate. AJNR Am J Neuroradiol 1983;4:959966.Google Scholar
N-BCA Trialists: N-butyl cyanoacrylate embolization of cerebral arteriovenous malformations: Results of a prospective, multi-center trial. AJNR Am J Neuroradiol 2002;23:748755.Google Scholar
Saatci, I, Geyik, S, Yavuz, K, Cekirge, HS: Endovascular treatment of brain arteriovenous malformations with prolonged intranidal Onyx injection technique: Long-term results in 350 consecutive patients with completed endovascular treatment course. J Neurosurg 2011;115:7888.Google Scholar
Vinters, HV, Lundie, MJ, Kaufmann, JC: Long-term pathological follow-up of cerebral arteriovenous malformations treated by embolization with buccylate. N Engl J Med 1986;314:477483.Google Scholar
Lunsford, LD, Flickinger, J, Coffey, RJ: Stereotactic gamma knife radiosurgery. Initial North American experience in 207 patients. Arch Neurol 1990;47:169175.Google Scholar
Heros, R, Korosue, K: Radiation treatment of cerebral arteriovenous malformations. N Engl J Med 1990;323:127129.Google Scholar
Meder, JF, Oppenheim, C, Blustajn, J, et al: Cerebral arteriovenous malformations: The value of radiologic parameters in predicting response to radiosurgery. AJNR Am J Neuroradiol 1997;18:14731483.Google Scholar
Hanakita, S, Koga, T, Shin, M, Igaki, H, Saito, N: Application of single-stage stereotactic radiosurgery for cerebral arteriovenous malformations >10 cm3. Stroke 2014;45:35433548.Google Scholar
Hartmann, A, Marx, P, Schilling, A, et al: Neurologic complications following radiosurgical treatment of brain arteriovenous malformations. Cerebrovasc Dis 2002;13:50.Google Scholar
Coffey, RJ, Lunsford, LD: Radiosurgery of cavernous malformations and other angiographically occult vascular malformations. In Awad, IA, Barrow, DL (eds): Cavernous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 187200.Google Scholar
Ogilvy, CS, Stieg, PE, Awad, I, et al: Recommendations for the management of intracranial arteriovenous malformations. A statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Circulation 2001;103:26442657.Google Scholar
Dion, J: Dural arteriovenous malformations: Definition, classification, and diagnostic imaging. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 119.Google Scholar
Castaigne, P, Bories, J, Brunet, P, et al: Les fistules arterio-veineuse meningees pures a drainage veineux cortical. Rev Neurol (Paris) 1976;132:169181.Google Scholar
Gaston, A, Chiras, J, Bourbotte, G, et al: Meningeal arteriovenous fistulae draining into cortical veins: 31 cases. J Neuroradiol 1984;11:161177.Google Scholar
Bederson, JB: Pathophysiology and animal models of dural arteriovenous malformations. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 2333.Google Scholar
Friedman, AH: Etiologic factors in intracranial dural arteriovenous malformations. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 3547.Google Scholar
Raybaud, CA, Hald, JK, Strother, CM, et al: Aneurysms of the vein of Galen. Angiographic study and morphogenetic considerations. Neurochirurgie 1987;33:302314.Google Scholar
Hansen, JH, Segaard, I: Spontaneous regression of an extra- and intracranial arteriovenous malformation: Case report. J Neurosurg 1976;45:338341.Google Scholar
Houser, OW, Campbell, JK, Campbell, RJ: Arteriovenous malformation affecting the transverse dural venous sinus: An acquired lesion. Mayo Clin Proc 1979;54:651661.Google Scholar
Fermand, M, Reizine, D, Melki, JP, et al: Long term follow-up of 43 pure dural arteriovenous fistulae (AVF) of the lateral sinus. Neuroradiology 1987;29:348353.Google Scholar
Chung, SJ, Kim, JS, Kim, JC, et al: Intracranial dural arteriovenous fistulas: Analysis of 60 patients. Cerebrovasc Dis 2002;13:7988.Google Scholar
Feiner, L, Bennett, J, Volpe, NJ: Cavernous sinus fistulas: Carotid cavernous fistulas and dural arteriovenous malformations. Curr Neurol Neurosci Rep 2003;3:415420.Google Scholar
Lasjaunias, PL, Rodesch, G: Lesion types, hemodynamics, and clinical spectrum. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 4979.Google Scholar
Awad, IA, Little, JR, Akrawi, WP, et al: Intracranial dural arteriovenous malformations: Factors predisposing to an aggressive neurological course. J Neurosurg 1990;72:839850.Google Scholar
Zeidman, SM, Monsein, LH, Arosarena, O, et al: Reversability of white matter changes and dementia after treatment of dural fistulas. AJNR Am J Neuroradiol 1995;16:10801083.Google Scholar
Awad, IA: Dural arteriovenous malformations with aggressive clinical course. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 93104.Google Scholar
Wecht, DA, Awad, IA: Carotid cavernous and other dural arteriovenous fistulas. In Welch, KMA, Caplan, LR, Reis, DJ, et al. (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 541548.Google Scholar
Purdy, PD: Management of carotid cavernous fistula. In Batjer, HH, Caplan, LR, Friberg, L, et al. (eds): Cerebrovascular Disease. Philadelphia: Lippincott–Raven, 1997, pp 11591168.Google Scholar
Takahashi, S, Tomura, N, Watarai, J, et al: Dural arteriovenous fistula of the cavernous sinus with venous congestion of the brain stem: Report of two cases. AJNR Am J Neuroradiol 1999;20:886888.Google Scholar
Halbach, VV, Higashida, RT, Hieshima, GB, et al: Treatment of dural fistulas involving the deep cerebral venous system. AJNR Am J Neuroradiol 1989;10:393399.Google Scholar
Awad, IA: Tentorial incisura and brain stem dural arteriovenous malformations. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 131146.Google Scholar
Cognard, C, Gobin, YP, Pierot, L, et al: Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 1995;194:671680.Google Scholar
Halbach, VV, Higashida, RT, Hieshima, GB, et al: Transvenous embolization of dural fistulas involving the transverse and sigmoid sinuses. AJNR Am J Neuroradiol 1989;10:385392.Google Scholar
Barnwell, S: Endovascular therapy of dural arteriovenous malformations. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 193211.Google Scholar
Hu, YC, Newman, CB, Dashti, SR, Albuquerque, FC, McDougall, GC: Cranial dural arteriovenous fistula: Transarterial Onyx embolization experience and technical nuances. J Neurointerv Surg 2011;3:513.Google Scholar
Mullan, S: Surgical therapy: Indications and general principles. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 213229.Google Scholar
Awad, IA, Barrow, DL: Conceptual overview and management strategies. In Awad, IA, Barrow, DL (eds): Dural Arteriovenous Malformations. Park Ridge, IL: American Association of Neurological Surgeons, 1993, pp 131241.Google Scholar

References

Morgagni, GB. De sedibus, et causis morborum per anatomen indagatis libri quinque. Vienna: Typographica Remondiana, 1761.Google Scholar
Cheyne, J. Cases of Apoplexy and Lethargy with Observations on Comatose Patients. London: Thomas Underwood, 1812.Google Scholar
Gowers, W. A Manual of Diseases of the Nervous System, Vol 2. (2nd ed). London: J & A Churchill, 1892;384421.Google Scholar
Osler, W. The Principles and Practices of Medicine (5th ed). New York: Appleton, 1903;9971008.Google Scholar
Aring, C, Merritt, H. Differential diagnosis between cerebral hemorrhage and cerebral thrombosis: Clinical and pathological study of 245 cases. Arch Intern Med 1935;56:435456.Google Scholar
Kunitz, S, Gross, C, Heyman, A, et al. The Pilot Stroke Data Bank: Definition, design, and data. Stroke 1984;15:740746.Google Scholar
Caplan, LR, Hier, DB, D’Cruz, I. Cerebral embolism in the Michael Reese Stroke Registry. Stroke 1983;14:530540.Google Scholar
Mohr, JP, Caplan, LR, Melski, J, et al. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;28:754762.Google Scholar
Whisnant, J, Fitzgibbons, J, Kurland, L, et al. Natural history of stroke in Rochester, Minnesota, 1945–1954. Stroke 1971;2:1122.Google Scholar
Matsumoto, N, Whisnant, J, Kurland, L, et al. Natural history of stroke in Rochester, Minnesota, 1955–1969. Stroke 1973;4:2029.Google Scholar
Caplan, LR, Mohr, JP. Intracerebral hemorrhage: An update. Geriatrics 1978;33:4252.Google Scholar
Fisher, CM. Pathological observations in hypertensive cerebral hemorrhages. J Neuropathol Exp Neurol 1971;30:536550.Google Scholar
Kelly, R, Bryer, JR, Scheinberg, P, Stokes, IV. Active bleeding in hypertensive intracerebral hemorrhage: Computed tomography. Neurology 1982;32:852856.Google Scholar
Broderick, JP, Brott, TG, Tomsick, T, et al. Ultra-early evaluation of intracerebral hemorrhage. J Neurosurg 1990;72:195199.Google Scholar
Fujii, Y, Tanaka, R, Takeuchi, S, et al. Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg 1994;80:5157.Google Scholar
Kazui, S, Naritomi, H, Yamamoto, H, et al. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke 1996;27:17831787.Google Scholar
Kase, C, Robinson, K, Stein, R, et al. Anticoagulant-related intracerebral hemorrhage. Neurology 1985;35:943948.Google Scholar
Kase, CS. Bleeding disorders. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;117151.Google Scholar
Kornyey, S. Rapidly fatal pontile hemorrhage: Clinical and anatomic report. Arch Neurol Psychiatry 1939;41:793799.Google Scholar
Caplan, LR. General symptoms and signs. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;3143.Google Scholar
Wada, R, Aviv, RI, Fox, A, et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 2007; 38: 12571262.Google Scholar
Demchuk, AM, Dowlatshahi, D, Rodriguez-Luna, D, et al. and PREDICT Group. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol 2012;11:307314.Google Scholar
Melo, TP, Pinto, AN, Ferro, JM. Headache in intracerebral hematomas. Neurology 1996;47:494500.Google Scholar
Tuhrim, S, Dambrosia, JM, Price, TR, et al. Prediction of intracerebral hemorrhage survival. Ann Neurol 1988;24:258263.Google Scholar
Broderick, JP, Brott, TG, Duldner, JE, et al. Volume of intracerebral hemorrhage. Stroke 1993;24:987993.Google Scholar
Kase, CS, Crowell, RM. Prognosis and treatment of patients with intracerebral hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;467489.Google Scholar
Borison, H, Wang, S. Physiology and pharmacology of vomiting. Pharmacol Rev 1953;5:193230.Google Scholar
Faught, E, Peties, D, Bartolucci, A, et al. Seizures after primary intracerebral hemorrhage. Neurology 1989;39:10891093.Google Scholar
Kilpatrick, CJ, Davis, SM, Tress, BM, et al. Epileptic seizures in acute strokes. Arch Neurol 1990;47:157160.Google Scholar
Berger, AR, Lipton, RB, Lesser, ML, et al. Early seizures following intracerebral hemorrhage. Neurology 1988;38:13631365.Google Scholar
Hier, DB, Davis, K, Richardson, EP, et al. Hypertensive putaminal hemorrhage. Arch Neurol 1977;1:152159.Google Scholar
Claasen, J, Jette, N, Chum, F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology 2007;69:13561365.Google Scholar
Abend, NS, Dlugos, DJ, Hahn, CD, Hirsch, LJ, Herman, ST. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: A survey of neurologists. Neurocrit Care 2010;12:382389.Google Scholar
Walshe, T, Davis, K, Fisher, CM. Thalamic hemorrhage, a computed tomographic-clinical correlation. Neurology 1977;29:217222.Google Scholar
Hier, DB, Babcock, DJ, Foulkes, MA, et al. Influence of site on course of intracerebral hemorrhage. J Stroke Cerebrovasc Dis 1993;3:6574.Google Scholar
Fisher, CM. Some neuro-ophthalmological observations. J Neurol Neurosurg Psychiatry 1967;30:383392.Google Scholar
Caplan, LR. Intracerebral hemorrhage revisited. Neurology 1988;38:624627.Google Scholar
Caplan, LR. Hypertensive intracerebral hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;99116.Google Scholar
Cole, F, Yates, P. Intracerebral microaneurysms and small cerebrovascular lesions. Brain 1967;90:759768.Google Scholar
Rosenblum, WI. Miliary aneurysms and “fibrinoid” degeneration of cerebral blood vessels. Hum Pathol 1977;8:133139.Google Scholar
Fiehler, J. Cerebral microbleeds: Old leaks and new haemorrhages. Int J Stroke 2006;1:122130.Google Scholar
Koennecke, HC. Cerebral microbleeds on MRI: Prevalence, associations and potential clinical implications. Neurology 2006;66:165171.Google Scholar
Greenberg, SM, Vernooj, MW, Cordonnier, C, et al. Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol 2009;8:165174.Google Scholar
Green, FHK. Miliary aneurysms in the brain. J Pathol Bacteriol 1930;33:7177.Google Scholar
Santos-Buch, CA, Goodhue, W, Ewald, B. Concurrence of iris aneurysms and cerebral hemorrhage in hypertensive rabbits. Arch Neurol 1976;33:96103.Google Scholar
Takebayashi, S, Kaneko, M. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke 1983;14:2836.Google Scholar
Takebayashi, S, Sakata, N, Kawamura, K. Re-evaluation of miliary aneurysms in hypertensive brain: Recanalization of small hemorrhage. Stroke 1990;21(Suppl 1):5960.Google Scholar
Bakemuka, M. Primary intracerebral hemorrhage and heart weight: A clinicopathologic case-control review of 218 patients. Stroke 1987;18:531536.Google Scholar
Brott, T, Thalinger, K, Hertzberg, V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke 1986;17:10781083.Google Scholar
Caplan, LR, Neely, S, Gorelick, PB. Cold-related intracerebral hemorrhage. Arch Neurol 1984;41:227.Google Scholar
Hines, F, Brown, G. A standard test for measuring the variability of blood pressure: Its significance as an index of the prehypertensive state. Ann Intern Med 1933;7:209217.Google Scholar
Barbas, N, Caplan, LR, Baquis, G, et al. Dental chair intracerebral hemorrhage. Neurology 1987;37:511512.Google Scholar
Cawley, CM, Rigamonti, D, Trommer, B. Dental chair apoplexy. South Med J 1991;84:907909.Google Scholar
Haines, S, Maroon, J, Janetta, P. Supratentorial intracerebral hemorrhage following posterior fossa surgery. J Neurosurgery 1978;49:881886.Google Scholar
Waga, S, Shimosaka, S, Sakakura, M. Intracerebral hemorrhage remote from the site of the initial neurosurgical procedure. Neurosurgery 1983;13:662665.Google Scholar
Sweet, WH, Poletti, CE. Complications of Standard Treatment for Trigeminal Neuralgia: Need for Mechanism for Prompt Reporting of Complications (Abstract). Poster presentation no. 82 in program of the Annual Meeting of the American Association of Neurological Surgeons. Denver, Colorado, 1986:243.Google Scholar
Sweet, WH, Poletti, CE, Roberts, JT. Dangerous rises in blood pressure upon heating of trigeminal rootlets: Increased bleeding times in patients with trigeminal neuralgia. Neurosurgery 1985;17:843844.Google Scholar
Kehler, CH, Brodsky, JB, Samuels, SI, et al. Blood pressure response during percutaneous rhizotomy for trigeminal neuralgia. Neurosurgery 1982;10:200202.Google Scholar
Norregaard, TV, Moskowitz, MA. Substance P and sensory innervation of intracranial and extracranial feline cephalic arteries. Brain 1985;108:517533.Google Scholar
Moskowitz, MA. The neurobiology of vascular head pain. Ann Neurol 1984;16:157168.Google Scholar
Caplan, LR, Skillman, J, Ojemann, R, Fields, W. Intracerebral hemorrhage following carotid endarterectomy: A hypertensive complication. Stroke 1978;9:457460.Google Scholar
Bruetman, MF, Fields, WS, Crawford, ES, DeBakey, ME. Cerebral hemorrhage in carotid artery surgery. Arch Neurol 1963;9:458467.Google Scholar
