Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T13:49:18.191Z Has data issue: false hasContentIssue false

5 - The history of South American octodontoid rodents and its contribution to evolutionary generalisations

Published online by Cambridge University Press:  05 August 2015

Diego H. Verzi
Affiliation:
Sección Mastozoología, Museo de La Plata, La Plata, Argentina
Cecilia C. Morgan
Affiliation:
Sección Mastozoología, Museo de La Plata, La Plata, Argentina
A. Itatí Olivares
Affiliation:
Sección Mastozoología, Museo de La Plata, La Plata, Argentina
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

The peculiar New World hystricomorph rodents comprise about half of the mammal species of South America (Upham and Patterson, 2012) and have been evolving in this continent for over 40 Ma (Antoine et al., 2012). During this period, they developed an ecomorphological diversity much greater than that of other rodent clades, even when only the extant fauna is considered (Mares and Ojeda, 1982; Wilson and Sánchez-Villagra, 2010; Hautier et al., 2012). This results especially from the evolution of particular morphologies in three of the four suprafamilial clades, Erethizontoidea (New World porcupines), Chinchilloidea (viscachas), and Cavioidea (maras and cavies), a pattern that begins to be apparent in the Oligocene fossil record (Wood and Patterson, 1959; Bertrand et al., 2012). In contrast, the superfamily Octodontoidea has remained morphologically conservative for much longer, the rodents of this group being unique among South American hystricomorphs in retaining a rat-like appearance (e.g. Redford and Eisenberg, 1992: pl. 17; Eisenberg and Redford, 1999: pl. 13). Remarkably, when considered in combination with their apparently narrower range of morphological innovation, Octodontoidea is the most diverse clade of hystricomorph rodents. In particular, the families Echimyidae and Octodontidae (including the subfamily Ctenomyinae, considered by neontologists as a family in their own right; see Verzi et al. 2014) comprise more than 60% of the extant species of South American hystricomorphs, and have the richest fossil record of the suborder (McKenna and Bell, 1997; Woods and Kilpatrick, 2005; Upham and Patterson, 2012).

The sister families Echimyidae and Octodontidae are two living clades with very different characteristics in terms of geographical distribution and diversity patterns. Echimyidae encompasses a high diversity (i.e. species richness) of small- to middle-sized rodents, with arboreal (spiny tree-rats, tree rats, bamboo rats), or terrestrial to fossorial (spiny rats) lifestyles, which occupy Amazonian, coastal and Andean tropical forests in northern South America, and occasionally more open, xeric habitats in the Cerrado and Caatinga (Eisenberg and Redford, 1999; Emmons and Feer, 1999).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 139 - 163
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. C., Berns, C. M., Kozak, K. H. and Wiens, J. J. (2009). Are rates of species diversification correlated with rates of morphological evolution?Proceedings of the Royal Society B, 276, 2729–2738.CrossRefGoogle ScholarPubMed
Antoine, P.-O., Marivaux, L., Croft, D. A., et al. (2012). Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proceedings of the Royal Society B, 279, 1319–1326.CrossRefGoogle ScholarPubMed
Arakaki, M., Christin, P.-A., Nyffeler, R.et al. (2011). Contemporaneous and recent radiations of the world's major succulent plant lineages. Proceedings of the National Academy of Sciences, USA, 108, 8379–8384.CrossRefGoogle ScholarPubMed
Arita, H. T. and Vázquez-Domínguez, E. (2008). The tropics: cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecology Letters, 11, 653–663.CrossRefGoogle ScholarPubMed
