Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T09:09:01.587Z Has data issue: false hasContentIssue false

9 - Marmot evolution and global change in the past 10 million years

Published online by Cambridge University Press:  05 August 2015

P. David Polly
Affiliation:
Indiana University
Andrea Cardini
Affiliation:
University of Western Australia
Edward B. Davis
Affiliation:
University of Oregon
Scott J. Steppan
Affiliation:
Florida State University
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Ground squirrels of the genus Marmota are known for their ability to tolerate bitterly cold climates, which they in part accomplish with their exceptional ability to hibernate for as much as eight months a year (Armitage et al., 2003). Most of the 15 living species are associated with montane habitats, and those that are not, like the North American woodchuck (Marmota monax) and the eastern European and central Asian bobak (M. bobak) inhabit regions with strongly seasonal climates and often bitterly cold winters (Armitage, 2000) (Figure 9.1). All marmots construct burrows, which can be more than one metre deep even in comparatively mild climates and as much as seven metres deep in the harsh climates of the Himalayas (Barash, 1989). During the cold phases of the last half of the Quaternary the fossil record demonstrates many marmots inhabited periglacial environments (Zimina and Gerasimov, 1973; Kalthoff, 1999). For these reasons, marmots are sometimes considered to be a quintessentially Quaternary clade, specialists on the cold variable climates that are unique to the past 2.6 million years of Earth's history. The world in which they originated, however, was very different; a warmer one in which there were no tundra biomes, no glacial–interglacial cycles, and no permanent ice cover in the Northern Hemisphere. In this chapter, we review the fossil and phylogenetic history of marmots, the palaeoenvironments in which they originated, and their relationship to glacial–interglacial cycles to better understand the contexts in which the specializations of this unique clade of rodents arose.

The Quaternary, the current geological period, is defined by the onset of permanent ice sheets in the Northern Hemisphere 2.58 million years ago and is by far the coldest period since the extinction of the last non-avian dinosaurs 65 million years ago (Zachos et al., 2001; Gibbard et al., 2010).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 246 - 276
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeeva, N. V. and Erbaeva, M. A. (2000). Pleistocene permafrost in western Transbaikalia. Quaternary International, 68–71, 5–12.Google Scholar
Alexeeva, N. V. and Erbaeva, M. A. (2005). Changes in the fossil mammal faunas of western Transbaikalia during the Pliocene–Pleistocene boundary and the Early–Middle Pleistocene transition. Quaternary International, 131, 109–115.CrossRefGoogle Scholar
Anderson, R. P., Lew, D. and Peterson, A. T. (2003).Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211–232.CrossRefGoogle Scholar
Armitage, K. B. (2000). The evolution, ecology, and systematics of marmots. Oecologia Montana, 9, 1–18.Google Scholar
Armitage, K. B. (2007). Evolution of sociality in marmots: it begins with hibernation. In: Rodent Societies: An Ecological & Evolutionary Perspective, eds. Wolff, J. O. and Sherman, P. W.. Chicago, IL: The University of Chicago Press, pp. 356–367.Google Scholar
Armitage, K. B. (2013). Climate change and the conservation of marmots. Natural Science, 5, 36–43.CrossRefGoogle Scholar
Armitage, K. B. and Blumstein, D. T. (2002). Body mass diversity in marmots. In: Holarctic Marmots as a Factor of Biodiversity, eds. Armitage, K. B. and Rumiantsev, V. Y.. Moscow, Russia: ABF PH, pp. 22–32.Google Scholar
Armitage, K. B., Blumstein, D. T. and Woods, B. C. (2003). Energetics of hibernating yellow-bellied marmots (Marmota flaviventris). Comparative Biochemistry and Physiology Part A, 134, 101–114.CrossRefGoogle Scholar