Wylie, EJ, Hein, MF, Adams, JE. Intracerebral hemorrhage following surgical revascularization for treatment of acute strokes. J Neurosurg 1964;21:212215.Google Scholar
Humphreys, RP, Hoffman, JH, Mustard, WT, et al. Cerebral hemorrhage following heart surgery. J Neurosurg 1975;43:671675.Google Scholar
Sila, CA. Spectrum of neurologic events following cardiac transplantation. Stroke 1989;20:15861589.Google Scholar
Cole, A, Aube, M. Migraine with vasospasm and delayed intracerebral hemorrhage. Arch Neurol 1990;47:5356.Google Scholar
Gokhale, S, Ghoshal, S, Lahoti, SA, Caplan, LR. An uncommon cause of intracerebral hemorrhage in a healthy truck driver. Arch Neurol 2012;69:15001503.Google Scholar
Fisher, CM, Adams, RD. Observations on brain embolism with special reference to hemorrhagic infarction. In Furlan, A (ed), The Heart and Stroke. London: Springer, 1987;1736.Google Scholar
Wilson, SAK, Bruce, AN. Neurology (2nd ed). London: Butterworth, 1955;13671383.Google Scholar
Veltkamp, R, Rizos, T, Horstmann, S. Intracerebral bleeding in patients on antithrombotic agents. Semin Thromb Hemost 2013;39:963971.Google Scholar
Cervera, A, Amaro, S, Chamorro, A. Oral anticoagulant-associated intracerebral hemorrhage. J Neurol 2012;259:212214.Google Scholar
Askey, JM. Hemorrhage during long-term anticoagulant drug therapy: Intracranial hemorrhage. Calif Med 1966;104:610.Google Scholar
Cucchiara, B, Messe, S, Sansing, L, Kasner, S, Lyden, P, for the CHANT Investigators. Hematoma growth in oral anticoagulant related intracerebral hemorrhage. Stroke 2008;39:29932996.Google Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:11391151.Google Scholar
Connolly, SJ, Eikelboom, J, Joyner, C, et al. Apixaban in patients with atrial fibrillation. N Engl J Med 2011;364:806817.Google Scholar
Granger, CB, Alexander, JH, McMurray, JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981992.Google Scholar
Patel, MR, Mahaffey, KW, Garg, J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883891.Google Scholar
Giugliano, RP, Ruff, CT, Braunwald, E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:20932104.Google Scholar
Hacke, W. The dilemma of reinstituting anticoagulation for patients with cardioembolic sources and intracranial hemorrhage. How wide is the strait between Skylla and Karybdis? Arch Neurol 2000;57:16821684.Google Scholar
Phan, TG, Koh, M, Wijdicks, EFM. Safety of discontinuation of anticoagulation in patients with intracranial hemorrhage at high thromboembolic risk. Arch Neurol 2000;57:17101713.Google Scholar
Wijdicks, EFM, Schievink, W, Brown, R, Mullany, C The dilemma of discontinuation of anticoagulation therapy for patients with intracranial hemorrhage and mechanical heart valves. Neurosurgery 1998;42:769773.Google Scholar
Bertram, M, Bonsanto, M, Hacke, W, Schwab, S. Managing the therapeutic dilemma: Patients with spontaneous intracerebral hemorrhage and urgent need for anticoagulation. J Neurol 2000;247:209214.Google Scholar
Qureshi, W, Chetan, M, Patsias, I, et al. Restarting anticoagulation and outcomes after major gastrointestinal bleeding in atrial fibrillation. Am J Cardiol 2014;113:662668.Google Scholar
Eckman, MH, Rosand, J, Knudsen, K, Singer, DE, Greenberg, SM. Can patients be anticoagulated after intracerebral hemorrhage? A decision analysis. Stroke 2003;34:17101716.Google Scholar
Kase, CS, Pessin, MS, Zivin, JA, et al. Intracranial hemorrhage after coronary thrombolysis with tissue plasminogen activator. Am J Med 1992;92:384390.Google Scholar
Saver, J. Hemorrhage after thrombolytic therapy for stroke. The Clinically Relevant Number Needed to Harm. Stroke 2007;38:22792283.Google Scholar
Derex, L, Nighoghosian, N. Intracerebral haemorrhage after thrombolysis for acute ischaemic stroke: An update. J Neurol Neurosurg Psychiatry 2008;79:10931099.Google Scholar
Caplan, LR. Drugs. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;201220.Google Scholar
Brust, JCM. Stroke and substance abuse. In Caplan, LR (ed), Uncommon Causes of Stroke, Cambridge: Cambridge University Press, 2008;365370.Google Scholar
Brust, JCM. Neurological Aspects of Substance Abuse (2nd ed). Boston, Butterworth–Heinemann, 2004.Google Scholar
Harrington, H, Heller, HA, Dawson, D, et al. Intracerebral hemorrhage and oral amphetamine. Arch Neurol 1983;40:503507.Google Scholar
Buxton, N, McConachie, NS. Amphetamine abuse and intracranial haemorrhage. J R Soc Med 2000;93:472477.Google Scholar
Citron, B, Halpern, M, McCarron, M, et al. Necrotizing angiitis associated with drug abuse. N Engl J Med 1970;283:10031011.Google Scholar
Rumbaugh, C, Bergeron, R, Fang, H, et al. Cerebral angiographic changes in the drug abuse patient. Radiology 1971;101:335344.Google Scholar
Rumbaugh, C, Bergeron, R, Scanlon, R, et al. Cerebral vascular changes secondary to amphetamine abuse in the experimental animal. Radiology 1971;101:345351.Google Scholar
Fisher, CM: The arterial lesions underlying lacunes. Acta Neuropathol 1969;12:115.Google Scholar
Lukes, SA. Intracerebral hemorrhage from an arteriovenous malformation after amphetamine injection. Arch Neurol 1983;40:6061.Google Scholar
Cahill, D, Knipp, HJ, Mosser, J. Intracranial hemorrhage with amphetamine usage. Neurology 1981;31:10581059.Google Scholar
Yu, YJ, Cooper, DR, Wellenstein, DE, Block, B. Cerebral and intracerebral hemorrhage associated with methamphetamine abuse: Case report. J Neurosurg 1983;58:109111.Google Scholar
Levine, SR, Welch, KMA. Cocaine and stroke. Stroke 1988;19:779783.Google Scholar
Levine, SR, Brust, JCM, Futrell, N, et al. Cerebrovascular complications of alkaloid cocaine. N Engl J Med 1990;323:699704.Google Scholar
Eastman, J, Cohen, S. Hypertensive crisis and death associated with phencyclidine poisoning. JAMA 1975;231:12701271.Google Scholar
Bessen, H. Intracranial hemorrhage associated with phencyclidine abuse. JAMA 1982;248:585586.Google Scholar
Stratton, M, Witherspoon, J, Kirtley, T. Hypertensive crisis and phencyclidine abuse. Va Med 1978;105:569572.Google Scholar
Lasagna, L. Phenylpropanolamine: A Review. New York: Wiley, 1988.Google Scholar
Kernan, WN, Viscoli, CM, Brass, L, et al. Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med 2000;343:18261832.Google Scholar
Kikta, DG, Devereux, MW, Chandar, K. Intracranial hemorrhage due to phenylpropanolamine. Stroke 1985;16:510512.Google Scholar
Kase, CS, Foster, TE, Reed, JE, et al. Intracerebral hemorrhage and phenylpropanolamine use. Neurology 1987;37:399404.Google Scholar
McDowell, JR, Leblanc, H. Phenylpropanolamine and cerebral hemorrhage. West J Med 1985;142:688691.Google Scholar
Glick, R, Hoying, J, Cerullo, L, Perlman, S. Phenylpropanolamine: An over-the-counter drug causing cerebral nervous system vasculitis and intracerebral hemorrhage. Neurosurgery 1987;20:969974.Google Scholar
Mueller, S, Muller, J, Asdell, S. Cerebral hemorrhage associated with phenylpropanolamine in combination with caffeine. Stroke 1984;15:119123.Google Scholar
Mueller, S. Neurologic complications of phenylpropanolamine use. Neurology 1983;33:650652.Google Scholar
Tark, BE, Messe, SR, Balcuani, C, Levine, SR. Intracerebral hemorrhage associated with oral phenylephrine use: A case report and review of the literature. J Stroke Cerebrovasc Dis 2014;23:22962300.Google Scholar
Caplan, LR, Thomas, C, Banks, G. Central nervous system complications of addiction to T’s and blues. Neurology 1982;32:623628.Google Scholar
Buxton, N, Flannery, T, Wild, D, Bassi S. Sildenafil (Viagra) induced spontaneous intracerebral hemorrhage. Br J Neurosurg 2001;15:347349.Google Scholar
McGee, HT, Egan, RA, Clark, WM. Visual field defect and intracerebral hemorrhage associated with use of vardenafil (Levitra). Neurology 2005;64:10951096.Google Scholar
Monastero, R, Pipia, C, Camarda, LK, Camarda, R. Intracerebral hemorrhage associated with sildenafil citrate. J Neurol 2001;248:141142.Google Scholar
Gazzeri, R, Neroni, M, Galarza, M, Esposito, S. Intracerebral hemorrhage associated with use of tadalafil (Cialis). Neurology 2008;70:12891290.Google Scholar
Zenkevich, GS. Role of congophilic angiopathy in the genesis of subarachnoid-parenchymatous hemorrhages in middle-aged and elderly persons. Zh Nevropatol Psikhiatr 1978;78:5257.Google Scholar
Jellinger, K. Cerebral hemorrhage in amyloid angiopathy. Ann Neurol 1977;1:604.Google Scholar
Jellinger, K. Cerebrovascular amyloidosis with cerebral hemorrhage. J Neurol 1977;214:195206.Google Scholar
Biffi, A, Greenberg, S. Cerebral amyloid angiopathy: A systematic review. J Clin Neurol 2011;7:19.Google Scholar
Cordonnier, C, Leys, D. Cerebral amyloid angiopathies. In Caplan, LR (ed), Uncommon Causes of Stroke (2nd ed). Cambridge: Cambridge University Press, 2008;455464.Google Scholar
Vinters, H, Gilbert, J. Cerebral amyloid angiopathy: Incidence and complications in the aging brain: II. The distribution of amyloid vascular changes. Stroke 1983;14:923928.Google Scholar
Lee, S, Stemmerman, G. Congophilic angiopathy and cerebral hemorrhage. Arch Pathol Lab Med 1978;102:317321.Google Scholar
Gilbert, J, Vinters, H. Cerebral amyloid angiopathy: Incidence and complications in the aging brain: I. Cerebral hemorrhage. Stroke 1983;14:915923.Google Scholar
Kase, CS. Cerebral amyloid angiopathy. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;179200.Google Scholar
Gilles, C, Brucher, J, Khoubesserian, P, et al. Cerebral amyloid angiopathy as a cause of multiple intracerebral hemorrhages. Neurology 1984;34:730735.Google Scholar
Finelli, P, Kessimian, N, Bernstein, P. Cerebral amyloid angiopathy manifesting as recurrent intracerebral hemorrhage. Arch Neurol 1984;41:330333.Google Scholar
Caplan, LR. Head trauma and related intracerebral hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;221241.Google Scholar
Alvarez-Sabin, J, Turon, A, Lozano-Sanchez, M, et al. Delayed posttraumatic hemorrrhage, “spät-apoplexie”. Stroke 1995;26:15311535.Google Scholar
Kase, CS. Intracranial tumors. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann 1994;243261.Google Scholar
Kase, CS. Vasculitis and other angiopathies. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann 1994;263303.Google Scholar
Caplan, LR, Kase, CS. Mechanisms of intracerebral hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;9598.Google Scholar
Russell, DS. The pathology of spontaneous intracranial hemorrhages. Proc R Soc Med 1954;47:689693.Google Scholar
Mutlu, N, Berry, RG, Alpers, BJ. Massive cerebral hemorrhage: Clinical and pathological correlations. Arch Neurol 1963;8:7491.Google Scholar
McCormick, WF, Rosenfield, DB. Massive brain hemorrhage: A review of 144 cases and an examination of their causes. Stroke 1973;4:946954.Google Scholar
Schütz, H. Spontane intrazerebrale hamatome: pathophysologie, klinik, und therapie. Heidelberg: Springer, 1988.Google Scholar
Jellinger, K. Zur atiologie und pathogenese der spontanen intrazerebralen blutung. Therapiewoche 1972;22:14401450.Google Scholar
Weisberg, LA. Computerized tomography in intracranial hemorrhage. Arch Neurol 1979;36:422–26.Google Scholar
Quereshi, AI, Suri, MAK, Safdar, K, et al. Intracerebral hemorrhage in blacks: Risk factors, subtypes, and outcome. Stroke 1997;28:961964.Google Scholar
Ruiz-Sandoval, JL, Cantu, C, Barinagarrementeria, F. Intracerebral hemorrhage in young people: Analysis of risk factors, locations, causes, and prognosis. Stroke 1999;30:537541.Google Scholar
Fisher, CM. Clinical syndromes in cerebral hemorrhage. In: Pathogenesis and Treatment of Cerebrovascular Disease. In Fields, W (ed), Proceedings of the Annual Meeting of the Houston Neurological Society. Springfield, IL: Thomas, 1961;318342.Google Scholar
Caplan, LR. Putaminal hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;309327.Google Scholar
Chung, C-S, Caplan, LR, Yamamoto, Y, et al. Striatocapsular haemorrhage. Brain 2000;123:18501862.Google Scholar
Koba, T, Yokoyama, T, Kaneko, M. Correlation between the location of hematoma and its clinical symptoms in the lateral type of hypertensive intracerebral hemorrhage. Stroke 1977;8:676680.Google Scholar
Mizukami, M, Nishijuma, M, Kin, H. Computed tomographic findings of good prognosis for hemiplegia in hypertensive putaminal hemorrhage. Stroke 1981;12:648652.Google Scholar
Stein, R, Caplan, LR, Hier, DB. Intracerebral hemorrhage: Role of blood pressure, location, and size of lesions. Ann Neurol 1983;14:132133.Google Scholar
LoPresti, M, Bruce, SS, Camacho, E, et al. Hematoma volume as the major determinant of outcomes after intracerebral hemorrhage. J Neurol Sci 2014;345:37.Google Scholar
Mizukami, M, Kin, H, Araki, G, et al. Surgical treatment of primary intracerebral hemorrhage: I. New angiographical classification. Stroke 1976;7:3036.Google Scholar
Metter, EJ, Jackson, C, Kempler, D, et al. Left hemisphere intracerebral hemorrhages studied by (F-18)-fluorodeoxyglucose PET. Neurology 1986;36:11551162.Google Scholar
Stein, R, Kase, C, Hier, DB, et al. Caudate hemorrhage. Neurology 1984;34:15491554.Google Scholar
Weisberg, L. Caudate hemorrhage. Arch Neurol 1984;41:971974.Google Scholar
Caplan, LR. Caudate hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;329340.Google Scholar
Pedrazzi, P, Bogousslavsky, J, Regli, F. Hématomes limités à la tête du Noyau Caudé. Rev Neurol 1990;146:12:726738.Google Scholar
Caplan, LR. Thalamic hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;341362.Google Scholar
Chung, CS, Caplan, LR, Han, W, et al. Thalamic haemorrhage. Brain 1996;119:18731886.Google Scholar
Barraquer-Bordas, L, Illa, I, Escartin, A, et al. Thalamic hemorrhage: A study of 23 patients with diagnosis by computed tomography. Stroke 1981;12:524527.Google Scholar
Caplan, LR. “Top of the basilar” syndrome: Selected clinical aspects. Neurology 1980;30:7279.Google Scholar
Mohr, JP, Walters, W, Duncan, G. Thalamic hemorrhage and aphasia. Brain Lang 1975;2:317.Google Scholar
Ciemins, V. Localized thalamic hemorrhage: A cause of aphasia. Neurology 1970;20:776782.Google Scholar
Samarel, A, Wright, T, Sergay, S, et al. Thalamic hemorrhage with speech disorder. Trans Am Neurol Assoc 1975;101:283285.Google Scholar
Watson, R, Heilman, K. Thalamic neglect. Neurology 1979;29:690694.Google Scholar
Young, WB, Lee, KP, Pessin, MS, et al. Prognostic significance of ventricular blood in supratentorial hemorrhage: A volumetric study. Neurology 1990;40:616619.Google Scholar
Kawahara, N, Sato, K, Muraki, M, et al. CT classification of small thalamic hemorrhages and their clinical implications. Neurology 1986;35:165172.Google Scholar
Ikeda, K, Yamashima, T, Uno, E, et al. Clinical manifestations of small thalamic hemorrhages. Brain Nerve 1985;37:171179.Google Scholar
Gilner, L, Avin, B. A reversible ocular manifestation of thalamic hemorrhage: A case report. Arch Neurol 1977;34:715716.Google Scholar
Waga, S, Okada, M, Yamamoto, Y. Reversibility of Parinaud syndrome in thalamic hemorrhage. Neurology 1979;29:407409.Google Scholar
Kase, C, Williams, J, Wyatt, D, et al. Lobar intracerebral hematomas: Clinical and CT analysis of 22 cases. Neurology 1982;32:11461150.Google Scholar