Arnal, M. and Pérez, M. E. (2013). A new acaremyid rodent (Hystricognathi: Octodontoidea) from the middle Miocene of Patagonia (South America) and considerations on the early evolution of Octodontoidea. Zootaxa, 3616, 119–134.CrossRefGoogle ScholarPubMed
Barreda, V. and Palazzesi, L. (2007). Patagonian vegetation turnovers during the Paleogene–Early Neogene: origin of arid-adapted floras. Botanical Review, 73, 31–50.CrossRefGoogle Scholar
Benton, M. J. and Donoghue, P. C. J. (2007). Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24, 26–53.Google ScholarPubMed
Bertelli, S. and Giannini, N. P. (2005). A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences. Cladistics, 21, 209–239.CrossRefGoogle Scholar
Bertrand, O. C., Flynn, J. J., Croft, D. A. and Wyss, A. R. (2012). Two new taxa (Caviomorpha, Rodentia) from the Early Oligocene Tinguiririca Fauna (Chile). American Museum Novitates, 3750, 1–36.CrossRefGoogle Scholar
Bonvicino, C. R., de Oliveira, J. A. and D'Andrea, P. S. (2008). Guia dos roedores do Brasil, com chaves para gêneros baseadas em caracteres externos. Rio de Janeiro: Centro Pan-Americano de Febre Aftosa.Google Scholar
Bookstein, F. L. (1997). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis, 1, 225–243.CrossRefGoogle ScholarPubMed
Briggs, D. E. G. and Fortey, R. A. (2005). Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology, 31, 94–112.CrossRefGoogle Scholar
Buckley, L. B., Davies, T. J., Ackerly, D. D., et al. (2010). Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proceedings of The Royal Society B, 277, 2131–2138.CrossRefGoogle ScholarPubMed
Burnham, R. J. and Johnson, K. R. (2004). South American palaeobotany and the origins of Neotropical rainforests. Philosophical Transactions of The Royal Society of London B, 359, 1595–1610.CrossRefGoogle ScholarPubMed
Carvalho, G. A. S. and Salles, O. L. (2004). Relationships among extant and fossil echimyids (Rodentia: Hystricognathi). Zoological Journal of the Linnean Society, 142, 445–477.CrossRefGoogle Scholar
Catzeflis, F., Patton, J., Percequillo, A., Bonvicino, C. and Weksler, M. (2008). Euryzygomatomys spinosus. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1. www.iucnredlist.org.
Chown, S. L. and Gaston, K. J. (2000). Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology and Evolution, 15, 311–315.CrossRefGoogle ScholarPubMed
Coddington, J. A. and Scharff, N. (1994). Problems with zero-length branches. Cladistics, 10, 415–423.CrossRefGoogle Scholar
Colinvaux, P. A and De Oliveira, P. E. (2001). Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 166, 51–63.CrossRefGoogle Scholar
Collar, D. C., Near, T. J. and Wainwright, P. C. (2005). Comparative analysis of morphological diversity: does disparity accumulate at the same rate in two lineages of centrarchid fishes?Evolution, 59, 1783–1794.CrossRefGoogle ScholarPubMed
Croizat, L. (1962). Space, Time, Form: The Biological Synthesis. Netherlands: Drukkerij Salland Deventer.Google Scholar
Da Silva, M. N. and Patton, J. L. (1998). Molecular phylogeography and the evolution and conservation of Amazonian mammals. Molecular Ecology, 7, 475–486.CrossRefGoogle ScholarPubMed
Davies, T. J., Buckley, L. B., Grenyer, R. and Gittleman, J. L. (2011). The influence of past and present climate on the biogeography of modern mammal diversity. Philosophical Transactions of The Royal Society B, 366, 2526–2535.CrossRefGoogle ScholarPubMed
Denton, G. H. (1999). Cenozoic climate change. In African Biogeography, Climate Change, and Human Evolution, eds. Bromage, T. G. and Schrenk, F.. New York: Oxford University Press, pp. 94–114.Google Scholar
Donoghue, P. C. J. (2005). Saving the stem group─a contradiction in terms?Paleobiology, 31, 553–558.Google Scholar