Badgley, C. (2010). Tectonics, topography, and mammalian diversity. Ecography, 33, 220–231.Google Scholar
Badgley, C. and Finarelli, J. A. (2013). Diversity dynamics of mammals in relation to tectonic and climatic history: a comparison of three Neogene records from North America. Palaeobiology, 39, 373–399.CrossRefGoogle Scholar
Badgley, C. and Fox, D. L. (2000). Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography, 27, 1437–1467.CrossRefGoogle Scholar
Bailey, R. G. (1989).Explanatory supplement to ecoregions map of the continents. Environmental Conservation, 16, 307–309.CrossRefGoogle Scholar
Barash, D. P. (1989). Marmots: Social Behavior and Ecology. Stanford University Press: Palo Alto, California.Google Scholar
Barnosky, A. D. (2005). Effects of Quaternary climatic change on speciation in mammals. Journal of Mammalian Evolution, 12, 247–264.CrossRefGoogle Scholar
Barnosky, A. D. and Carrasco, M. A. (2002). Effects of Oligo-Miocene global climate changes on mammalian species richness in the northwestern quarter of the USA. Evolutionary Ecology Research, 4, 811–841.Google Scholar
Baryshnikov, G. F. (2002). Local biochronology of Middle and Late Pleistocene mammals from the Caucasus. Russian Journal of Theriology, 1, 61–67.CrossRefGoogle Scholar
Bell, C. J., Gauthier, J. A. and Bever, G. S. (2010). Covert biases, circularity, and apomorphies: a critical look at the North American Quaternary herpetofaunal stability hypothesis. Quaternary International, 217, 30–36.CrossRefGoogle Scholar
Black, C. C. (1963). A review of the North American Tertiary Sciuridae. Bulletin of the Museum of Comparative Zoology, 130, 109–248.Google Scholar
Blois, J. L. and Hadly, E. A. (2009). Mammalian response to Cenozoic climate change. Annual Reviews of Earth and Planetary Science, 37, 181–208.CrossRefGoogle Scholar
Braconnot, P., Otto-Bliesner, B., Harrison, S., et al. (2007). Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum. Part 1: experiments and large-scale features. Climate of the Past, 3, 261–277.Google Scholar
Brandler, O. V. and Lyapunova, E. A. (2009). Molecular phylogenies of the genus Marmota (Rodentia, Sciuridae): comparative analysis. Ethology, Ecology and Evolution, 21, 289–298.CrossRefGoogle Scholar
Brandler, O. V., Lyapunova, E. A., Bannikova, A. A. and Kramerov, D. A. (2010). Phylogeny and systematics of marmots (Marmota, Sciuridae, Rodentia) inferred from interSINE PCR data. Russian Journal of Genetics, 46, 283–292.CrossRefGoogle Scholar
Cardini, A. (2003). The geometry of the marmot (Rodentia: Sciuridae) mandible: phylogeny and patterns of morphological evolution. Systematic Biology, 52, 186–205.CrossRefGoogle ScholarPubMed
Cardini, A. and Tongiorgi, P. (2003). Yellow-bellied marmots (Marmota flaviventris) ‘in the shape space’ (Rodentia, Sciuridae): sexual dimorphism, growth and allometry of the mandible. Zoomorphology, 122, 11–23.Google Scholar
Cardini, A., Thorington, R. W. and Polly, P. D. (2007). Evolutionary acceleration in the most endangered mammal of Canada: speciation and divergence in the Vancouver Island marmot (Rodentia, Sciuridae). Journal of Evolutionary Biology, 20, 1833–1846.CrossRefGoogle Scholar
Cardini, A., Nagorsen, D., O'Higgins, P., et al. (2009). Detecting biological distinctiveness using geometric morphometrics: an example case from the Vancouver Island marmot. Ethology, Ecology and Evolution, 21, 209–223.CrossRefGoogle Scholar
Casanovas-Vilar, I. and van Dam, J. (2013). Conservatism and adaptability during squirrel radiation: what is mandible shape telling us?PLoS ONE, 8(4), e61298.CrossRefGoogle ScholarPubMed
Caumul, R. and Polly, P. D. (2005). Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution, 59, 2460–2472.CrossRefGoogle Scholar
Crowley, B. E., Koch, P. L. and Davis, E. B. (2008). Stable isotope constraints on the elevation history of the Sierra Nevada Mountains, California. GSA Bulletin, 120, 588–598.CrossRefGoogle Scholar