Ropper, A, Davis, K. Lobar cerebral hemorrhages: Acute clinical syndromes in 26 cases. Ann Neurol 1980;8:141147.Google Scholar
Kase, CS. Hemorrhage, Lobar. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;363382.Google Scholar
Kase, C. Lobar hemorrhages. In Caplan, LR, van Gijn, J (eds), Stroke Syndromes (3rd ed). Cambridge: Cambridge University Press, 2012;516525.Google Scholar
Zhu, XL, Chan, MSY, Poon, WS. Spontaneous intracranial hemorrhage: Which patients need diagnostic cerebral angiography? A prospective study of 296 cases and review of the literature. Stroke 1997;28:14061409.Google Scholar
Caplan, LR. Primary intraventricular hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;383401.Google Scholar
Butler, A, Partain, R, Netsky, M. Primary intraventricular hemorrhage in adults. Surg Neurol 1977;8:143149.Google Scholar
Little, JR, Blomquist, G, Ethier, R. Intraventricular hemorrhage in adults. Surg Neurol 1977;8:143149.Google Scholar
Ziai, WC, Hanley, D. Intraventricular hemorrhage. In Caplan, LR, van Gijn, J (eds), Stroke Syndromes (3rd ed). Cambridge: Cambridge University Press, 2012;526533.Google Scholar
Naff, NJ, Hanley, DF, Keyl, PM, et al. Intraventricular thrombolysis speeds blood clot resolution: Results of a pilot prospective, randomized double-blind controlled trial. Neurosurgery 2004;54:577584.Google Scholar
Steiner, T, Diringer, MN, Schneider, D, et al. Dynamics of intraventricular hemorrhage in patients with spontaneous intracerebral hemorrhage: Risk factors, clinical impact and effect of hemostatic therapy with recombinant factor VII. Neurosurgery 2006;59:767773.Google Scholar
Bhattathiri, PS, Gregson, B, Prasad, KS, Mendelow, AD. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: Results from the STICH trial. Acta Neurochir Suppl 2006;96:6568.Google Scholar
Zhang, Z, Li, X, Liu, Y, et al. Application of neurendoscopy in the treatment of intraventricular hemorrhage. Cerebrovasc Dis 2007;24:9196.Google Scholar
Kase, CS, Caplan, LR. Parenchymatous posterior fossa hemorrhage. In Barnett, HJM, Mohr, JP, Stein, B, Yatsu, F (eds), Stroke: Pathophysiology, Diagnosis and Management. New York: Churchill Livingstone, 1985;621641.Google Scholar
Caplan, LR. Pontine hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;403423.Google Scholar
Chung, C-S, Caplan, LR. Pontine infarcts and hemorrhages. In Caplan, LR, van Gijn, J (eds), Stroke Syndromes (3rd ed). Cambridge: Cambridge University Press, 2012;448460.Google Scholar
Caplan, LR, Zervas, N. Survival with permanent midbrain dysfunction after surgical treatment of traumatic subdural hematoma: The clinical picture of a Duret hemorrhage. Ann Neurol 1977;1:587589.Google Scholar
Steegman, T. Primary pontile hemorrhage. J Nerv Ment Dis 1951;114:3565.Google Scholar
Silverstein, A. Primary pontine hemorrhage. In Vinken, P, Bruyn, G (eds), Handbook of Clinical Neurology, Vol 12, Part 2. Vascular Diseases of the Nervous System. Amsterdam: North Holland, 1972;3753.Google Scholar
Caplan, LR, Goodwin, J. Lateral tegmental brainstem hemorrhage. Neurology 1982;32:252260.Google Scholar
Kase, C, Maulsby, G, Mohr, JP. Partial pontine hematomas. Neurology 1980;30:652655.Google Scholar
Graveleau, P, DeCroix, JP, Samson, Y, et al. Déficit sensitive isolé d’un hémicorps par hématome du pont. Rev Neurol (Paris) 1986;142:788790.Google Scholar
Araga, S, Fukada, M, Kagimoto, H, et al. Pure sensory stroke due to pontine hemorrhage. J Neurol 1987;235:116117.Google Scholar
Holtzman, RNN, Zablozki, V, Yang, WC, et al. Lateral pontine tegmental hemorrhage presenting as isolated trigeminal sensory neuropathy. Neurology 1987;37:704706.Google Scholar
Veerapen, R. Spontaneous lateral pontine hemorrhage with associated trigeminal nerve root hematoma. Neurosurgery 1989;25:451454.Google Scholar
Gobernado, J, de Molina, A, Gimeno, A. Pure motor hemiplegia due to hemorrhage in the lower pons. Arch Neurol 1980;37:393.Google Scholar
Kameyama, S, Tanaka, R, Tsuchida, T. Pure motor hemiplegia due to pontine hemorrhage. Stroke 1989;20:1288.Google Scholar
Schnapper, R. Pontine hemorrhage presenting as ataxic hemiparesis. Stroke 1982;13:518519.Google Scholar
Kobatake, K, Shinohara, Y. Ataxic hemiparesis in patients with primary pontine hemorrhage. Stroke 1983;14:762764.Google Scholar
Tuhrim, S, Yang, WC, Rubinowitz, H, et al. Primary pontine hemorrhage and the dysarthria-clumsy hand syndrome. Neurology 1982;32:10271028.Google Scholar
Nakajima, K. Clinicopathological study of pontine hemorrhage. Stroke 1983;14:485493.Google Scholar
Lhermitte, F, Pages, M. Abducens nucleus syndrome due to pontine hemorrhage. Cerebrovasc Dis 2006;22:284285.Google Scholar
Sherman, SC, Saadermand, B. Pontine hemorrhage and isolated abducens nerve palsy. Am J Emer Med 2007;25:104105.Google Scholar
Watanabe, A, Kobashi, T. Lateral gaze disturbance due to cerebral microbleed in the medial lemniscus in the mid-pontine region: A case report. Neuroradiology 2005;47:908911.Google Scholar
Toyoda, K, Okada, S, Inoue, T, et al. Antithrombotic therapy and predilection for cerebellar hemorrhage. Cerebrovasc Dis 2007;23:109116.Google Scholar
Brennan, R, Berglund, R. Acute cerebellar hemorrhage: Analysis of clinical findings and outcome in 12 cases. Neurology 1977;27:527532.Google Scholar
Fisher, CM, Picard, E, Polak, A, et al. Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. J Nerv Ment Dis 1965;140:3857.Google Scholar
Ott, K, Kase, C, Ojemann, R, et al. Cerebellar hemorrhage: Diagnosis and treatment. Arch Neurol 1974;31:160167.Google Scholar
Kase, CS. Cerebellar hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;425443.Google Scholar
Ojemann, R, Heros, R. Spontaneous brain hemorrhage. Stroke 1983;14:468474.Google Scholar
Shenkin, H, Zavala, M. Cerebellar strokes: Mortality, surgical indications and results of ventricular damage. Lancet 1982;2:429432.Google Scholar
Richardson, AE. Spontaneous cerebellar hemorrhage. In Vinken, P, Bruyn, G (eds), Handbook of Clinical Neurology. Amsterdam: North Holland, 1972;5467.Google Scholar
Ecker, A. Upward transtentorial herniation of the cerebellum due to tumor in the posterior fossa. J Neurosurg 1948;5:5161.Google Scholar
Cuneo, RA, Caronna, JJ, Pitts, L, Townsend, J, Winestock, DP. Upwards transtentorial herniation: Seven cases and a literature review. Arch Neurol 1979;36:618623.Google Scholar
Dolderer, S, Kallenberg, K, Aschoff, A, et al. Long-term outcome after spontaneous cerebellar haemorrhage. Eur Neurol 2004;52:112119.Google Scholar
Longo, M, Fiumara, F, Pandolfo, I, et al. CT observation of an ongoing intracerebral hemorrhage. J Comput Assist Tomogr 1983;7:362363.Google Scholar
Zilkha, A. Intraparenchymal fluid-blood level: A CT sign of recent intracerebral hemorrhage. J Comput Assist Tomogr 1983;7:301305.Google Scholar
Pineda, A. Computed tomography in intracerebral hemorrhage. Surg Neurol 1977;8:5558.Google Scholar
Dul, K, Drayer, B. CT and MR imaging of intracerebral hemorrhage. In Kase, CS, Caplan, LR (eds), Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994;7393.Google Scholar
Scott, W, New, P, Davis, K, et al. Computerized axial tomography of intracerebral and intraventricular hemorrhage. Radiology 1974;112:7380.Google Scholar
Herald, S, Kummer, R, Jaeger, C. Follow-up of spontaneous intracerebral hemorrhage by computed tomography. J Neurology 1982;228:267276.Google Scholar
Schellinger, PD, Jansen, O, Fiebach, JB, et al. A standardized MRI protocol. Comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999;30:765768.Google Scholar
Linfante, I, Llinas, RH, Caplan, LR, Warach, S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 1999;30:22632267.Google Scholar
Yasui, T, Kishi, H, Komiyama, M, et al. Very poor prognosis in cases with extravasation of the contrast medium during angiography. Surg Neurol 1996;45:560564.Google Scholar
Ruiz-Sandoval, JL, Chiquette, E, Romero-Vargas, S, et al. Grading scale for prediction of outcome in primary cerebral hemorrhages. Stroke 2007;38:16411644.Google Scholar
Kothari, R, Brott, T, Broderick, JP, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 1996;27:13041305.Google Scholar
Little, J, Blomquist, G, Ethier, R. Cerebellar hemorrhage in adults: Diagnosis by computerized tomography. J Neurosurg 1978;48:575579.Google Scholar
Rädberg, JA, Olsson, JE, Radberg, CT. Prognostic parameters in spontaneous intracerebral hematomas with special reference to anticoagulant treatment. Stroke 1991;22:571576.Google Scholar
Terayama, Y, Tanahashi, N, Fukuuchi, Y, Gotoh, F. Prognostic value of admission blood pressure in patients with intracerebral hemorrhage. Keio Cooperative Stroke Study. Stroke 1997;28:11851188.Google Scholar
Diringer, MN, Edwards, DF, Zazulia, A. Hydrocephalus: A previously unrecognized predictor of poor outcome from supratentorial intracerebral hemorrhage. Stroke 1998;29:13521357.Google Scholar
Dandapani, B, Suzuki, S, Kelley, RE, et al. Relation between blood pressure and outcome in intracerebral hemorrhage. Stroke 1995;26:2124.Google Scholar
Tuhrim, S, Horowitz, DR, Sacher, M, Godbold, JH. Volume of intraventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit Care Med 1999;27:617621.Google Scholar
Anderson, CS, Heeley, E, Huang, Y, et al. Rapid blood pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 2013;368:23552365.Google Scholar
Morgenstern, LB, Hemphill, JC III, Anderson, C, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2010;41:21082129.Google Scholar
Tsivgoulis, G, Karsanos, AH, Butcher, KS, et al. Intensive blood pressure reduction in acute intracerebral hemorrhage. Neurology 2014;83:15231529.Google Scholar
Langfitt, T. Conservative care of intracranial hemorrhage. In Thompson, R, Green, J (eds), Advances in Neurology, Vol 11. Stroke. New York: Raven, 1977;169180.Google Scholar
Poungvarin, N, Bhoopat, W, Viriyavejakul, A, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med 1987;316:12291233.Google Scholar
Mehdiratta, M, Kumar, S, Hackney, D, et al. Association between serum ferritin level and perihematomal edema volume in patients with spontaneous intracerebral hemorrhage. Stroke 2008;39:11651170.Google Scholar
Selim, M. Deferoxamine mesylate: A new hope for intracerebral hemorrhage: From bench to clinical trials. Stroke 2009;40:590591.Google Scholar
Majeed, A, Schulman, S. Bleeding and antidotes in new oral anticoagulants. Best Pract Res Clin Haematol 2009;49:11711177.Google Scholar
Mayer, SA. Ultra-early hemostatic therapy for intracerebral hemorrhage. Stroke. 2003;34:224229.Google Scholar
Mayer, SA, Brun, NC, Broderick, J, et al. Safety and feasibility of recombinant factor VIIa for acute intracerebral hemorrhage. Stroke 2005;36:7479.Google Scholar
Mayer, SA, Brun, NC, Begtrup, K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2005;352:777785.Google Scholar
Mayer, SA, Brun, NC, Begtrup, K, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2008;358:21272137.Google Scholar
Sugg, RM, Gonzales, NR, Matherne, DE, et al. Myocardial injury in patients with intracerebral hemorrhage treated with recombinant factor VIIa. Neurology. 2006;67:10531055.Google Scholar
Mendelow, AD, Gregson, BA, Fernandes, HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the international surgical trial in intracerebral haemorrhage (STICH): A randomised trial. Lancet 2005;365:387397.Google Scholar
Mendelow, AD, Gregson, BA, Rowan, EN, Murray, GD, Gholkar, A, Mitchell, PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013;382:397408.Google Scholar
Prasad, KS, Gregson, BA, Bhattathiri, PS, Mitchell, P, Mendelow, AD. The significance of crossovers after randomization in the STICH trial. Acta Neurochir Suppl 2006;96:6164.Google Scholar
Bhattathiri, PS, Gregson, B, Prasad, KS, Mendelow, AD. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: Results from the STICH trial. Acta Neurochir Suppl 2006;96:6568.Google Scholar
Matsumoto, K, Honda, H. CT guided stereotaxic evacuation of hypertensive intracerebral hematoma. J Neurosurg 1984;61:440448.Google Scholar
Kandel, EL, Peresadov, VV. Stereotactic evacuation of spontaneous intracerebral hematomas. J Neurosurg 1985;62:206213.Google Scholar
Nizuma, H, Suzuki, J. Stereotactic aspiration of putaminal hemorrhage using a double track aspiration technique. Neurosurgery 1988;22:432436.Google Scholar
Nguyen, JP, Decq, P, Brugieres, P, et al. A technique for stereotactic aspiration of deep intracerebral hematomas under computed tomographic control using a new device. Neurosurgery 1992;31:330335.Google Scholar
Mohadjer, M, Eggert, R, May, J, Mayfrank, L. CT-guided stereotactic fibrinolysis of spontaneous and hypertensive cerebellar hemorrhage: Long-term results. J Neurosurg 1990;73:217222.Google Scholar
Findlay, JM, Grace, MG, Weir, BK. Treatment of intraventricular hemorrhage with tissue plasminogen activator. Neurosurgery 1993;32:941947.Google Scholar
Schaller, C, Rhode, V, Meyer, B, Hassler, W. Stereotactic puncture and lysis of spontaneous intracerebral hemorrhage using recombinant tissue-plasminogen activator (rtPA) after stereotactic aspiration: Initial results. Neurosurgery 1995;36:328335.Google Scholar
Barnes, B, Hanley, DF, Carhuapoma, JR. Minimally invasive surgery for intracerebral haemorrhage. Curr Opin Crit Care 2014;20:148152.Google Scholar
Ziai, WC, Tuhrim, S, Lane, K, et al. A multicenter, randomized, double-blinded, placebo-controlled phase III study of Clot Lysis Evaluation of Accelerated Resolution of Intraventricular Hemorrhage (CLEAR III). Int J Stroke 2014;9:536542.Google Scholar
Cho, DY, Chen, CC, Chang, CS, et al. Endoscopic surgery for spontaneous basal ganglia hemorrhage: Comparing endoscopic surgery, stereotactic aspiration, and craniotomy in noncomatose patients. Surg Neurol 2006;65:547556.Google Scholar
Tyler, K, Poletti, C, Heros, R. Cerebral amyloid angiopathy with multiple intracerebral hemorrhages. Neurosurgery 1982;577:286289.Google Scholar
Morgenstern, LB, Demchuk, AM, Kim, DH, et al. Rebleeding leads to poor outcomes in ultra-early craniotomy for intracerebral hemorrhage. Neurology 2001;56:12941299.Google Scholar

References

Singhal, AB, Biller, J, Elkind, M, et al. Recognition and management of stroke in young adults and adolescents. Neurology 2013;81:10891097.Google Scholar
Putaala, J, Metso, AJ, Metso, TM, et al. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: The Helsinki Young Stroke Registry. Stroke 2009;40:11951203.Google Scholar
Yesilot Barlas, N, Putaala, J, Waje-Andreassen, U, et al. Etiology of first-ever ischaemic stroke in European young adults: The 15 cities Young Stroke Study. Eur J Neurol 2013;20:14311439.Google Scholar
Maaijwee, NA, Rutten-Jacobs, LCA, Schaapsmeerders, P, van Dijk, EJ, de Leeuw, F-E. Ischaemic stroke in young adults: Risk factors and long-term consequences. Nat Rev Neurol 2014;10:315325.Google Scholar
Chopra, JS, Prabhakar, S. Clinical features and risk factors in stroke in young. Acta Neurol Scand 1979;60:289300.Google Scholar
Katrak, S. Vasculitis and stroke due to tuberculosis. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 4145.Google Scholar