Eisenberg, J. F. and Redford, K. H. (1999). Mammals of the Neotropics. The Central Neotropics: Ecuador, Peru, Bolivia, Brazil. Chicago: University of Chicago Press.Google Scholar
Eldredge, N. (1996). Hierarchies in macroevolution. In Evolutionary Paleobiology, eds. Jablonsky, D., Erwin, D. H. and Lipps, J. H.. Chicago: University of Chicago Press, pp. 42–61.Google Scholar
Emmons, L. H. (2005). A revision of the genera of arboreal Echimyidae (Rodentia: Echimyidae, Echimyinae), with descriptions of two new genera. In Mammalian Diversification: from Chromosomes to Phylogeography (a Celebration of the Career of James L. Patton), eds. Lacey, E. A. and Myers, P.. Berkeley: University of California Press, pp. 247–309.Google Scholar
Emmons, L. H. and Feer, F. (1999). Neotropical Rainforest Mammals: a Field Guide. Chicago: University of Chicago Press.Google Scholar
Fabre, P.-H., Galewski, T., Tilak, M. and Douzery, E. J. P. (2013). Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. Zoologica Scripta, 42, 117–134.CrossRefGoogle Scholar
Foote, M. (1993). Contributions of individual taxa to overall morphological disparity. Paleobiology, 19, 403–319.CrossRefGoogle Scholar
Futuyma, D. J. (1987). On the role of species in anagenesis. The American Naturalist, 130, 465–473.CrossRefGoogle Scholar
Galewski, T., Mauffrey, J. F., Leite, Y. L. R., et al. (2005). Ecomorphological diversification among South American spiny rats (Rodentia: Echimyidae): a phylogenetic and chronological approach. Molecular Phylogenetics and Evolution, 34, 601–615.CrossRefGoogle ScholarPubMed
Gallardo, M. H. and Kirsch, J. A. W. (2001). Molecular relationships among Octodontidae (Mammalia: Rodentia: Caviomorpha). Journal of Mammalian Evolution, 8, 73–89.CrossRefGoogle Scholar
Goloboff, P. A., Farris, J. S. and Nixon, K. (2008a). TNT: Tree Analysis Using New Technology, Version 1.1. Available at: http://www.zmuc.dk/public/phylogeny/tnt.
Goloboff, P. A., Farris, J. S. and Nixon, K. (2008b). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G. and Van Kranendonk, M. (2008). On the Geologic Time Scale 2008. Newsletters on Stratigraphy, 43, 5–13.CrossRefGoogle Scholar
Hausdorf, B. (2011). Progress toward a general species concept. Evolution, 65, 923–931.CrossRefGoogle Scholar
Hautier, L., Lebrun, R. and Cox, P. G. (2012). Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. Journal of Morphology, 273, 1319–1337.CrossRefGoogle ScholarPubMed
Helgen, K. M. (2011). The mammal family tree. Science, 334, 458–459.CrossRefGoogle ScholarPubMed
Hennig, W. (1965). Phylogenetic systematics. Annual Review of Entomology, 10, 97–116.CrossRefGoogle Scholar
Hoffstetter, R. (1986). High Andean mammalian faunas during the Plio-Pleistocene. In High Altitude Tropical Biogeography, eds. Vuilleumier, F. and Monasterio, M.. Oxford: Oxford University Press, pp. 218–245.Google Scholar
Honeycutt, R. L. (2009). Rodents (Rodentia). In The Timetree of Life, eds. Hedges, S. B. and Kumar, S.. New York: Oxford University Press, pp. 490–494.Google Scholar
Honeycutt, R. L., Rowe, D. L. and Gallardo, M. H. (2003). Molecular systematics of the South American caviomorph rodents: relationships among species and genera in the family Octodontidae. Molecular Phylogenetics and Evolution, 26, 476–489.CrossRefGoogle ScholarPubMed
Hoorn, C., Wesselingh, F. P., Ter Steege, H., et al. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.CrossRefGoogle ScholarPubMed
Iack-Ximenes, G. E., De Vivo, M. and Percequillo, A. R. (2005). A new genus for Loncheres grandis Wagner, 1845, with taxonomic comments on other arboreal echimyids (Rodentia, Echimyidae). Arquivos do Museu Nacional, Rio de Janeiro, 63, 89–112.Google Scholar
Jablonski, D. (2009). Paleontology in the twenty-first century. In The Paleobiological Revolution. Essays on the Growth of Modern Paleontology, eds. Sepkoski, D. and Ruse, M.. Chicago and London: The University of Chicago Press, pp. 471–517.Google Scholar