Cuenca-Bescós, G., Melero-Rubio, M., Rofes, J., et al. (2010). The Early–Middle Pleistocene environment and climatic change and the human expansion in Western Europe: a case study with small vertebrates (Gran Dolina, Atapuerca, Spain). Journal of Human Evolution, 60, 481–491.Google Scholar
Davis, E. B. (2005). Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference. Proceedings of the Royal Society B, 272, 519–526.CrossRefGoogle ScholarPubMed
Dickinson, W.R. (1979). Cenozoic plate tectonic setting of the Cordilleran region of the Western United States, in Cenozoic Palaeogeography of the Western United States, SEPM Pacific Section Symposium, 3, 1–13.Google Scholar
Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A. and the C4 Grasses Consortium. (2010). The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science, 328, 587–591.CrossRefGoogle ScholarPubMed
Erbaeva, M. A. (2003). History, evolutionary development and systematics of marmots (Rodentia, Sciuridae) in Transbaikalia. Russian Journal of Theriology, 2, 33–42.Google Scholar
Erbaeva, M. A., Khenzykhenova, F. I. and Alexeeva, N. V. (2012). Aridization of the Transbaikalia in the context of global events during the Pleistocene and its effect on the evolution of small mammals. Quaternary International, 284, 45–52.Google Scholar
Eronen, J. T., Mirzaie Ataabadi, M., Micheels, A., et al. (2009). Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proceedings of the National Academy of Sciences, USA, 106, 11 867–11 871.CrossRefGoogle ScholarPubMed
Fortelius, M., Eronen, J. T., Jernvall, J., et al. (2002).Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.Google Scholar
Fox, D. L. (2000). Growth increments in Gomphotherium tusks and implications for late Miocene climate change in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 156, 327–348.CrossRefGoogle Scholar
Fox, D. L. and Koch, P. L. (2003). Tertiary history of C4 biomass in the Great Plains, USA. Geology, 31, 809–812.CrossRefGoogle Scholar
Fyles, J. G., Marincovich, L. Jr., Matthews, J. V. Jr. and Barendregt, R. (1991). Unique mollusk find in the Beaufort Formation (Pliocene) on Meighen Island, Arctic Canada. Current Research Part B, Geological Survey of Canada Papers, 91, 105–112.Google Scholar
Gibbard, P. L., Head, M. J., Walker, M. J. C. and Subcommission on Quaternary Stratigraphy. (2010). Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Journal of Quaternary Science, 25, 96–102.CrossRefGoogle Scholar
Goodwin, H. T. (2007). Sciuridae. In Evolution of Tertiary Mammals in North America, Volume 2, eds. Janis, C. M., Gunnell, G. F. and Uhen, M. D., Cambridge, England: Cambridge University Press, pp. 355–376.Google Scholar
Goodwin, H. T. (2009). Odontometric patterns in the radiation of extant ground-dwelling squirrels within Marmotini (Sciuridae: Xerini). Journal of Mammalogy, 90, 1009–1019.CrossRefGoogle Scholar
Goodwin, H. T. and Bullock, K. M. (2012). Estimates of body mass for fossil giant ground squirrels, genus Paenemarmota. Journal of Mammalogy, 93, 1169–1177.CrossRefGoogle Scholar
Graham, A. (2011). A Natural History of the New World: The Ecology of Plants in the Americas. Chicago, Illinois: University of Chicago Press.Google Scholar
Graham, R. W., Lundelius, E. L., Graham, M. A., et al. (1996). Spatial response of mammals to Late Quaternary environmental fluctuations. Science, 272, 1601–1606.Google ScholarPubMed
Gunderson, A. M., Jacobsen, B. K. and Olson, L. E. (2009). Revised distribution of the Alaska marmot, Marmota broweri, and confirmation of parapatry with Hoary marmots. Journal of Mammalogy, 90, 859–869.CrossRefGoogle Scholar
Guralnick, R. P. (2007). Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. Global Ecology and Biogeography, 16, 14–23.CrossRefGoogle Scholar