Del Bruto, O. Stroke and vasculitis in patients with cysticercosis. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 5358.Google Scholar
Caplan, LR, Estanol, B, Mitchell, WG. How to manage patients with neurocysticercosis. Eur Neurol 1997;37:124131.Google Scholar
Putaala, J, Haapaniemi, E, Metso, AJ, et al. Recurrent ischemic events in young adults after first-ever ischemic stroke. Ann Neurol 2010;68:661671.Google Scholar
George, MG, Tong, X, Kuklina, EV, Labarthe, DR. Trends in stroke hospitalizations and associated risk factors among children and young adults, 1995–2008. Ann Neurol 2011;70:713721.Google Scholar
Kissela, BM, Khoury, JC, Alwell, K, et al. Age at stroke: Temporal trends in stroke incidence in a large, biracial population. Neurology 2012;79:17811787.Google Scholar
Rutten-Jacobs, LC, Arntz, RM, Maaijwee, NA, et al. Long-term mortality after stroke among adults aged 18 to 50 years. JAMA 2013;309:11361144.Google Scholar
Nencini, P, Inzitari, D, Baruffi, MC, et al. Incidence of stroke in young adults in Florence, Italy. Stroke 1988;19:977981.Google Scholar
Stern, B, Kittmer, S, Sloan, M, et al. Stroke in the young. Maryland Med J 1991;40:453462, 565571.Google Scholar
Agrawal, N, Johnston, SC, Wu, YW, Sidney, S, Fullerton, HJ. Imaging data reveal a higher pediatric stroke incidence than prior US estimates. Stroke 2009;40:34153421.Google Scholar
Mackay, MT, Wiznitzer, M, Benedict, SL, et al. Arterial ischemic stroke risk factors: The International Pediatric Stroke Study. Ann Neurol 2011;69:130140.Google Scholar
Walsh, LE, Garg, B. Isolated acute subcortical infarctions in children: Clinical description and radiographic correlation. Ann Neurol 1990;28:458459.Google Scholar
Caplan, LR, Babikian, V, Helgason, C, et al: Occlusive disease of the middle cerebral artery. Neurology 1985;35:975982.Google Scholar
Caplan, LR, DeWitt, LD, Pessin, MS, et al. Lateral thalamic infarcts. Arch Neurol 1988;45:959964.Google Scholar
Caplan, LR. Posterior cerebral artery disease. In Caplan, LR: Posterior Circulation Disease. Boston: Blackwell, 1996, pp 444491.Google Scholar
Edlow, JA, Selim, MH. Atypical presentations of acute cerebrovascular syndromes. Lancet Neurol 2011;10:550560.Google Scholar
Ferro, JM, Crespo, M. Young adult stroke: Neuropsychological dysfunction and recovery. Stroke 1988;19:982986.Google Scholar
Boardman, JP, Ganesan, V, Rutherford, MA, Saunders, DE, Mercuri, E, Cowan, F. Magnetic resonance image correlates of hemiparesis after neonatal and childhood middle cerebral artery stroke. Pediatrics 2005;115:321326.Google Scholar
Malamud, N. Status marmoratus: A form of cerebral palsy following either birth injury or inflammation of the central nervous system. J Pediatr 1950;37:610619.Google Scholar
Ferro, JM, Massaro, A, Mas, J-L. Aetological diagnosis of ischaemic stroke in young adults. Lancet Neurol 2010;9:10851096.Google Scholar
deVeber, G. The Canadian Pediatric Ischemic Stroke Study Group: Canadian pediatric ischemic stroke registry: Analysis of children with arterial ischemic stroke (abstract). Ann Neurol 2000;48:526.Google Scholar
Kappelle, LJ, Adams, HP, Heffner, ML, et al. Prognosis of young adults with ischemic stroke. A long-term follow-up study assessing recurrent vascular events and functional outcome in the Iowa Registry of Stroke in Young Adults. Stroke 1994;25:13601365.Google Scholar
Putaala, J, Curtze, S, Hiltunen, S, Toippanen, H, Kaste, M, Tatlisumak, T. Causes of death and predictors of 5-year mortality in young adults after first-ever ischemic stroke: the Helsinki Young Stroke Registry. Stroke 2009;40:26982703.Google Scholar
Maaijwee, NA, Rutten-Jacobs, LC, Arntz, R, et al. Long-term increased risk of unemployment after young stroke: A long-term follow-up study Neurology 2014;83:11321138.Google Scholar
Singhal, AB, Lo, W. Life after stroke: Beyond medications. Neurology 2014;83:11281129.Google Scholar
Ferriero, DM. Neonatal brain injury. N Engl J Med 2004;351:19851995.Google Scholar
Kirton, A, deVeber, G, Pontigon, A-M, et al. Presumed perinatal ischemic stroke: Vascular classification predicts outcome. Ann Neurol 2008;63:436443.Google Scholar
Back, SA, Riddle, A, McClure, MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 2007;38(part 2):724730.Google Scholar
Hill, A, Volpe, JJ. Stroke and hemorrhage in the premature and term neonate. In Edwards, MB, Hoffman, HJ (eds): Cerebral Vascular Diseases in Children and Adolescents. Baltimore: Williams & Wilkins, 1989, pp 179194.Google Scholar
Roland, E, Poskitt, K, Rodriguez, E, et al. Perinatal hypoxic-ischemic thalamic injury: Clinical features and neuroimaging. Ann Neurol 1998;44:161166.Google Scholar
Leech, RW, Alvord, EC Jr. Anoxic-ischemic encephalopathy in the human neonatal period: The significance of brain stem involvement. Arch Neurol 1977;34:109113.Google Scholar
Golomb, MR, MacGregor, DL, Domi, T, et al. Presumed pre- or perinatal arterial ischemic stroke: Risk factors and outcomes. Ann Neurol 2001;50:163168.Google Scholar
Benders, MJ, Groenendaal, F, Uiterwaal, CS, et al. Maternal and infant characteristics associated with perinatal arterial stroke in the preterm infant. Stroke 2007;38:17591765.Google Scholar
Rorke, LB, Zimmerman, RA. Prematurity, postmaturity, and destructive lesions in utero. AJNR Am J Neuroradiol 1992;13:517536.Google Scholar
Nelson, KB, Dambrosia, JM, Grether, JK, Phillips, TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 1998;44:665675.Google Scholar
Kurnik, K, Kosch, A, Strater, R. Childhood Stroke Study Group. Recurrent thromboembolism in infants and children suffering from symptomatic neonatal arterial stroke. A prospective follow-up study. Stroke 2003;34:28872893.Google Scholar
Johnston, MV. Selective vulnerability in the neonatal brain. Ann Neurol 1998;44:155156.Google Scholar
Martin, LJ, Brambrink, A, Koehler, RC, Traystman, RJ. Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia-ischemia. J Comp Neurol 1997;377:262285.Google Scholar
Volpe, JJ. Value of MR in definition of the neuropathology of cerebral palsy in vivo. AJNR Am J Neuroradiol 1992;13:7983.Google Scholar
Volpe, JJ, Pasternak, JF. Parasagittal cerebral injury in neonatal hypoxic-ischemic encephalopathy: Clinical and neuroradiologic features. J Pediatr 1977;91:472476.Google Scholar
Aida, N, Nishimura, NA, Hachiya, Y, et al. MR imaging of perinatal brain damage: Comparison of clinical outcome with initial and follow-up MR findings. AJNR Am J Neuroradiol 1998;19:19091921.Google Scholar
Bax, M, Tydeman, C, Flodmark, O. Clinical and MRI correlates of cerebral palsy. The European Cerebral Palsy Study. JAMA 2006;296:16011608.Google Scholar
Volpe, JJ, Herscovitch, P, Perlman, JM, et al. Positron emission tomography in the asphyxiated term newborn: Parasagittal impairment of cerebral blood flow. Ann Neurol 1985;17:287296.Google Scholar
Banker, BQ, Larroch, JC. Periventricular leukomalacia of infancy: A form of neonatal anoxic encephalopathy. Arch Neurol 1962;7:386410.Google Scholar
DeReuck, J, Chattha, AS, Richardson, EP Jr. Pathogenesis and evolution of periventricular leukomalacia in infancy. Arch Neurol 1972;27:229236.Google Scholar
Truwit, CL, Barkovich, AJ, Koch, TK, Ferriero, DM. Cerebral palsy: MR findings in 40 patients. AJNR Am J Neuroradiol 1992;13:6778.Google Scholar
Kuban, KC, Leviton, A. Cerebral palsy. N Engl J Med 1994;330:188195.Google Scholar
Barmada, MA, Moossy, J, Shuman, RM. Cerebral infarcts with arterial occlusion in neonates. Ann Neurol 1979;6:495502.Google Scholar
Mantovani, JF, Gerber, GJ. “Idiopathic” neonatal cerebral infarction. Am J Dis Child 1984;138:359362.Google Scholar
Rollins, NK, Morris, MC, Evans, D, et al. The role of early MR in the evaluation of the term infant with seizures. AJNR Am J Neuroradiol 1994;15:239248.Google Scholar
Takanashi, J, Barkovich, AJ, Ferriero, DM, et al. Widening spectrum of congenital hemiplegia. Periventricular venous infarction in term neonates. Neurology 2003;61:531533.Google Scholar
Chasnoff, IJ, Bussey, ME, Savich, R, et al. Perinatal cerebral infarction and maternal cocaine use. J Pediatr 1986;108:456459.Google Scholar
Roessmann, CC, Miller, RT. Thrombus of the middle cerebral artery associated with birth trauma. Neurology 1980;30:889892.Google Scholar
Roach, ES, Riela, AR. Pediatric Cerebrovascular Disorders. Mount Kisco, NY: Futura, 1988.Google Scholar
Teksama, M, Moharirc, M, deVeber, G, Shroff, M. Frequency and topographic distribution of brain lesions in pediatric cerebral venous thrombosis. AJNR Am J Neuroradiol 2008:29:19611965.Google Scholar
Fitzgerald, KC, Williams, LS, Garg, BP, et al. Cerebral sinovenous thrombosis in the neonate. Arch Neurol 2006;63:405409.Google Scholar
deVeber, G, Andrew, M, Adams, C, et al. Canadian Pediatric Ischemic Stroke Study Group. Cerebral sinovenous thrombosis in children. N Engl J Med 2001;345:417423.Google Scholar
Moharir, MD, Shroff, M, Stephens, D, et al. Anticoagulants in pediatric cerebral sinovenous thrombosis: A safety and outcome study. Ann Neurol 2010;67:590599.Google Scholar
Jordan, LC, Rafay, MF, Smith, SE, et al. for the Pediatric Stroke Study Group. Antithrombotic treatment in neonatal cerebral sinovenous thrombosis: Results of the International Pediatric Stroke Study. J Pediatr 2010;156:704710.Google Scholar
Ahmann, PA, Lazzara, A, Dykes, FD, et al. Intraventricular hemorrhage in the high-risk preterm infant: Incidence and outcome. Ann Neurol 1980;7:118124.Google Scholar
Papile, LA, Burstein, J, Burstein, R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights of less than 1500 gm. Pediatrics 1978;92:529534.Google Scholar
Garcia, JH, Pantoni, L. Strokes in childhood. Semin Pediatr Neurol 1995;2:180191.Google Scholar
Grunnet, ML, Shields, WD. Cerebellar hemorrhage in the premature infant. J Pediatr 1976;88:605608.Google Scholar
Martin, R, Roessmann, U, Fanaroff, A. Massive intracerebellar hemorrhage in low birth-weight infants. J Pediatr 1976;89:290293.Google Scholar
Gowers, WR. A Manual of Diseases of the Nervous System. Philadelphia: P Blakiston, 1888.Google Scholar
Freud, S. Die Infantile Cerebrähmung. Vienna. Hölder, 1897.Google Scholar
Ford, FR, Schaffer, AJ. The etiology of infantile acquired hemiplegia. AMA Arch Neurol Psychiatry 1927;18:323347.Google Scholar
Ganesan, V, Prengler, M, McShane, MA, et al. Investigation of risk factors in children with arterial ischemic stroke. Ann Neurol 2003;53:167173.Google Scholar
Lanthier, S, Armstrong, D, Donni, T, deVeber, G. Post-varicella arteriopathy of childhood. Natural history of vascular stenosis. Neurology 2005;64:660663.Google Scholar
Danchaivijitr, N, Cox, TC, Saunders, D, Ganesan, V. Evolution of cerebral arteriopathies in childhood arterial ischemic stroke. Ann Neurol 2006;59:620626.Google Scholar
Kirkham, F. Improvement or progression in childhood cerebral arteriopathies: Current difficulties in prediction and suggestions for research. Ann Neurol 2006;580582.Google Scholar
Sebire, G, Fullerton, H, Riou, E, deVeber, G. Toward the definition of cerebral arteriopathies of childhood. Curr Opin Pediatr 2004;16:617622.Google Scholar
Kuhle, S, Mitchell, L, Andrew, M, et al. Urgent clinical challenges in children with ischemic stroke. Analysis of 1065 patients from the 1–800-NOCLOTS Pediatric Stroke Telephone Consultation Service. Stroke 2006;37:116122.Google Scholar
Schoenberg, BS, Mellinger, JF, Schoenberg, DG. Cerebrovascular disease in infants and children: A study of incidence, clinical features, and survival. Neurology 1978;28:763768.Google Scholar
Fullerton, HJ, Wu, YW, Sydney, S, Johnstone, SC. Risk of recurrent stroke in a population-based cohort: The importance of cerebrovascular imaging. Stroke 2007;38:485.Google Scholar
Fullerton, HJ, Wu, YW, Sydney, S, Johnstone, SC. Excess stroke risk in black and Hispanic children: A population-based study. Stroke 2007;38:460.Google Scholar
Fullerton, HJ, Chetkovich, DM, Wu, YW, et al. Deaths from strokes in US children 1979–1998. Neurology 2002;59:3439.Google Scholar
Mallick, AA, O’Callaghan, FJ. The epidemiology of childhood stroke. Eur J Paediatr Neurol. 2010;14:197205.Google Scholar
Blom, I, De Schryver, EL, Kappelle, LJ, Rinkel, GJ, Jennekens-Schinkel, A, Peters, AC. Prognosis of haemorrhagic stroke in childhood: a long-term follow-up study. Dev Med Child Neurol. 2003;45:233239.Google Scholar
So, SC. Cerebral arteriovenous malformations in children. Childs Brain 1978;4:242250.Google Scholar
Ventureyra, EC, Herder, S. Arteriovenous malformations in children. Childs Nerv Syst 1987;3:1218.Google Scholar
Fullerton, HJ, Wu, YW, Sidney, S, Johnston, SC. Recurrent hemorrhagic stroke in children. A population-based cohort study. Stroke 2007;38:26582662.Google Scholar
Sedzimir, CB, Robinson, J. Intracranial hemorrhages in children and adolescents. J Neurosurg 1973;38:269281.Google Scholar
Orozco, M, Trigueros, F, Quintana, F, et al. Intracranial aneurysms in early childhood. Surg Neurol 1978;9:247252.Google Scholar
Shucart, WA, Wolpert, SM. Intracranial arterial aneurysms in childhood. Am J Dis Child 1974;127:288293.Google Scholar
Kumar, R, Shukla, D, Mahapatra, AK. Spontaneous intracranial hemorrhage in children. Pediatr Neurosurg 2009;45:3745.Google Scholar
Mackenzie, I. The clinical presentation of the cerebral angioma. Brain 1953;76:184213.Google Scholar
Humphreys, RP. Infratentorial arteriovenous malformations. In Edwards, MS, Hoffman, HJ (eds): Cerebral Vascular Disease in Children and Adolescents. Baltimore: Williams & Wilkins, 1989, pp 309320.Google Scholar
Humphreys, RP. Infratentorial arteriovenous malformations. In Edwards, MS, Hoffman, HJ (eds): Cerebral Vascular Disease in Children and Adolescents. Baltimore: Williams & Wilkins, 1989, pp 309320.Google Scholar
Martin, NA, Edwards, MS. Supratentorial arteriovenous malformations. In Edwards, MS, Hoffman, HJ (eds): Cerebral Vascular Diseases in Children and Adolescents. Baltimore: Williams & Wilkins, 1989, pp 283308.Google Scholar
Metellus, P, Kharkar, S, Lin, D, et al. Cerebral cavernous malformations and developmental venous anomalies. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 189219.Google Scholar
Maraire, JN, Awad, IA. Intracranial cavernous malformations: Lesion behavior and management strategies. Neurosurgery 1995;37:591605.Google Scholar
Mottolese, C, Hermier, M, Stan, H, et al. Central nervous system cavernomas in the pediatric age group. Neurosurg Rev 2001;24:5571; discussion 7273.Google Scholar
Cavalheiro, S, Braga, FM. Cavernous hemangiomas. In Choux, M, Di Rocco, C, Hockley, AD, Walker, ML (eds): Pediatric Neurosurgery. London: Churchill Livingstone, 1999, pp 691701.Google Scholar
Brower, MC, Rollins, N, Roach, ES. Basal ganglia and thalamic infarction in children. Cause and clinical features. Arch Neurol 1996;53:12521256.Google Scholar
Terplan, AK. Patterns of brain damage in infants and children with congenital heart disease. Am J Dis Child 1973;125:176185.Google Scholar
Caplan, LR, Manning, WJ. Brain Embolism. New York: Informa Healthcare, 2006.Google Scholar
Rodan, L, McCrindle, BW, Manlhiot, C, et al. Stroke recurrence in children with congenital heart disease. Ann Neurol 2012;72:103111.Google Scholar
Braun, KPJ, Rafay, M, Uiterwaal, CS, Pontigon, A-M, deVeber, G. Mode of onset predicts etiological diagnosis of arterial ischemic stroke in children. Stroke 2007;38:298302.Google Scholar
Hills, NK, Johnston, SC, Sidney, S, et al. Recent trauma and acute infection as risk factors for childhood arterial ischemic stroke. Ann Neurol 2012;72:850858.Google Scholar
Satoh, S, Shirane, R, Yoshimoto, T. Clinical survey of ischemic cerebrovascular disease in children in a district of Japan. Stroke 1991;22:586589.Google Scholar
Pitner, SE. Carotid thrombosis due to intraoral trauma – an unusual complication of a common childhood accident. N Engl J Med 1966;274:764767.Google Scholar
Pearl, PL. Childhood stroke following intraoral trauma. J Pediatr 1987;110:574575.Google Scholar
Duncan, A, Rumbaugh, C, Caplan, LR. Cerebral embolic disease: A complication of carotid aneurysms. Radiology 1979;133:379384.Google Scholar
Zilkha, A, Mendelsohn, F, Borofsky, LG. Acute hemiplegia in children complicating upper respiratory infections. Clin Pediatr 1976;15:11371142.Google Scholar
Parker, P, Puck, J, Fernandez, F. Cerebral infarction associated with Mycoplasma pneumoniae. Pediatrics 1981;67:373375.Google Scholar
Doyle, PW, Gibson, G, Dolman, C. Herpes zoster ophthalmicus with contralateral hemiplegia: Identification of cause. Ann Neurol 1983;14:8485.Google Scholar
Melanson, M, Chalk, C, Georgevich, L, et al. Varicella-zoster virus DNA in CSF and arteries in delayed contralateral hemiplegia: Evidence for viral invasion of cerebral arteries. Neurology 1996;47:569570.Google Scholar
Ross, MH, Abend, WK, Schwartz, RB, Samuels, MA. A case of C2 herpes zoster with delayed bilateral pontine infarction. Neurology 1991;41:16851686.Google Scholar
Askalan, R, Laughlin, S, Mayank, S, et al: Chickenpox and stroke in childhood: A study of frequency and causation. Stroke 2001;32:12571262.Google Scholar
Hausler, MG, Ramaekers, VT, Reul, J, et al. Early and late onset manifestations of cerebral vasculitis related to varicella zoster. Neuropediatrics 1998;29:202207.Google Scholar
Lanthier, S, Armstrong, D, Domi, T, deVeber, G. Post-varicella arteriopathy of childhood. Neurology 2005;64:660663.Google Scholar
Caplan, LR. Migraine and vertebrobasilar ischemia. Neurology 1990;41:5561.Google Scholar
Caplan, LR. Migraine and posterior circulation stroke. In Caplan, LR (ed): Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell Science, 1996, pp 544568.Google Scholar
Feucht, M, Brantner, S, Scheidinger, H. Migraine and stroke in childhood and adolecence. Cephalagia 1995;15:2630.Google Scholar
Wood, DH. Cerebrovascular complications of sickle-cell anemia. Stroke 1978;9:7375.Google Scholar
Grotta, JC, Manner, C, Pettigrew, LC, et al. Red blood cell disorders and stroke. Stroke 1986;17:811816.Google Scholar
Rothman, SM, Fulling, KH, Nelson, JS. Sickle cell anemia and central nervous system infarction: A neuropathological study. Ann Neurol 1986;20:684690.Google Scholar
Adams, RJ, Nichols, FT, McKie, V, et al. Cerebral infarction in sickle cell anemia: mechanisms based on CT and MRI. Neurology 1988;38:10121017.Google Scholar
Steen, RG, Langston, JW, Ogg, RJ, et al. Ectasia of the basilar artery in children with sickle cell disease. Relationship to hematocrit and psychometric measures. J Stroke Cerebrovasc Dis 1998;7:3243.Google Scholar
Oguz, M, Aksungur, EH, Soyupak, SK, Yildirim, AU. Vein of Galen and sinus thrombosis with bilateral thalamic infarcts in sickle cell anemia: CT follow-up and angiographic demonstration. Neuroradiology 1994;36:155156.Google Scholar
Adams, RJ, McKie, VC, Nichols, F, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med 1992;326:605610.Google Scholar
Adams, RJ, McKie, VC, Hsu, L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998;339:511.Google Scholar
Maguire, JL, deVeber, G, Parkin, PC, et al. Iron deficiency anemia as a risk factor for cerebrovascular events in early childhood: a case-control study. Ann Hematol 2014;93:571576.Google Scholar
Mackay, MT, Monagle, P. Perinatal and early childhood stroke and thrombophilia. Pathology 2008;40:116123.Google Scholar
Barnes, C, deVeber, G. Prothrombotic abnormalities in childhood ischaemic stroke. Thromb Res. 2006;118:6774.Google Scholar
Kenet, G, Lutkhoff, LK, Albisetti, M, et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: A systematic review and meta-analysis of observational studies. Circulation 2010;27:18381847.Google Scholar
Koo, B, Becker, LE, Chuang, S, et al: Mitochondrial encephalomyopathy, lactic acidosis, stroke like episodes (MELAS): Clinical, radiological, and genetic observations. Ann Neurol 1993;34:2532.Google Scholar
Matthews, PM, Tampieri, D, Berkovic, SF, et al. Magnetic resonance imaging shows specific abnormalities in the MELAS syndrome. Neurology 1991;41:10431046.Google Scholar
Clark, JM, Marks, MP, Adalsteinsson, E, et al. MELAS: Clinical and pathological correlations with MRI, xenon/CT, and MR spectroscopy. Neurology 1996;46:223227.Google Scholar
Hirt, L. MELAS and other mitochondrial disorders. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 149154.Google Scholar
Morin, C, Dube, J, Robinson, B, et al. Stroke-like episodes in autosomal recessive cytochrome oxidase deficiency. Ann Neurol 1999;45:389392.Google Scholar
Suzuki, J, Kodama, N. Moyamoya disease – a review. Stroke 1983;14:104109.Google Scholar
Suzuki, J. Moyamoya Disease. Berlin: Springer, 1986.Google Scholar
Chiu, D, Shedden, P, Bratina, P, Grotta, JC. Clinical features of moyamoya disease in the United States. Stroke 1998;29:13471351.Google Scholar
Taveras, JM. Multiple progressive intracranial arterial occlusions: A syndrome of children and young adults. AJR Am J Roentgenol 1969;106:235268.Google Scholar
Scott, RM, Smith, ER. Moyamoya disease and moyamoya syndrome. N Engl J Med 2009;360:12261237.Google Scholar
Ganesan, V, Saunders, D, Kirkham, R, et al. Clinical and radiological features of moyamoya syndrome in British children: Relationship with outcome. Ann Neurol 2004;54(suppl 7):512.Google Scholar
Bruno, A, Adams, HOP, Bilbe, J, et al. Cerebral infarction due to moyamoya disease in young adults. Stroke 1988;19:826833.Google Scholar
Mauro, AJ, Johnson, ES, Chikos, PM, Alvord, EC. Lipohyalinosis and miliary microaneurysms causing cerebral hemorrhage in a patient with moyamoya. A clinicopathological study. Stroke 1980;11:405412.Google Scholar
Ikeda, E. Systemic vascular changes in spontaneous occlusion of the circle of Willis. Stroke 1991;22:13581362.Google Scholar
Ueki, K, Meyer, FB, Mellinger, JF. Moyamoya disease: The disorder and surgical treatment. Mayo Clin Proc 1994;69:749757.Google Scholar
Smith, ER, Scott, RM. Surgical management of moyamoya syndrome. Skull Base 2005;15:1526.Google Scholar
Scott, RM, Smith, JL, Roberson, RL, et al. Long-term outcome in children with moyamoya syndrome after cranial revascularization by pial synangiosis. J Neurosurg 2004;100(suppl 2):142149.Google Scholar
Guzman, R, Lee, M, Achrol, A, et al. Clinical outcome after 450 revascularization procedures for moyamoya disease. J Neurosurg 2009;111;927935.Google Scholar
Lynch, JK. Cerebrovascular disorders in children. Curr Neurol Neurosurg Reports 2004;4:129138.Google Scholar
Heller, C, Heinecke, A, Junker, R, et al. Cerebral venous thrombosis in children: A multifactorial origin. Circulation 2003;108:13621367.Google Scholar
Carpenter, J, Tsuchida, T. Cerebral sinovenous thrombosis in children. Curr Neurol Neurosci Rep 2007;7:139146.Google Scholar
Sebire, G, Tabarki, B, Saunders, DE, et al. Cerebral venous sinus thrombosis in children: Risk factors, presentation, diagnosis, and outcome. Brain 2005;128:477489.Google Scholar
Dlamini, N, Billinghurst, L, Kirkham, FJ. Cerebral venous (sinovenous) thrombosis in children. Neurosurg Clin N Am 2010;21:511527.Google Scholar
Bernard, TJ, Goldenberg, NA, Armstrong-Wells, J, et al. Treatment of childhood arterial ischemic stroke. Ann Neurol 2008;63:679696.Google Scholar
Paediatric Stroke Working Group. Royal College of Physicians Guidelines. Stroke in Childhood: Clinical Guidelines For Diagnosis, Management And Rehabilitation, 2004. http://www.rcpch.ac.uk/sites/default/files/asset_library/Research/Clinical%20Effectiveness/Endorsed%20guidelines/Stroke%20in%20Childhood%20(RCP)/Stroke%20in%20children%20-%20full%20guideline.pdf (accessed November 2015).Google Scholar
Monagle, P, Chan, AK, Goldenberg, NA, et al. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Antithrombotic Therapy in Neonates and Children: Antithrombotic Therapy and Prevention Of Thrombosis, 9th ed. Chest. 2012;141(2 Suppl):e737S801S.Google Scholar
Roach, ES, Golomb, MR, Adams, R, et al. American Heart Association Stroke Council; Council On Cardiovascular Disease in the Young. Management of stroke in infants and children: A scientific statement from a Special Writing Group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young. Stroke 2008;39:26442691.Google Scholar
Louis, S, McDowell, F. Stroke in young adults. Ann Intern Med 1967;66:932938.Google Scholar
Snyder, BD, Ramirez-Lassepas, M, Cerebral infarction in young adults: Long term prognosis. Stroke 1980;11:149153.Google Scholar
Hart, RG, Miller, VT. Cerebral infarction in young adults: A practical approach. Stroke 1983;14:110114.Google Scholar
Srinivasan, K. Ischemic cerebrovascular disease in the young: Two common causes in India. Stroke 1984;15:733735.Google Scholar
Hilton-Jones, D, Warlow, CP. The causes of stroke in the young. J Neurol 1985;232:137143.Google Scholar
Radhakrishnan, K, Ashek, PP, Sridharan, R, Mousa, ME. Stroke in the young: Incidence and pattern in Benghazi, Libya. Acta Neurol Scand 1986;73:434438.Google Scholar
Adams, HP, Butler, MJ, Biller, J, Toffol, GJ. Nonhemorrhagic cerebral infarction in young adults. Arch Neurol 1986;43:793796.Google Scholar
Toffol, GJ, Biller, J, Adams, HP. Nontraumatic intracerebral hemorrhage in young adults. Arch Neurol 1987;44:483485.Google Scholar
Bogousslavsky, J, Regli, F. Ischemic stroke in adults younger than 30 years of age. Arch Neurol 1987;44:479482.Google Scholar
Gautier, JC, Pradat-Diehl, P, Loron, PL, et al. Accidents vasculaires cérébraux des sujets jeunes. Une etude de 133 patients ages de 9 à 45 ans. Rev Neurol 1989;145:437442.Google Scholar
Berlit, P. Cerebral ischemia in young adults. Ann Neurol 1990;28:258.Google Scholar
Yamaguchi, T, Yoshinaga, M, Yonekawa, Y. Stroke in the Young – Japanese Perspective. Abstracts International Conference on Stroke. Geneva, May 30–June 1, 1991.Google Scholar
Lisovoski, F, Rousseaux, P. Cerebral infarction in young people: A study of 148 patients with early angiography. J Neurol Neurosurg Psychiatry 1991;54:576579.Google Scholar
Williams, LS, Garg, BP, Cohen, M, et al. Subtypes of ischemic stroke in children and young adults. Neurology 1997;49:15411545.Google Scholar
Ruiz-Sandoval, JL, Cantu, C, Baringarrementaria, F. Intracerebral hemorrhage in young people. Analysis of risk factors, locations, causes, and prognosis. Stroke 1999;30:537541.Google Scholar
Baringarrementaria, F, Gonzalez-Duarte, A, Miranda, L, Cantu, C. Cerebral infarction in young women: Analysis of 130 cases. Eur Neurol 1998;40:228233.Google Scholar
Kittner, SJ, Stern, BJ, Wozniak, M, et al. Cerebral infarction in young adults. The Baltimore–Washington Cooperative Young Stroke Study. Neurology 1998;50:890894.Google Scholar
Giovannoni, G, Fritz, VU. Transient ischemic attacks in younger and older patients. A comparative study of 798 patients in South Africa. Stroke 1993;24:947953.Google Scholar
Carolei, A, Marini, C, Ferranti, E, et al. A prospective study of cerebral ischemia in the young. Analysis of pathogenic determinants. Stroke 1993;24:362367.Google Scholar
Kristensen, B, Malm, J, Carlberg, B, et al. Epidemiology and etiology of ischemic stroke in young adults aged 18 to 44 years in Northern Sweden. Stroke 1997;28:17021709.Google Scholar
Baringarrementaria, F, Figueroa, T, Huebe, J, Cantu, C. Cerebral infarction in people under 40 years. Etiologic analysis of 300 cases prospectively evaluated. Cerebrovasc Dis 1996;6:7579.Google Scholar
Lee, T-H, Hsu, W-C, Chen, C-J, Chen, S-T. Etiologic study of young ischemic stroke in Taiwan. Stroke 2002;33:19501955.Google Scholar
Leys, D, Bandu, L, Henon, H, et al. Clinical outcome in 287 consecutive young adults (15–45 years) with ischemic stroke. Neurology 2002;59:2633.Google Scholar
Musolino, R, La Spina, P, Granata, A, et al. Ischaemic stroke in young people: A prospective and long-term follow-up study. Cerebrovasc Dis 2003;15:121128.Google Scholar
Cerrato, P, Grasso, M, Imperiale, D, et al. Stroke in young patients: Etiopathogenesis and risk factors in different age classes. Cerebrovasc Dis 2004;18:154159.Google Scholar
Nedeltchev, K, der Maur, TA, Georgiadis, D, et al. Ischaemic stroke in young adults: Predictors of outcome and recurrence. J Neurol Neurosurg Psychiatry 2005;76:191195.Google Scholar
Varona, JF, Bermejo, F, Guerra, JM, Molina, JA. Long-term prognosis of ischemic stroke in young adults. Study of 272 cases. J Neurol 2004;251:15071514.Google Scholar
Ji, R, Schwamm, LH, Perves, MA, Singhal, AB. Ischemic stroke and transient ischemic attack in young adults: Risk factors, diagnostic yield, neuroimaging, and thrombolysis. JAMA Neurol 2013;70:5157.Google Scholar
Debette, S, Leys, D. Cervical-artery dissections: Predisposing factors, diagnosis, and outcome. Lancet Neurol 2009;8:668678.Google Scholar
Lechat, P, Mas, JL, Lescault, G, et al. Prevalence of patent foramen ovale in patients with strokes. N Engl J Med 1988;318:11481152.Google Scholar
Lechat, P, Lascault, G, Thomas, D, et al. Patent foramen ovale and cerebral embolism. Circulation 1985;72(suppl 3):134.Google Scholar
Narayan, D, Kaul, S, Ravishankar, K, et al. Risk factors, clinical profile, and long-term outcome of 428 patients of cerebral sinus venous thrombosis: Insights from Nizam’s Institute Venous Stroke Registry, Hyderabad (India). Neurol India 2012;60:154159.Google Scholar
Kaku, DA, Lowenstein, DH. Emergence of recreational drug abuse as a major risk factor for stroke in young adults. Ann Intern Med 1990;113:821827.Google Scholar
Sloan, MA, Kittner, SJ, Feeser, BR, et al. Illicit drug-associated ischemic stroke in the Baltimore–Washington Young Stroke Study. Neurology 1998;49:16881693.Google Scholar
Rutten-Jacobs, LC, Maaijwee, NA, Arntz, RM, et al. Clinical characteristics and outcome of intracerebral hemorrhage in young adults. J Neurol 2014;261:21432149.Google Scholar

References

Buchan, AM, Barnett, HJM. Infarction of the spinal cord. In Barnett, HJM, Mohr, JP, Stern, B, Yatsu, F (eds): Stroke: Pathophysiology, Diagnosis and Management. New York: Churchill Livingstone, 1986, pp 707719.Google Scholar
Vinters, HV, Gilbert, JJ. Hypoxic myelopathy. Can J Neurol Sci 1979;6:380.Google Scholar
Caplan, LR. Case records of the Massachusetts General Hospital: Case 5–1991. N Engl J Med 1991;324:322332.Google Scholar