Guralnick, R. P. and Pearman, P. B. (2009). Using species occurrence databases to determine niche dynamics of montane and lowland species since the Last Glacial Maximum. In: Data Mining for Global Trends in Mountain Biodiversity, eds. Spehn, E. M. and Körner, C.. Boca Raton, FL: CRC Press, pp. 125–135.Google Scholar
Guthrie, R. D. (2001). Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews, 20, 549–574.Google Scholar
Hall, E. R. (1981). The Mammals of North America. New York: John Wiley & Sons.Google Scholar
Haq, B. U., Hardenbol, J. and Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.CrossRefGoogle ScholarPubMed
Harris, A. H. (1990). Fossil evidence bearing on southwestern mammalian biogeography. Journal of Mammalogy, 71, 219–229.CrossRefGoogle Scholar
Harrison, R. G., Bogdanowicz, S. M., Hoffmann, R. S., Yensen, E. and Sherman, P. W. (2003). Phylogeny and evolutionary history of the ground squirrels (Rodentia: Marmotinae). Journal of Mammalian Evolution, 10, 249–276.CrossRefGoogle Scholar
Hastings, D. and Dunbar, P. (1998). Development and assessment of the Global Land One-km Base Elevation digital elevation model (GLOBE). IAPRS, 32, 218–221.Google Scholar
Helgen, K. M., Cole, F. R., Helgen, L. E. and Wilson, D. E. (2009). Generic revision of the Holarctic ground squirrel genus Spermophilus. Journal of Mammalogy, 90, 270–305.CrossRefGoogle Scholar
Hewitt, G. M. (2011). Quaternary phylogeography: the roots of hybrid zones. Genetica, 139, 617–638.CrossRefGoogle ScholarPubMed
Hijmans, R. J. and Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272–2281.CrossRefGoogle Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. (http://www.worldclim.org/)CrossRefGoogle Scholar
Horton, T. W., Sjostrom, D. J., Abruzzese, M. J., et al. (2004). Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada. American Journal of Science, 304, 862–888.CrossRefGoogle Scholar
IUCN. (2012). IUCN Red List of Threatened Species. Version 2012.1. http://www.iucnredlist.org.
Jackson, S. T. and Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Palaeobiology, 26, 194–220.CrossRefGoogle Scholar
Janis, C. M., Damuth, J. and Theodor, J. M. (2002). The origins and evolution of the North American grassland biome: the story from the hoofed mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 183–198.CrossRefGoogle Scholar
Janis, C. M., Damuth, J. and Theodor, J. M. (2004). The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 371–398.CrossRefGoogle Scholar
Janis, C. M., Gunnell, G. F. and Uhen, M. D. (2010). Evolution of Tertiary Mammals of North America: Volume 2, Small Mammals, Xenarthrans and Marine Mammals. Cambridge, England: Cambridge University Press.Google Scholar
Jefferies, R. P. S. (1979). The origin of chordates: a methodological essay. Systematics Association Special Volume, 12, 443–447.Google Scholar
Kahlke, R.-D. (1992). Repeated immigration of saiga into Europe. Courier Forschungsinstitut Senkenberg, 153, 187–195.Google Scholar
Kalthoff, D. C. (1999). Ist Marmota primigenia (Kaup) eine eigenständige Art? Osteologische Variabilität pleistozäner Marmota-Populationen (Rodentia: Sciuridae) im Neuwieder Becken (Rheinland-Pfalz, Deuschland) und benachbarter Gebiete. Kaupia, 9, 127–186.Google Scholar
Kellogg, L. (1910). Rodent fauna of the Tertiary beds at Virgin Valley and Thousand Creek, Nevada. University of California Publications, Bulletin of the Department of Geological Sciences, 5, 411–437.Google Scholar
Kelly, T. S. (2000). A new Hemphillian (Late Miocene) mammalian fauna from Hoye Canyon, West Central Nevada. Contributions in Science, Natural History Museum of Los Angeles County, 481, 1–21.Google Scholar
Klicka, J. and Zink, R. M. (1997). The importance of recent Ice Ages in speciation: a failed paradigm. Science, 277, 1666–1669.CrossRefGoogle Scholar
Kohn, M. J. and Fremd, T. J. (2008). Miocene tectonics and climate forcing of biodiversity, western United States. Geology, 36, 783–786.CrossRefGoogle Scholar