Lazorthes, G, Pulhes, J Bastide, G, Chanchole, AR, Zadeh, O. Spinal cord vascularization: anatomical and physiological study. Rev Neurol 1962;106:535557.Google Scholar
Lazorthes, G, Gouaze, A, Zadeh, O. Arterial vascularization of the spinal cord: Recent studies of the arterial substitution pathways. J Neurosurg 1971;35:253262.Google Scholar
Sandler, AN, Tator, CH. Regional spinal blood flow in primates. J Neurosurg 1976;45:647659.Google Scholar
Gillilan, L. The arterial blood supply of the human spinal cord. J Comp Neurol 1958;110:75103.Google Scholar
Mawad, ME, Rivera, V, Crawford, S, et al. Spinal cord ischemia after resection of thoracoabdominal aortic aneurysms: MR findings in 24 patients. AJNR Am J Neuroradiol 1990;11:987991.Google Scholar
Heros, R. Arteriovenous malformations of the spinal cord. In Ojemann, RG, Heros, RC, Crowell, RM (eds): Surgical Management of Cerebrovascular Disease, 2nd ed. Baltimore: Williams & Wilkins, 1988, pp 451466.Google Scholar
Ishizawa, K, Komori, T, Shimada, T, et al. Hemodynamic infarction of the spinal cord: involvement of the gray matter plus the border-zone between the central and peripheral arteries. Spinal Cord 2005;43:306310.Google Scholar
Gillilan, L. Veins of the spinal cord. Anatomic details – suggested clinical applications. Neurology 1970;20:860868.Google Scholar
Griessenauer, CJ, Raborn, J, Foreman, P, Shoja, MM, Loukas, M, Tubbs, RS. Venous drainage of the spine and spinal cord: a comprehensive review of its history, embryology, anatomy, physiology, and pathology. Clin Anat 2015;28:7587.Google Scholar
Hogan, EL, Romanul, FCA. Spinal cord infarction occurring during insertion of aortic graft. Neurology 1966;16:6774.Google Scholar
Silver, JR. History of infarction of the spinal cord. J Hist Neurosci 2003;12:144153.Google Scholar
Cooper, A. The Lectures of Sir Astley Cooper on the Principles and Practices of Surgery. London: Thomas and George Underwood, Vol II, 1825, pp 6972.Google Scholar
Gull, W. Paraplegia from obstruction of the abdominal aorta. In Wilks, S, Poland, A (eds): Guy’s Hospital Reports. London: John Churchill, (3rd series) Vol III.Google Scholar
DeBakey, ME, Simeone, FA. Battle injuries of the arteries in World War II. Ann Surg 1946;123:534536.Google Scholar
Picone, AL, Green, RM, Ricotta, JR, May, SG, DeWeese, JA. Spinal cord ischemia following operations on the abdominal aorta. J Vasc Surg 1986;3:94103.Google Scholar
Dodson, WE, Landau, W. Motor neuron loss due to aortic clamping in repair of coarctation. Neurology 1973;23:539542.Google Scholar
Ross, RT. Spinal cord infarction in diseases and surgery of the aorta. Can J Neurol Sci 1985;12:289295.Google Scholar
Cheshire, WP, Santos, CC, Massey, EW, Howard, JF Jr. Spinal cord infarction: etiology and outcome. Neurology 1996; 47:321330.Google Scholar
Rockman, CB, Riles, TS, Landis, R. Lower extremity paraparesis or paraplegia subsequent to endovascular management of abdominal aortic aneurysms. J Vasc Surg 2001;33:178180.Google Scholar
Fortes, DL, Atkins, BZ, Chiou, AC. Delayed paraplegia following infrarenal abdominal aortic endograft placement: case report and literature review. Vascular 2004;12:130135.Google Scholar
Acher, C, Wynn, M. Paraplegia after thoracoabdominal aortic surgery: not just assisted circulation, hypothermic arrest, clamp and sew or TEVAR. Ann Cardiothorac Surg 2012;1:365372.Google Scholar
Freyrie, A, Testi, G, Gargiulo, M, Faggioli, G, Mauro, R, Stella, A. Spinal cord ischemia after endovascular treatment of infrarenal aortic aneurysm. Case report and literature review. J Cardiovasc Surg (Torino) 2011;52:731734.Google Scholar
Herrick, MK, Mills, PE. Infarction of spinal cord: Two cases of selective grey matter involvement secondary to asymptomatic aortic disease. Arch Neurol 1971;24:228241.Google Scholar
Novy, J, Carruzzo, A, Maeder, P, Bogousslavsky, J. Spinal cord ischemia. Clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch Neurol 2006;63:11131120.Google Scholar
Masson, C, Pruvo, JP, Meder, JF, et al. Study Group on Spinal Cord Infarction of the French Neurovascular Society. Spinal cord infarction: Clinical and magnetic resonance imaging and short term outcome. J Neurol Neurosurg Psychiatry 2004;75:14311435.Google Scholar
Shinoyama, M, Takahashi, T, Shimizu, H, Tominaga, T, Suzuki, M. Spinal cord infarction demonstrated by diffusion-weighted magnetic resonance imaging. J Clin Neurosci 2005;12:466468.Google Scholar
Walsh, DV, Uppal, JA, Karalis, DG, Chandrasekaran, K. The role of transesophageal echocardiography in the acute onset of paraplegia. Stroke 1992;23:16601661.Google Scholar
Caplan, LR. The aorta as a donor source of brain embolism. In Caplan, LR, Manning, WJ, Brain Embolism. New York: Informa Healthcare, 2006, pp 187201.Google Scholar
Amarenco, P. Cohen, A. Update on imaging aortic atherosclerosis. In Barnett, HJM, Bogousslavsky, J, Meldrum, H (eds) Ischemic Stroke: Advances in Neurology, vol 92. Philadelphia: Lippincott, Williams & Wilkins, 2003, pp 7589.Google Scholar
Yuh, WT, Marsh, EE III, Wang, AK, et al. Imaging of spinal cord and vertebral body infarction. AJNR Am J Neuroradiol 1992;13:145154.Google Scholar
Faig, J, Busse, O, Selbeck, R. Vertebral body infarction as a confirmatory sign of spinal cord ischemic stroke: report of three cases and review of the literature. Stroke 1998;29:239243.Google Scholar
Srigley, JR, Lambert, CD, Bilbao, JM, Pritzker, KP. Spinal cord infarction secondary to intervertebral disc embolism. Ann Neurol 1981;9:296301.Google Scholar
Raghavan, A, Onikul, E, Ryan, MM, et al. Anterior spinal cord infarction owing to possible fibrocartilaginous embolism. Pediatr Radiol 2004;34:503506.Google Scholar
Duprez, TP, Danvoye, L, Hernalsteen, D, Cosnard, G, Sindic, CJ, Godfraind, C. Fibrocartilaginous embolization to the spinal cord: serial MR imaging monitoring and pathologic study. AJNR Am J Neuroradiol 2005;26:496501.Google Scholar
Piao, YS, Lu, DH, Su, YY, Yang, XP. Anterior spinal cord infarction caused by fibrocartilaginous embolism. Neuropathol 2009;29:172175.Google Scholar
Caplan, LR, Noronha, A, Amico, L. Syringomyelia and arachnoiditis. J Neurol Neurosurg Psychiatry 1990;53:106113.Google Scholar
Haribhai, HC, Bhigjee, AI, Bill, PL, et al. Spinal cord schistosomiasis. A clinical, laboratory and radiological study, with a note on therapeutic aspects. Brain 1991;114:709726.Google Scholar
Saleem, S, Belal, AI, el-Ghandour, NM. Spinal cord schistosomiasis: MR imaging appearance with surgical and pathologic correlation. AJNR Am J Neuroradiol 2005;26:16461654.Google Scholar
Van Leusen, H, Perquin, WV. Spinal cord schistosomiasis. J Neurol Neurosurg Psychiatry 2000;69:690691.Google Scholar
Orme, HT, Smith, AG, Nagel, MA, et al. Varicella zoster virus spinal cord infarction identified by diffusion-weighted MRI (DWI). Neurology 2007;69:398400.Google Scholar
Salvarini, C, Brown, RD Jr, Calamia, KT, et al. Primary CNS vasculitis with spinal cord involvement. Neurology 2008;70:23942400.Google Scholar
Silver, JR, Buxton, PH. Spinal stroke. Brain 1974;97:539550.Google Scholar
Satran, R. Spinal cord infarction. Current concepts of cerebrovascular disease. Stroke 1987;22:1317.Google Scholar
Singh, U, Diplomate, NB, Silver, JR, Weply, NC. Hypotensive infarction of the spinal cord. Paraplegia 1994;32:314322.Google Scholar
Brust, JCM. Stroke and substance abuse. In Caplan, LR (ed): Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp 365370.Google Scholar
Schreiber, AL, Formal, CS. Spinal cord infarction secondary to cocaine use. Am J Phy Med Rehab 2007;66:158160.Google Scholar
Kim, RC, Smith, HR, Henbest, ML, Choi, BH. Nonhemorrhagic venous infarction of the spinal cord. Ann Neurol 1984;15:379385.Google Scholar
Hughes, JT. Venous infarction of the spinal cord. Neurology 1971;21:794800.Google Scholar
Larsson, EM, Desai, P, Hardin, CW, et al. Venous infarction of the spinal cord resulting from dural arteriovenous fistula: MR imaging findings. AJNR Am J Neuroradiol 1991;12:739743.Google Scholar
Bradac, GB, Daniele, D, Riva, A, et al. Spinal dural arteriovenous fistulas: An underestimated cause of myelopathy. Eur Neurol 1993;34:8794.Google Scholar
Hurst, RW, Kenyon, LC, Lavi, E, Raps, EC, Marcotte, P. Spinal dural arteriovenous fistula: The pathology of venous hypertensive myelopathy. Neurology 1995;45:13091313.Google Scholar
Hemphill, JC III, Smith, WS, Halbach, VV. Neurologic manifestations of spinal epidural arteriovenous malformations. Neurology 1998;50:817819.Google Scholar
Roa, KR, Donnenfeld, H, Chusid, JG, Valdez, S. Acute myelopathy secondary to spinal venous thrombosis. J Neurol Sci 1982;56:107113.Google Scholar
DeChiro, G, Doppman, JL, Ommaya, AK. Radiology of spinal cord arteriovenous malformations. Prog Neurol Surg 1971;4:329354.Google Scholar
Rosenblum, B, Oldfield, EH, Doppman, JL, DiChiro, G. Spinal arteriovenous malformations: a comparison of dural arteriovenous fistulas and intradural AVMs in 81 patients. J Neurosurg 1987;67:795802.Google Scholar
Jellema, K, Canta, LR, Tijssen, CC, et al. Spinal dural arteriovenous fistulas: Clinical features in 80 patients. J Neurol Neurosurg Psychiatry 2003;74:14381440.Google Scholar
Do, HM, Jensen, ME, Cloft, HJ, et al. Dural arteriovenous fistula of the cervical spine presenting with subarachnoid hemorrhage. AJNR Am J Neuroradiol 1999;20:348350.Google Scholar
Strom, RG, Derdeyn, CP, Moran, CJ, et al. Frequency of spinal arteriovenous malformations in patients with unexplained myelopathy. Neurology 2006;66:928931.Google Scholar
Teal, PA, Wityk, RJ, Rosengart, A, Caplan, LR. Spinal TIAs – a clue to the presence of spinal dural AVMs. Neurology 1992;42(Suppl 3):341.Google Scholar
Gilbertson, JR, Miller, GM, Goldman, MS, Marsh, WR. Spinal dural arteriovenous fistulas: MR and myelographic findings. AJNR Am J Neuroradiol 1995;16:20492057.Google Scholar
Greenberg, J. Neuroimaging of the spinal cord. Neurol Clin 1991;9:696698.Google Scholar
Bowen, BC, Fraser, K, Kochan, JP, et al. Spinal dural arteriovenous fistulas: Evaluation with MR angiography. AJNR Am J Neuroradiol 1995;16:20292043.Google Scholar
Mascalchi, M, Quillici, N, Ferrito, G, et al. Identification of the feeding arteries of spinal vascular lesions via phase-contrast MR angiography with three-dimensional acquisition and phase display. AJNR Am J Neuroradiol 1997;18:351358.Google Scholar
Saraf-Lavi, E, Bowen, BC, Quencer, RM, et al. Detection of spinal dural arteriovenous fistulae with MR imaging and contrast-enhanced MR angiography: Sensitivity, specificity, and prediction of vertebral level. AJNR Am J Neuroradiol 2002;23:858867.Google Scholar
Luetmer, PH, Lane, JI, Gilbertson, JR, Bernstein, MA, Huston, J, Atkinson, JL. Preangiographic evaluation of spinal dural arteriovenous fistulas with elliptic centric contrast-enhanced MR angiography and effect on radiation dose and volume of iodinated contrast material. AJNR Am J Neuroradiol 2005;26:711718.Google Scholar
Zampakis, P, Santosh, C, Taylor, W, Teasdale, E. The role of non-invasive computed tomography in patients with suspected dural fistulas with spinal drainage. Neurosurgery 2006;58:686694.Google Scholar
Jellema, K, Tijssen, CC, van Rooiji, WJJ, et al. Spinal dural arteriovenous fistulas. Long term follow-up of 44 treated patients. Neurology 2004;62:18391841.Google Scholar
Goyal, M, Willinsky, R, Montanera, W, terBrugge, K. Paravertebral arteriovenous malformations with epidural drainage: Clinical spectrum, imaging features, and results of treatment. AJNR Am J Neuroradiol 1999;20:749755.Google Scholar
Lopate, G, Black, JT, Grubb, RL. Cavernous hemangioma of the spinal cord: report of two unusual cases. Neurology 1990;40:17911793.Google Scholar
Cosgrove, GR, Bertrand, G, Fontaine, S, et al. Cavernous angiomas of the spinal cord. J Neurosurg 1988;68:3136.Google Scholar
McCormick, PC, Michelson, WJ, Post, KD, et al. Cavernous malformations of the spinal cord. Neurosurgery 1988;23:459463.Google Scholar
Ogilvy, CS, Louis, DN, Ojemann, RG. Intramedullary cavernous angiomas of the spinal cord: Clinical presentation, pathological features, and surgical management. Neurosurgery 1992;31:219230.Google Scholar
Labauge, P, Bouly, S, Parker, F, et al. on behalf of the French Study Group of Spinal Cord Cavernomas. Outcome in 53 patients with spinal cord cavernomas. Surg Neurol 2008;70:176181.Google Scholar
Foix, C, Alajouanine, T. La myelite necrotique subaique. Rev Neurol 1926;2:142.Google Scholar
Criscuolo, GR, Oldfield, EH, Doppman, JL. Reversible acute and subacute myelopathy in patients with dural arteriovenous fistulas. J Neurosurgery 1989;70:354359.Google Scholar
Garcia, C, Dulcey, S, Dulcey, J. Ruptured aneurysm of the spinal artery of Adamkiewicz during pregnancy. Neurology 1979;29:394398.Google Scholar
Mattle, H, Sieb, JP, Rohner, M, Mumenthaler, M. Nontraumatic spinal epidural and subdural hematomas. Neurology 1987;37:13511356.Google Scholar
Post, MJD, Becerra, JL, Madsen, PW, et al. Acute spinal subdural hematoma: MR and CT findings with pathological correlates. AJNR Am J Neuroradiol 1994;15:18951905.Google Scholar
Morandi, X, Riffaud, L, Chabert, E, Brassier, G. Acute nontraumatic spinal subdural hematomas in three patients. Spine 2001;26:e547551.Google Scholar
Cha, YH, Chi, JH, Barbaro, NM. Spontaneous spinal subdural hematoma associated with low-molecular-weight heparin. Case report. Neurosurg Spine 2005;2:612613.Google Scholar
Gundry, CR, Heithoff, KB. Epidural hematoma of the lumbar spine: 18 surgically confirmed cases. Radiology 1993;187:427431.Google Scholar
Russman, BS, Kazi, K. Spinal epidural hematoma and the Brown–Séquard syndrome. Neurology 1971;21:10661068.Google Scholar
Black, P, Zervas, N, Caplan, LR, Ramirez, L. Subdural hygroma of the spinal meninges: A case report. Neurosurgery 1978;2:5254.Google Scholar

References

Kalbag, RM, Woolf, AL: Cerebral Venous Thrombosis. London: Oxford University Press, 1967.Google Scholar
Caplan, LR: Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell Science, 1996.Google Scholar
Ribes, MF: Des recherches faites sur la phlebite. Revue Medicale Francaise et etrangere et Jornal de clinique de l’Hotal-Dieu et de la Charite de Paris 1825;3:541.Google Scholar
Abercrombie, J: Pathological and Practical Researches on Diseases of the Brain and Spinal Cord. Edinburgh: Waugh & Innes, 1828;8385.Google Scholar
Tonnelle, M-L: Memoire sur les maladies des sinus veineux de la dure-mere. J Hebd Med 1829;5:337403.Google Scholar
Cruveilhier, J: Anatomie pathologique du corps humain: descriptions avec figures lithographiées et caloriées ddes diverses alterations morbides dont le corps humain est susceptible. Paris: J B Bailliere, 1835–1842.Google Scholar
Quinke, H: Ueber meningitis serosa. Inn Med Nr 1891;23:655694.Google Scholar
Quinke, H: Ueber meningitis serosa und verwandte Zustande. Dtsch Z Nervenheilk 1896;9:149168.Google Scholar
Symonds, CP: Otitic hydrocephalus. Brain 1931;54:5571.Google Scholar
Symonds, CP: Hydrocephalus and focal cerebral symptoms in relation to thrombophlebitis of dural sinuses and cerebral veins. Brain 1937;60:531550.Google Scholar
Symonds, CP: Cerebral thrombophlebitis. BMJ 1940;2:348352.Google Scholar
Symonds, CP: Otitic hydrocephalus. Neurology 1956;6:681685.Google Scholar
Bousser, M-G, Chiras, J, Bories, J, Castaigne, P: Cerebral venous thrombosis – a review of 38 cases. Stroke 1985;16:199213.Google Scholar
Einhaupl, KM, Kempski, O, Baethman, A: Cerebral Sinus Thrombosis: Experimental and Clinical Aspects. New York: Plenum, 1990.Google Scholar
Einhaupl, KM, Masuhr, F: Cerebral venous and sinus thrombosis. An update. Eur J Neurol 1994;1:109126.Google Scholar
Bousser, M-G, Ross Russell, R: Cerebral Venous Thrombosis. London: Saunders, 1997.Google Scholar
Biousse, V, Bousser, M-G: Cerebral venous thrombosis. Neurologist 1999;5:326349.Google Scholar
Stam, J: Thrombosis of cerebral veins and sinuses. N Engl J Med 2005;352:17911798.Google Scholar
Ehtisham, A, Stern, BJ: Cerebral venous thrombosis: A review. Neurologist 2006;12:3238.Google Scholar
Mehdiratta, M, Kumar, S, Selim, M, Caplan, LR: Cerebral venous sinus thrombosis: Clinical features, diagnosis and treatment. In Caplan, LR (ed): Uncommon Causes Of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008; 497594.Google Scholar
Bousser, M-G, Ferro, JM: Cerebral venous thrombosis: An update. Lancet Neurol 2007;6:162170.Google Scholar
Coutinho, JM, Zuurbier, SM, Aramideh, M, Stam, J. The incidence of cerebral venous thrombosis: a cross-sectional study. Stroke 2012;43:33753377.Google Scholar
Einhäupl, K, Stam, J, Bousser, M-G, et al: European Federation of Neurological Societies. EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. Eur J Neurol 2010;17:12291235.Google Scholar
Berfelo, FJ, Kersbergen, KJ, Van Ommen, CH, et al: Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke 2010;41:13821388.Google Scholar
deVeber, G, Andrew, M, Adams, C, et al: Canadian pediatric ischemic stroke study group. Cerebral sinovenous thrombosis in children. N Engl J Med 2001;345:417423.Google Scholar
Southwick, FS, Richardson, EP, Swartz, MN: Septic thrombosis of the dural venous sinuses. Medicine (Baltimore) 1986;65:82106.Google Scholar
Tveteras, K, Kristensen, S, Dommerby, H: Septic cavernous and lateral sinus thrombosis. J Laryngol Otol 1988;102:877882.Google Scholar
Ferro, JM, Canhao, P, Stam, J, et al: Prognosis of cerebral vein and dural sinus thrombosis. Stroke 2004;35:664670.Google Scholar
Bliss, SJ, Flanders, SA, Saint, S: A pain in the neck. N Engl J Med 2004;350:10371042.Google Scholar
Cantu, C, Barinagarrementeria, F: Cerebral venous thrombosis associated with pregnancy and puerperium. Review of 67 cases. Stroke 1993;24:18801884.Google Scholar
Estanol, B, Rodriguez, A, Conte, G, et al: Intracranial venous thrombosis in young women. Stroke 1979;10:680684.Google Scholar
Srinivasan, K: Cerebral venous and arterial thrombosis in pregnancy and puerperium, a study of 135 patients. Angiology 1983;34:733746.Google Scholar
Chopra, JS, Banerjee, AK: Primary intracranial sinovenous occlusions in youth and pregnancy. In Vinken, PJ, Bruyn, GW, Klawans, HL (eds): Handbook of Clinical Neurology, vol 10. Amsterdam: Elsevier, 1989;425452.Google Scholar
Narayan, D, Kaul, S, Ravishankar, K, Suryaprabha, T, Srinivasarao Bandaru, VCS: Risk factors, clinical profile, and long-term outcome of 428 patients of cerebral sinus venous thrombosis: Insights from Nizam’s Institute Venous Stroke Registry, Hyderabad. Neurology India 2012;60:154159.Google Scholar
Lanska, DJ, Kryscio, R: Stroke and intracranial venous thrombosis during pregnancy and puerperium. Neurology 1998;51:16221628.Google Scholar
Coutinho, JM, Ferro, JM, Canhao, P, et al: Cerebral venous and sinus thrombosis in women. Stroke 2009;40:23562361.Google Scholar
Bousser, M-G, Crassard, I. Cerebral venous thrombosis, pregnancy and oral contraceptives. Thrombosis Research 2012;130:1922.Google Scholar
Martinelli, I, Sacchi, E, Landi, G, et al: High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998;338:17931797.Google Scholar
De Bruijn, SF, Stam, J, Koopman, MM, Vandenbroucke, JP: The cerebral venous sinus thrombosis study group. Case-control study of risk of cerebral sinus thrombosis in oral contraceptive users and in carriers of hereditary prothrombotic conditions. BMJ 1998;316:589592.Google Scholar
Dentali, F, Crowther, M, Ageno, W: Thrombophilic abnormalities, oral contraceptives, and risk of cerebral vein thrombosis: A meta-analysis. Blood 2006;107:27662773.Google Scholar
Fugate, JE, Robinson, MT, Rabinstein, AA, Wijdicks, EF: Cerebral venous sinus thrombosis associated with a combined contraceptive ring. Neurologist 2011;17:105106.Google Scholar
Man, BL, Hui, AC: Cerebral venous thrombosis secondary to ovarian hyperstimulation syndrome. Hong Kong Med J 2011;17:155156.Google Scholar
Jaillard, AS, Hommel, M, Mallaret, M: Venous sinus thrombosis associated with androgens in a healthy young man. Stroke 1994;25:212213.Google Scholar
Shiozawa, Z, Yamada, H, Mabuchi, C, et al: Superior sagittal sinus thrombosis associated with androgen therapy for hypoplastic anemia. Ann Neurol 1982;12:578580.Google Scholar
Peralta, AR, Canhao, P: Hypothyroidism and cerebral vein thrombosis – a possible association. J Neurol 2008;255:962966.Google Scholar
Squizzato, A, Gerdes, VE, Brandjes, DP, Büller, HR, Stam, J. Thyroid diseases and cerebrovascular disease. Stroke 2005;36:23022310.Google Scholar
Hickey, WF, Carnick, MB, Henderson, IC, Dawson, DM: Primary cerebral venous thrombosis in patients with cancer – a rarely diagnosed paraneoplastic syndrome. Report of three cases and review of the literature. Am J Med 1982;73:740750.Google Scholar
Poe, LB, Manzione, JV, Wasenko, JJ, Kellman, RM: Acute internal jugular vein thrombosis associated with pseudoabscess of the retropharyngeal space. AJNR Am J Neuroradiol 1995;16:892896.Google Scholar
Mitchell, D, Fisher, J, Irving, D, et al: Lateral sinus thrombosis and intracranial hypertension in essential thrombocythaemia. J Neurol Neurosurg Psychiatry 1986;49:218219.Google Scholar
Haan, J, Caebeke, JFV, van der Meer, FJM, Wintzen, AR: Cerebral venous thrombosis as a presenting sign of myeloproliferative disorders. J Neurol Neurosurg Psychiatry 1988;51:12191220.Google Scholar
Johnson, RV, Kaplan, SR, Blailock, Z: Cerebral venous thrombosis in paroxysmal nocturnal hemoglobinuria. Neurology 1970;20:681686.Google Scholar
Agah, R, Rice, L, Winikates, J: Fatal cerebral venous thrombosis as the initial manifestation of the antiphospholipid syndrome. J Neurol Neurosurg Psychiatry 1996;98:189191.Google Scholar
Vidailhet, M, Piette, J-C, Wechsler, B, et al: Cerebral venous thrombosis in systemic lupus erythematosus. Stroke 1990;21:12261231.Google Scholar
Feldenzer, JA, Bueche, MJ, Venes, JL, Gebarski, SS: Superior sagittal sinus thrombosis with infarction in sickle cell trait. Stroke 1987;18:656660.Google Scholar
Schutta, HS, Williams, EC, Baranski, BG, Sutula, TP: Cerebral venous thrombosis with plasminogen deficiency. Stroke 1991;22:401405.Google Scholar
Kim, MJ, Cho, A-H, No, Y-J, et al: Recurrent cerebral venous thrombosis associated with elevated factor VIII. J Clin Neurol 2006;2:286289.Google Scholar
Anadure, RK, Nagaraja, D, Christopher, R: Plasma factor VIII in non-puerperal cerebral venous thrombosis: A prospective case-control study. J Neurol Sci 2014;339:140143.Google Scholar
Pohl, C, Harbrecht, U, Greinacher, A, et al: Neurologic complications in immune-mediated heparin-induced thrombocytopenia. Neurology 2000;54:12401245.Google Scholar
Lauw, MN, Barco, S, Coutinho, JM, Middeldorp, S: Cerebral venous thrombosis and thrombophilia: A systematic review and meta-analysis. Semin Thromb Hemost 2013;39:913927.Google Scholar
Voetsch, B, Jin, RC, Bierl, C, et al: Role of promotor polymorphisms in the plasma glutathione peroxidase (GPx-3) gene as a risk factor for cerebral venous thrombosis. Stroke 2008;39:303307.Google Scholar
Reuenr, KH, Jenetzky, E, Aleu, A, et al: Factor XII C46T gene polymorphism and the risk of cerebral venous thrombosis. Neurology 2008;70:129132.Google Scholar
Barthelemy, M, Bousser, M-G, Jacobs, C: Thrombose veineuse cerebrale au cours d’un syndrome nephrotique. Nouv Presse Med 1980;9:367369.Google Scholar
Cognat, E, Crassard, I, Denier, C, Vahedi, K, Bousser, M-G: Cerebral venous thrombosis in inflammatory bowel diseases: Eight cases and literature review. Int J Stroke 2011;6:487549.Google Scholar
Wechsler, B, Vidailhet, M, Piette, JC, et al: Cerebral venous thrombosis in Behçet’s disease: Clinical study and long-term follow-up of 25 cases. Neurology 1992;42:614618.Google Scholar
Daif, A, Awada, A, Al-Rajeh, S, et al: Cerebral venous thrombosis in adults. A study of 40 cases from Saudi Arabia. Stroke 1995;26:11931195.Google Scholar
Uluduz, D, Kürtüncü, M, Yapici, Z, et al: Clinical characteristics of pediatric-onset neuro-Behçet disease. Neurology 2011;77:19001905.Google Scholar
Vandenberghe, N, Debouverie, M, Anxionnat, R, Clavelou, P, Bouly, S, Weber, M: Cerebral venous thrombosis in four patients with multiple sclerosis. Euro J Neurol 2003;10:6366.Google Scholar
Berroir, S, Grabli, D, Héran, F, Bakouche, P, Bousser, M-G: Cerebral sinus venous thrombosis in two patients with spontaneous intracranial hypotension. Cerebrovasc Dis 2004;17:912.Google Scholar
Schievink, WI, Maya, MM: Cerebral venous thrombosis in spontaneous intracranial hypotension. Headache 2008;48:15111519.Google Scholar
Ameri, A, Bousser, M-G: Cerebral venous thrombosis. Neurol Clin 1992;10:87111.Google Scholar
Einhaupl, K, Villringer, A, Haberl, RL, et al: Clinical spectrum of sinus venous thrombosis. In Einhaupl, K, Kemski, O, Baethmann, A (eds): Cerebral Sinus Thrombosis, Experimental and Clinical Aspects. New York: Plenum, 1990;149155.Google Scholar
Schaller, B, Graf, R: Cerebral venous infarction: The pathophysiological concept. Cerebrovasc Dis 2004;18:179188.Google Scholar
Villringer, A, Mehraein, S, Einhaupl, KM: Pathophysiological aspects of cerebral sinus venous thrombosis (SVT). J Neuroradiol 1994;21:7280.Google Scholar
Ferro, JM, Canhao, P, Stam, J, et al: Delay in the diagnosis of cerebral vein and dural sinus thrombosis. Influence on outcome. Stroke 2009;40:31333138.Google Scholar
Gutschera-Wang, L: Zur klinik von Letalen Hirnvenen – Und Sinus Thrombosen Anhand Von 102 Fallen. Munich: Erwachsener, 1982.Google Scholar
Cervos-Navarro, J, Kannuki, S: Neuropathological findings in the thromboses of cerebral veins and sinuses: Vascular aspects. In Einhaupl, K, Kempski, O, Baethmann, O (eds): Cerebral Sinus Thrombosis: Experimental and Clinical Aspects. New York: Plenum, 1990;1525.Google Scholar
Cumurciuc, R, Crassard, I, Sarov, M, et al: Headache as the only neurological sign of cerebral venous thrombosis: A series of 17 cases. J Neurol Neurosurg Psychiatry 2005;76:10841087.Google Scholar
Bousser, M-G, Barnett, HJM: Cerebral venous thrombosis. In Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, F (eds): Stroke Pathophysiology, Diagnosis, and Management, 2nd ed. New York: Churchill Livingstone, 1992;517537.Google Scholar
Bousser, M-G, Einhäupl, K: Cerebral venous thrombosis. In Olesen, J, Tfelt-Hansen, P, Welch, KMA (eds): The Headaches, 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2000;929939.Google Scholar
de Bruijn, SF, de Haan, RJ, Stam, JF: Clinical features and prognostic factors of cerebral venous sinus thrombosis in a prospective series of 59 patients. Cerebral Venous Sinus Thrombosis Study Group. J Neurol Neurosurg Psychiatry 2001;70:105108.Google Scholar
Tsai, F, Wang, A-M, Matovich, VB, et al: MR staging of acute dural sinus thrombosis: Correlation with venous pressure measurements and implications for treatment and prognosis. AJNR Am J Neuroradiol 1995;16:10211029.Google Scholar
Coutinho, JM, Stam, J, Canhäo, P, et al. on behalf of the ISCVT Investigators: Cerebral venous thrombosis in the absence of headache. Stroke 2015;46:245247.Google Scholar
Newman, DS, Levine, SR, Curtis, VL, Welch, KMA: Migraine like visual phenomena associated with cerebral venous thrombosis. Headache 1989;29:8285.Google Scholar
Crassard, I, Bousser, M-G. Cerebral venous thrombosis and intracerebral hemorrhage. In Carhuapoma, JR, Mayer, SA, Hanley, DF (eds). Intracerebral Hemorrhage. New York: Cambridge University Press, 2009;84100.Google Scholar
Ferro, JM, Canhao, P, Bousser, M-G, et al: Early seizures in cerebral vein and dural sinus thrombosis. Risk factors and role of antiepileptics. Stroke 2008;39:11521158.Google Scholar
Mehraein, S, Schmidtke, K, Villringer, A, et al: Heparin treatment in cerebral sinus and venous thrombosis: Patients at risk of fatal outcome. Cerebrovasc Dis 2003;15:1721.Google Scholar
Masuhr, F, Mehraein, S: Cerebral venous and sinus thrombosis. Patients with a fatal outcome during intravenous dose-adjusted heparin treatment. Neurocrit Care 2004;1:355361.Google Scholar
Damak, M, Crassard, I, Wolff, V, Bousser, M-G. Isolated lateral sinus thrombosis. A series of 62 patients. Stroke 2009;40:476481.Google Scholar
Dunsker, SB, Torres-Reyes, E, Peden, JC Jr: Pseudotumor cerebri associated with idiopathic cryofibrinogenemia: Report of a case. Arch Neurol 1970;23:120127.Google Scholar
Kaplan, RE, Springate, JE, Feld, LG, Cohen, ME: Pseudotumor cerebri associated with cerebral venous sinus thrombosis, internal jugular vein thrombosis, and systemic lupus erythematosus. J Pediatr 1985;107:266268.Google Scholar
Yavagal, DR, Geng, D, Akar, S, Buonanno, F, Kesari, S: Superficial siderosis of the central nervous system due to bilateral jugular vein thrombosis. Arch Neurol 2010;67:12691271.Google Scholar
DiNubile, MJ: Septic thrombosis of the cavernous sinus. Arch Neurol 1988;45:567572.Google Scholar
Yarington, CT Jr: The prognosis and treatment of cavernous sinus thrombosis: Review of 878 cases in the literature. Ann Otol Rhinol Laryngo 1961;70:263267.Google Scholar
Yarington, CT Jr: Cavernous sinus thrombosis revisited. Proc R Soc Med 1977;70:456459.Google Scholar
Ebright, JR, Pace, MT, Niazi, AF: Septic thrombosis of the cavernous sinuses. Arch Intern Med 2001;161:26712676.Google Scholar
Chen, JS, Mukherjee, , Dillon, WP, Wintermark, M: Restricted diffusion in bilateral optic nerves and retinas as an indicator of venous ischemia caused by cavernous sinus thrombophlebitis. AJNR Am J Neuroradiol 2006;27:18151816.Google Scholar
Samuel, J, Fernandes, CM: Lateral sinus thrombosis: A review of 45 cases. J Laryngol Otol 1987;101:12271229.Google Scholar
Mathews, TJ: Lateral sinus pathology: 22 cases managed at Groote Schuur hospital. J Laryngol Otol 1988;102:118120.Google Scholar
Tveteras, K, Kristensen, S, Dommerby, H: Septic cavernous and lateral sinus thrombosis; modern diagnostic and therapeutic principles. J Laryngol Otol 1988;102:877882.Google Scholar
Singh, B: The management of lateral sinus thrombosis. J Laryngol Otol 1993;107:803808.Google Scholar
Crassard, I, Biousse, V, Bousser, M-G, Meyer, B, Marsot-Dupuch, K: Hearing loss and headache revealing lateral sinus thrombosis in a patient with factor V Leiden mutation. Stroke 1997;28:876878.Google Scholar
Gattringer, T, Enzinger, C, Birner, A, et al: Acute unilateral hearing loss as an early symptom of lateral cerebral sinus venous thrombosis. Arch Neurol 2012;69:15081511.Google Scholar