Kohn, M. J., Miselis, J. L. and Fremd, T. J. (2002). Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. Earth and Planetary Science Letters, 204, 151–165.CrossRefGoogle Scholar
Kruckenhauser, L., Pinsker, W., Haring, E. and Arnold, W. (1999). Marmot phylogeny revisited: molecular evidence for a diphyletic origin of sociality. Journal of Zoological Systematics and Evolutionary Research, 37, 49–56.CrossRefGoogle Scholar
LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics, 20, 97–117.CrossRefGoogle Scholar
Lawing, A. M. and Polly, P. D. (2011). Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species’ response to climate change. PLoS ONE, 16, e28554.CrossRefGoogle Scholar
Lister, A. M. (2004). The impact of Quaternary ice ages on mammalian evolution. Philosophical Transactions of the Royal Society of London B, 359, 221–241.Google ScholarPubMed
Lyons, S. K. (2003). A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy, 84, 385–402.2.0.CO;2>CrossRefGoogle Scholar
Lv, X., Ge, D., Xia, L., Huang, C. and Yang, Q. (2013). A geometric morphometric study of the skull shape diversification in Sciuridae (Mammalia, Rodentia). Integrative Zoology, early online: DOI: 10.1111/1749-4877.12035CrossRef
Marsh, O. C. (1871). Notice of some new fossil mammals and birds from the Tertiary formation of the West. American Journal of Science, 2, 120–127.Google Scholar
Martin, J. E. (1998). Two new sciurids, Eutamias malloryi and Parapaenemarmota (Rodentia), from the Late Miocene (Hemphillian) of northern Oregon. Thomas Burke Memorial Washington State Museum Research Report, 6, 31–42.Google Scholar
Matthews, E. (1983).Global vegetation and land use: new high-resolution data bases for climate studies. Journal of Climatology and Applied Meteorology, 22, 474–487.Google Scholar
Maul, L. (1990). Üeberblick über die underplesitozänen Kleinsäugerfaunen Europas. Quartärpaläontologie, 8, 153–191.Google Scholar
McGuire, J. L. and Davis, E. B. (2013). Using the palaeontological record of Microtus to test species distribution models and reveal responses to climate change. Journal of Biogeography, 40, 1490–1500.CrossRefGoogle Scholar
McMillan, M. E., Angevine, C. L. and Heller, P. L. (2002). Postdepositional tilt of the Miocene-Pliocene Ogallala Group on the western Great Plains: evidence of Late Cenozoic uplift of the Rocky Mountains. Geology, 30, 63–66.2.0.CO;2>CrossRefGoogle Scholar
Mercer, J. M. and Roth, V. L. (2003). The effects of Cenozoic global change on squirrel phylogeny. Science, 299, 1568–1572.CrossRefGoogle ScholarPubMed
Michaux, J., Hautier, L., Simonin, T. and Vianey-Liaud, M. (2008).Phylogeny, adaptation and mandible shape in Sciuridae (Rodentia, Mammalia). Mammalia, 72, 286–296.CrossRefGoogle Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., et al. (2005). The Phanerozoic record of global sea-level change. Science, 310, 1293–1298.CrossRefGoogle ScholarPubMed
Mosbrugger, V., Utescher, T. and Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences, USA, 102, 14 964–14 969.CrossRefGoogle ScholarPubMed
Nagorsen, D. W. and Cardini, A. (2009). Tempo and mode of evolutionary divergence in modern and Holocene Vancouver Island Marmots (Marmota vancouverensis) (Mammalia, Rodentia). Journal of Zoological Systematics and Evolutionary Research, 47, 258–267.CrossRefGoogle Scholar
Nikol'skii, A. A. and Rumiantsev, V. Y. (2012). Center of species diversity of Eurasian marmots (Marmota, Rodentia) in an epi-platformal orogeny area. Doklady Biological Sciences, 445, 261–264.Google Scholar
Nix, H. A. (1986). A biogeographic analysis of Australian elapid snakes. Australian Flora and Fauna Series, 7, 4–15.Google Scholar
Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18, 521–531.CrossRefGoogle Scholar
Patterson, B. D., Ceballos, G., Sechrest, W., et al. (2005). Digital distribution maps of the mammals of the Western Hemisphere, Version 2.0. NatureServe, Arlington, Virginia, USA.
Paunovic, M. and Rabeder, G. (2000). Palaeoecological analysis of the Early Pleistocene vertebrate fauna from Razvodje and Tainja draga (Croatia). Beiträge zur Paläeontologie, 25, 87–94.Google Scholar
Petronio, C., Bellucci, L., Martiinetto, E., Pandolfi, L. and Salari, L. (2011). Biochronology and palaeoenvironmental changes from the Middle Pliocene to the Late Pleistocene in Central Italy. Geodiversitas, 33, 485–517.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. and Shapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
Polly, P. D. (2003). Palaeophylogeography: the tempo of geographic differentiation in marmots (Marmota). Journal of Mammalogy, 84, 369–384.2.0.CO;2>CrossRefGoogle Scholar
Polly, P.D. (2010).Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. In: Carnivoran Evolution: New Views on Phylogeny, Form, and Function, eds. Goswami, A. and Friscia, A.. Cambridge, England: Cambridge University Press, pp. 347–410.Google Scholar
Polly, P. D. and Eronen, J. T. (2011). Mammal associations in the Pleistocene of Britain: implications of ecological niche modelling and a method for reconstructing palaeoclimate. In: The Ancient Human Occupation of Britain, eds. Ashton, N., Lewis, S. and Stringer, C.. Developments in Quaternary Science, 14, 279–304.Google Scholar
Polly, P. D. and Head, J. J. (2004). Maximum-likelihood identification of fossils: taxonomic identification of Quaternary marmots (Rodentia, Mammalia) and identification of vertebral position in the pipesnake Cylindrophis (Serpentes, Reptilia). In: Morphometrics-Applications in Biology and Palaeontology, ed. Elewa, A. M. T.. Heidelberg, Germany: Springer-Verlag, pp. 197–222.Google Scholar
Qiu, Z., Deng, T. and Wang, B. (2004). Early Pleistocene mammalian fauna from Longdan, Dongxiang, Gansu, China. Palaeontologia Sinica Series C, 191, 1–198.Google Scholar
Rae, D. K., Snoeckx, H. and Joseph, L. H. (1998). Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Palaeoceanography, 13, 215–224.Google Scholar
Repenning, C. A. (1962). The giant ground squirrel Paenemarmota. Journal of Palaeontology, 36, 540–556.Google Scholar
Retallack, G. J. (2004). Late Miocene climate and life on land in Oregon within a context of Neogene global change. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 97–123.CrossRefGoogle Scholar
Retallack, G. J., Tanaka, S. and Tate, T. (2002). Late Miocene advent of tall grassland palaeosols in Oregon. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 329–354.CrossRefGoogle Scholar
Rödder, D., Lawing, A. M., Flecks, M., et al. (2013). Evaluating the significance of palaeophylogeographic species distribution models in reconstructing Quaternary range-shifts of Nearctic chelonians. PLoS ONE, 8(10), e72855.CrossRefGoogle ScholarPubMed
Shevyreva, N. S. (1968). Rodents and lagomorphs from the Neogene of the southern Zaisan Basin. Bi͡ulletenʹ Moskovskogo obshchestva ispytateleĭ prirody. Otdel geologicheskiĭ, 43, 156–157 (in Russian).Google Scholar
Steppan, S. J., Akhverdyan, M. R., Lyapunova, E. A., et al. (1999). Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses. Systematic Biology, 48, 715–734.CrossRefGoogle ScholarPubMed
Steppan, S. J., Kenagy, G. J., Zawadzki, C., et al. (2011). Molecular data resolve placement of the Olympic marmot and estimate dates of trans-Beringian interchange. Journal of Mammalogy, 92, 1028–1037.CrossRefGoogle Scholar
Stewart, J. R. (2009). The evolutionary consequence of the individualistic response to climate change. Journal of Evolutionary Biology, 12, 2363–2375.Google Scholar
Surpless, B. E., Stockli, D. F., Dumitru, T. A. and Miller, E. L. (2002). Two-phase westward encroachment of Basin and Range extension into the northern Sierra Nevada. Tectonics, 21, 1–10.CrossRefGoogle Scholar
Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nogués-Bravo, D. and Normand, S. (2011). Applications of species distribution modeling to palaeobiology. Quaternary Science Reviews, 30, 2930–2947.CrossRefGoogle Scholar