Bots, GAM: Thrombosis of the Galenic system veins in the adult. Acta Neuropathol 1971;17:227233.Google Scholar
Haley, EC, Brashear, R, Barth, JT, et al: Deep cerebral venous thrombosis: Clinical, neuroradiological, and neuropsychological correlates. Arch Neurol 1989;46:337340.Google Scholar
Pfefferkorn, T, Crassard, I, Linn, J, Dichgans, M, Boukobza, M, Bousser, M-G: Clinical features, course and outcome in deep cerebral venous system thrombosis: An analysis of 32 cases. J Neurol 2009;256:18391845.Google Scholar
Sagduyu, A, Sirin, H, Mulayim, S, et al: Cerebral cortical and deep venous thrombosis without sinus thrombosis: Clinical MRI correlates. Acta Neurol Scand 2006;114:245260.Google Scholar
Jacobs, K, Moulin, T, Bogousslavsky, J, et al: The stroke syndrome of cortical vein thrombosis. Neurology 1996;47:376382.Google Scholar
Selim, M, Fink, J, Linfante, I, et al: Diagnosis of cerebral venous thrombosis with echo-planar T2*-weighted magnetic resonance imaging. Arch Neurol 2002;59:10211026.Google Scholar
Duncan, IC, Fourie, PA: Imaging of cerebral isolated cortical vein thrombosis. AJR Am J Roentgenol 2005;184:13171319.Google Scholar
Urban, PP, Müller-Forell, W: Clinical and neuroradiological spectrum of isolated cortical vein thrombosis. J Neurol 2005;252:14761481.Google Scholar
Dorndorf, D, Wessel, K, Kessler, C, Kompf, D: Thrombosis of the right vein of Labbé: Radiological and clinical findings. Neuroradiology 1993;35:202204.Google Scholar
Thomas, B, Krishnamurthy, T, Purkayastha, G. Isolated left vein of Labbé thrombosis. Neurology 2005;65:1135.Google Scholar
de Sousa, DA, Ferro, JM, Canhäo, P, et al. for the ISCVT Investigators: Cerebral venous thrombosis causing posterior fossa lesions: Description of a case series and assessment of safety of anticoagulation. Cerebrovasc Dis 2014;38:384388.Google Scholar
Rousseaux, P, Lesoin, F, Barbaste, P, Jomin, M: Infarctus cerebelleux pseudotumoral d’origine veineuse. Rev Neurol 1987;144:209211.Google Scholar
Eng, LJ, Longstreth, WT, Shaw, CM, et al: Cerebellar venous infarction: Case report with clinicopathologic correlation. Neurology 1990;40:837838.Google Scholar
Ruiz-Sandoval, JL, Chiquete, E, Navarro-Bonnet, J, et al: Isolated vein thrombosis of the posterior fossa presenting as localized cerebellar venous infarctions or hemorrhages. Stroke 2010;41:23582361.Google Scholar
Fink, JN, Mc Auley, DL: Mastoid air sinus abnormalities associated with lateral venous sinus thrombosis. Cause or consequence? Stroke 2002;33:290292.Google Scholar
Singh, V, Gress, DR: Cerebral venous thrombosis. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003;209221.Google Scholar
Patronas, NJ, Duda, EE, Mirfakhraee, M, Wollmann, RL: Superior sagittal sinus thrombosis diagnosed by computed tomography. Surg Neurol 1981;15:1114.Google Scholar
Buonanno, FS, Moody, DM, Ball, MR, Laster, DW: Computed cranial tomographic findings in cerebral sinovenous occlusions. J Comput Assist Tomogr 1978;2:281290.Google Scholar
Rao, CV, Knipp, HC, Wagner, EJ: Computed tomographic findings in cerebral sinus and venous thrombosis. Radiology 1981;140:391398.Google Scholar
Chiras, J, Bousser, M-G, Meder, JF, Koussa, A, Bories, J: CT in cerebral thrombophlebitis. Neuroradiology 1985;27:145154.Google Scholar
Mawet, J, Crassard, I, Bousser, M-G: Cerebral venous thrombosis. In Caplan, LR, van Gijn, J (eds): Stroke Syndromes, 3rd ed. Cambridge: Cambridge UniversityPress, 2012;542553.Google Scholar
Linn, J, Ertl-Wagner, B, Seelos, KC, et al: Diagnostic value of mutidetector-row CT angiography in the evaluation of thrombosis of the cerebral venous sinuses. AJNR Am J Neuroradiol 2007;28:946952.Google Scholar
Ozsvath, RR, Casey, SO, Lustrin, ES, et al. Cerebral venography: Comparison of CT and MR projection venography. AJR Am J Roentgenol 1997;169:16991707.Google Scholar
Wetzel, SG, Kirsch, E, Stock, KW, et al: Cerebral veins: Comparative study of CT venography with intraarterial digital subtraction angiography. AJNR Am J Neuroradiol 1999;20:249255.Google Scholar
Yuh, WTC, Simonson, TM, Wang, A-M, et al: Venous sinus occlusive disease: MR findings. AJNR Am J Neuroradiol 1994;15:309316.Google Scholar
Boukobza, M, Crassard, I, Bousser, M-G, et al: MR imaging features of isolated cortical vein thrombosis: diagnosis and follow-up. AJNR Am J Neuroradiol 2009;30:344348.Google Scholar
Leach, JL, Fortuna, RB, Jones, BV, et al: Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics 2006;26:1941.Google Scholar
Poon, CS, Chang, JK, Swarnkar, A, et al: Radiologic diagnosis of cerebral venous thrombosis: Pictorial review. AJR Am J Roentgenol 2007;189:6475.Google Scholar
Ducreux, D, Oppenheim, C, Vandamme, X, et al: Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. AJNR Am J Neuroradiol 2001;22:261268.Google Scholar
Yoshikawa, T, Abe, O, Tsuchiya, K, et al: Diffusion-weighted magnetic resonance imaging of dural sinus thrombosis. Neuroradiology 2002;44:481488.Google Scholar
Forbes, KP, Pipe, JG, Heiserman, JE: Evidence for cytotoxic edema in the pathogenesis of cerebral venous infarction. AJNR Am J Neuroradiol 2001;22:450455.Google Scholar
Mullins, ME, Grant, PE, Wang, B, et al: Parenchymal abnormalities associated with cerebral venous sinus thrombosis: Assessment with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 2004;25:16661675.Google Scholar
Dormont, D, Axionnat, R, Evrard, S, et al: IRM des thromboses veineuses cerebrales. J Neuroradiol 1994;21:8199.Google Scholar
Isensee, Ch, Reul, J, Thron, A: Magnetic resonance imaging of thrombosed dural sinuses. Stroke 1994;25:2934.Google Scholar
Mas, J-L, Meder, JF, Meary, E: Dural sinus thrombosis: Long-term follow-up by magnetic resonance imaging. Cerebrovasc Dis 1992;2:137144.Google Scholar
Mas, J-L, Meder, J-F, Meary, E, Bousser, M-G: Magnetic resonance imaging in lateral sinus hypoplasia and thrombosis. Stroke 1990;21:13501356.Google Scholar
Idbaih, A, Boukobza, M, Crassard, I, et al: MRI of clot in cerebral venous thrombosis: High diagnostic value of susceptibility-weighted images. Stroke 2006;37:991995.Google Scholar
Ayanzen, RH, Bird, CR, Keller, PJ, et al: Cerebral MR venography: Normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol 2000;21:7478.Google Scholar
Ko, SB, Kim, D-E, Kim, SH, Roh, J-K: Visualization of venous system by time-of-flight magnetic resonance angiography. J Neuroimaging 2006;16:353356.Google Scholar
Krayenbuhl, H: Cerebral venous thrombosis. The diagnostic value of cerebral angiography. Schweiz Arch Neurol Neurochir Psychiatry 1954;74:261287.Google Scholar
Kosinski, CM, Mull, M, Schwartz, M, et al: Do normal d-dimer levels reliably exclude cerebral sinus thrombosis? Stroke 2004;35:28202825.Google Scholar
Dentali, F, Squizzato, A, Marchesi, C, Bonzini, M, Ferro, JM, Ageno, W: d-dimer testing in the diagnosis of cerebral vein thrombosis: A systematic review and a meta-analysis of the literature. J Thromb Haemost 2012;10:582589.Google Scholar
Crassard, J, Soria, C, Tzourio, Ch, et al: A negative d-dimer assay does not rule out cerebral venous thrombosis: A series of 73 patients. Stroke 2005;36 17161719.Google Scholar
Becker, G, Bogdahn, U, Gehlberg, C, et al: Trans-cranial color-coded real-time sonography of intracranial veins. J Neuroimaging 1994;5:8794.Google Scholar
Valdueza, JM, Schultz, M, Harms, L, Einhaupl, KM: Venous transcranial Doppler ultrasound monitoring in acute dural sinus thrombosis. Report of two cases. Stroke 1995;26:11961199.Google Scholar
Chik, Y, Gottesman, RF, Zeiler, SR, Rosenberg, J, Llinas, RH: Differentiation of transverse sinus thrombosis from congenitally atretic cerebral transverse sinus with CT. Stroke 2012;43:19681970.Google Scholar
Saposnik, G, Barinagarrementeria, F, Brown, RD, et al: Diagnosis and management of cerebral venous thrombosis. A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011;42:11581192.Google Scholar
Einhaupl, K, Bousser, M-G, de Bruijn, SFTM, et al: EFNS guideline on the treatment of cerebral venous and sinus thrombosis. Eur J Neurol 2006;13:553559.Google Scholar
Canhao, P, Cortesao, A, Cabral, M, et al: Are steroids useful to treat cerebral venous thrombosis? Stroke 2008;39:105110.Google Scholar
Cundiff, DK: Anticoagulants for cerebral venous thrombosis. Harmful to patients? Stroke 2014;45:298304.Google Scholar
Diaz, JM, Schiffman, JS, Urban, ES: Superior sagittal sinus thrombosis and pulmonary embolism. A syndrome rediscovered. Acta Neurol Scand 1992;86:390396.Google Scholar
Stansfield, FR: Puerperial cerebral thrombophlebitis treated by heparin. BMJ 1942;1:436438.Google Scholar
Martin, JP, Sheenan, HL: Primary thrombosis of cerebral veins (following childbirth). BMJ 1941;1:349.Google Scholar
Krayenbuhl, H: Cerebral venous and sinus thrombosis. Clin Neurosurg 1967;14:124.Google Scholar
Bousser, M-G: In a worsening situation, treatment can do more good than harm. Pratical Neurology 2003;3:112115.Google Scholar
Jacewicz, M, Plum, F: Aseptic cerebral venous thrombosis. In Einhaupl, K, Kempski, O, Baethmann, A (eds), Cerebral Sinus Thrombosis: Experimental and Clinical Aspects. New York: Plenum, 1990, pp 157170.Google Scholar
Einhaupl, KM, Villringer, A, Meister, W, et al: Heparin treatment in sinus venous thrombosis. Lancet 1991;338:597600.Google Scholar
de Bruijn, SF, Stam, J: Randomized, placebo-controlled trial of anticoagulant treatment with low-molecular-weight heparin for cerebral sinus thrombosis. Stroke 1999;30:484488.Google Scholar
Coutinho, J, de Bruijn, SF, deVeber, G, Stam, J: Anticoagulation for cerebral venous sinus thrombosis. Cochrane Database Syst Rev 2011;8:CD002005.Google Scholar
Bousser, M-G: Cerebral venous thrombosis. Nothing, heparin or local thrombolysis? Stroke 1999;30:481483.Google Scholar
Canhao, P, Falcao, F, Ferro, JM: Thrombolysis for cerebral sinus thrombosis. A systematic review. Cerebrovasc Dis 2003;15:159166.Google Scholar
Ciccone, A, Canhao, P, Falcao, F, et al: Thrombolysis for cerebral vein and dural sinus thrombosis. Cochrane Database Syst Rev 2004;1:CD003693.Google Scholar
Stam, J, Majoie, CB, van Delden, OM, et al: Endovascular thrombectomy and thrombolysis for severe cerebral sinus thrombosis: A prospective study. Stroke 2008;39:14871490.Google Scholar
Mehraein, S, Schmidtke, K, Villringer, A, et al: Heparin treatment in cerebral sinus and venous thrombosis: patients at risk of fatal outcome. Cerebrovasc Dis 2003;15:1721.Google Scholar
Masuhr, F, Mehraein, S: Cerebral venous and sinus thrombosis. Patients with a fatal outcome during intravenous dose-adjusted heparin treatment. Neurocrit Care 2004;1:355361.Google Scholar
Coutinho, JM, Majoie, CBLM, Coert, BA, Stam, J: Decompressive hemicraniectomy in cerebral sinus thrombosis. Consecutive case series and review of the literature. Stroke 2009;40:22332235.Google Scholar
Théaudin, M, Crassard, I, Bresson, D, et al: Should decompressive surgery be performed in malignant cerebral venous thrombosis? A series of 12 patients. Stroke 2010;41:727731.Google Scholar
Weber, J, Spring, A: Unilateral dekompressive kraniektomie bei thrombose des linken sinus transversus und sigmoideus. Zentralbl Neurochir 2004;65:135140.Google Scholar
Zuurbier, SM, Coutinho, JM, Majoie, CBLM, Coert, BA, van den Munckhof, P, Stam, J: Decompressive hemicraniectomy in severe cerebral venous thrombosis: A prospective case series. J Neurol 2012;259:10991105.Google Scholar
Ferro, JM, Crassard, I, Coutinho, JM, et al: Decompressive surgery in cerebrovenous thrombosis. A multicenter registry and a systematic review of individual patient data. Stroke 2011;42:28252831.Google Scholar
Aaron, S, Alexander, M, Moorthy, RK, et al: Decompressive craniectomy in cerebral venous thrombosis: A single centre experience. J Neurol Neurosurg Psychiatry 2013;84:9951000.Google Scholar
Crassard, I, Canhao, P, Ferro, JM, Bousser, M-G, Barinagarrementeria, F, Stam, J: Neurological worsening in the acute phase of cerebral venous thrombosis in ISCVT (International study on cerebral venous thrombosis). Cerebrovasc Dis 2003;16:60.Google Scholar
Haghighi, AB, Edgell, RC, Cruz-Flores, S, et al: Mortality of cerebral venous-sinus thrombosis in a large national sample. Stroke 2012;43:262264.Google Scholar
Nasr, DM, Brinjikji, W, Cloft, HJ, Saposnik, G, Rabinstein, AA: Mortality in cerebral venous thrombosis: Results from the national inpatient sample database. Cerebrovasc Dis 2013;35:4044.Google Scholar
Canhao, P, Ferro, JM, Lindgren, AG, et al: Causes and predictors of death in cerebral venous thrombosis. Stroke 2005;36:17201725.Google Scholar
Ferro, JM, Bacelar-Nicolau, H, Rodrigues, T, et al: ISCVT and VENOPORT Investigators. Risk score to predict the outcome of patients with cerebral vein and dural sinus thrombosis. Cerebrovasc Dis 2009;28:3944.Google Scholar
Koopman, K, Uyttenboogaart, M, Vroomen, PC, van der Meer, J, de Keyser, J, Luijckx, GJ: Development and validation of a predictive outcome score of cerebral venous thrombosis. J Neurol Sci 2009;276:6668.Google Scholar
Baumgartner, RW, Studer, A, Arnold, M, Georgiadis, D: Recanalisation of cerebral venous thrombosis. J Neurol Neurosurg Psychiatry 2003;74:459461.Google Scholar
Strupp, M, Covi, M, Seelos, K, Dichgans, M, Brandt, T: Cerebral venous thrombosis: correlation between recanalization and clinical outcome: A long-term follow-up of 40 patients. J Neurol 2002;249:11231124.Google Scholar
Martinelli, I, Bucciarelli, P, Passamonti, SM, Battaglioli, T, Previtali, E, Mannucci, PM: Long-term evaluation of the risk of recurrence after cerebral sinus-venous thrombosis. Circulation 2010;121:27402746.Google Scholar
Miranda, B, Ferro, JM, Canhao, P, et al: The ISCVT Investigators. Venous thromboembolic events after cerebral vein thrombosis. Stroke 2010;41:19011906.Google Scholar
Palareti, G, Cosmi, B, Legnani, C, et al: PROLONG Investigators. d-dimer testing to determine the duration of anticoagulation therapy. N Engl J Med 2006;355:17801789.Google Scholar
Ferro, JM, Correia, M, Rosas, MJ, et al: Seizures in cerebral vein and dural sinus thrombosis. Cerebrovasc Dis 2003;15:7883.Google Scholar
Ferro, JM, Lopez, MG, Rosas, MJ, Ferro, MA, Fontes, J: Long-term prognosis of cerebral vein and dural sinus thrombosis: results of the VENOPORT study. Cerebrovasc Dis 2002;13:272278.Google Scholar
Breteau, G, Mounier-Vehier, F, Godefroy, O, et al: Cerebral venous thrombosis 3-year clinical outcome in 55 consecutive patients. J Neurol 2003;250:2935.Google Scholar
Koopman, K, Uyttenboogaart, M, Vroomen, PC, et al: Long-term sequelae after cerebral venous thrombosis in functionally independent patients. J Stroke Cerebrovasc Dis 2009;18:198202.Google Scholar
Madureira, S, Canha, P, Ferro, JM: Cognitive and behavioural outcome of patients with cerebral venous thrombosis. Cerebrovasc Dis 2001;11:108.Google Scholar
de Bruijn, , Budde, M, Teunisse, S, de Haan, RJ, Stam, J: Long-term outcome of cognition and fuctional health after cerebral venous sinus thrombosis. Neurology 2000;54:16871689.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×