Swiderski, D. L. and Zelditch, M. L. (2010). Morphological diversity despite isometric scaling of lever arms. Evolutionary Biology, 37, 1–8.CrossRefGoogle Scholar
Swiderski, D. L., Zelditch, M. L., and Fink, W. L. (2000). Phylogenetic analysis of skull shape evolution in marmotine squirrels using landmarks and thin-plate splines. Hystrix, 11, 49–75.Google Scholar
Tedford, R. H., AlbrightIII, L. B., Barnosky, A. D., et al. (2004). Mammalian biochronology of the Arikareean through Hemphillian interval (Late Oligocene through Pliocene epochs). In: Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology, ed. Woodburne, M. O.. New York, NY: Columbia University Press, pp. 167–231.Google Scholar
Tesakov, A. S., Dodonov, A. E., Titov, V. V. and Trubikhin, V. M. (2007). Plio-Pleistocene geological record and small mammal faunas, eastern shore of the Azov Sea, southern European Russia. Quaternary International, 160, 57–69.CrossRefGoogle Scholar
Thomas, W. K. and Martin, S. L. (1993). A recent origin of marmots. Molecular Phylogenetics and Evolution, 2, 330–336.CrossRefGoogle ScholarPubMed
Tleuberdina, P. and Forsten, A. (2001). Anchitherium (Mammalia, Equidae) from Kazahkstan, Central Asia. Geobios, 34, 449–456.CrossRefGoogle Scholar
Varela, S., Lobo, J. M., Rodríguez, J. and Batra, P. (2010). Were the Late Pleistocene climatic changes responsible for the disappearance of the European spotted hyena populations? Hindcasting a species geographic distribution across time. Quaternary Science Reviews, 29, 2027–2035.CrossRefGoogle Scholar
Velhagen, W. A. and Roth, V. L. (1997). Scaling of the mandible in squirrels. Journal of Morphology, 232, 107–132.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Voorhies, M. R. (1988). The giant marmot Paenemarmota sawrockensis (new combination) in Hemphillian deposits of northeastern Nebraska. Transactions of the Nebraska Academy of Sciences and Affiliated Societies, 16, 165–172.Google Scholar
Waltari, E. and Guralnick, R. P. (2009). Ecological niche modeling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. Journal of Biogeography, 36, 148–161.CrossRefGoogle Scholar
Wang, C, Zhao, X., Liu, Z., et al. (2008). Constraints of the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the USA, 105, 4987–4992.Google ScholarPubMed
Wang, X., Flynn, L. J. and Fortelius, M. (2013). Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York, NY: Columbia University Press.CrossRefGoogle Scholar
White, J. M., Ager, T. A., Adam, D. P., et al. (1997). An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 293–306.CrossRefGoogle Scholar
Whittaker, R. H. (1975). Communities and Ecosystems. New York, NY: MacMillan Publishing Company, Inc.Google Scholar
Wolfe, J. A., Schorn, H. E., Forest, C. E. and Molnar, P. (1997). Palaeobotanical evidence for high altitudes in Nevada during the Miocene. Science, 276, 1672–1675.CrossRefGoogle Scholar
Wu, F., Fang, X., Ma, Y., et al. (2007). Plio-Quaternary stepwise drying of Asia: evidence from a 3 Ma pollen record from the Chinese Loess Plateau. Earth and Planetary Science Letters, 257, 160–169.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle ScholarPubMed
Zelditch, M. L., Wood, A. R. and Swiderski, D. L. (2009). Building developmental integration into functional systems: function-induced integration of mandibular shape. Evolutionary Biology, 36, 71–87.CrossRefGoogle Scholar
Zimina, R. P. and Gerasimov, I. P. (1973). The periglacial expansion of marmots (Marmota) in Middle Europe during the Late Pleistocene. Journal of Mammalogy, 54, 327–340.CrossRefGoogle Scholar
Zimmermann, N. E., Edwards, T. C. Jr., Graham, C. H., Pearman, P. B. and Svenning, J.-C. (2010). New trends in species distribution modelling. Ecography, 33, 985–989.CrossRefGoogle Scholar
Zink, R. M., Klicka, J. and Barber, B. R. (2004). The tempo of avian diversification during the Quaternary. Philosophical Transactions of the Royal Society of London B, 359, 215–220.CrossRefGoogle ScholarPubMed
Zisheng, A., Kutzbach, J. E., Prell, W. L. and Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature, 411, 62–66.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×