Jablonski, D., Roy, K. and Valentine, J. W. (2006). Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science, 314, 102–106.CrossRefGoogle ScholarPubMed
Janis, C. M. (2001). Radiation of Tertiary mammals. In Palaeobiology II, ed. Briggs, D. E. G. and Crowther, P. R.. Oxford: Blackwell Publishing, pp. 109–112.Google Scholar
Klingenberg, C. P. (2011). MORPHOJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.CrossRefGoogle ScholarPubMed
Kozak, K. H., Weisrock, D. W. and Larson, A. (2006). Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proceedings of the Royal Society B, 273, 539–546.CrossRefGoogle Scholar
Lara, M. C., Patton, J. L. and Da Silva, M. N. (1996). The simultaneous diversification of South American echimyid rodents (Hystricognathi) based on complete cytochrome b sequences. Molecular Phylogenetics and Evolution, 5, 403–413.CrossRefGoogle ScholarPubMed
Lay, D. M. (1972). The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents. Journal of Morphology, 138, 41–120.CrossRefGoogle ScholarPubMed
Le Roux, J. P. (2012). A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 2: continental conditions. Sedimentary Geology, 247 –248, 21–38.Google Scholar
Leite, Y. L. R. and Patton, J. L. (2002). Evolution of South American spiny rats (Rodentia, Echimyidae): the star phylogeny hypothesis revisited. Molecular Phylogenetics and Evolution, 25, 455–464.CrossRefGoogle Scholar
Lessa, E. P., Vassallo, A. I., Verzi, D. H. and Mora, M. (2008). Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biological Journal of the Linnean Society, 95, 267–283CrossRefGoogle Scholar
Mares, M. A. and Ojeda, R. A. (1982). Patterns of diversity and adaptation in South American hystricognath rodents. In Mammalian Biology in South America, eds. Mares, M. A. and Genoways, H.. Pittsburgh, PA, USA: Special Publication Pymatuning Laboratory of Ecology 6. University of Pittsburgh, pp. 393–432.Google Scholar
Maynard Smith, J. and Szathmáry, E. (1997). The Major Transitions in Evolution. Oxford: Oxford University Press.Google Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals above the Species Level. New York: Columbia University Press.Google Scholar
Meloro, C., Cáceres, N., Carotenuto, F., et al. (2013). In and out the Amazonia: evolutionary ecomorphology in howler and capuchin monkeys. Evolutionary Biology, 41, 38–51.Google Scholar
Mittelbach, G. G., Schemske, D. W., Cornell, H. V., et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315–331.CrossRefGoogle ScholarPubMed
Moojen, J. (1948). Speciation in the Brazilian spiny rats (genus Proechimys, family Echimyidae). University of Kansas Publications, Museum of Natural History, 1, 301–406.Google Scholar
Norell, M. A. (1992). Taxic origin and temporal diversity: the effect of phylogeny. In Extinction and Phylogeny, eds. Novacek, M. J. and Wheeler, Q. D.. New York: Columbia University Press, pp. 88–118.Google Scholar
Ojeda, A. A., Novillo, A., Ojeda, R. A. and Roig-Juñent, S. (2013). Geographical distribution and ecological diversification of South American octodontid rodents. Journal of Zoology, 289, 285–293.CrossRefGoogle Scholar
Ojeda, R. A. and Tabeni, S. (2009). The mammals of the Monte Desert revisited. Journal of Arid Environments, 73, 173–181.CrossRefGoogle Scholar
Ojeda, R. A., Borghi, C. E., Diaz, G. B., et al. (1999). Evolutionary convergence of the highly adapted desert rodent Tympanoctomys barrerae (Octodontidae). Journal of Arid Environments, 41, 443–452.CrossRefGoogle Scholar
Olivares, A. I., Verzi, D. H., Vucetich, M. G. and Montalvo, C. I. (2012). Phylogenetic affinities of the late Miocene echimyid †Pampamys and the age of Thrichomys (Rodentia, Hystricognathi). Journal of Mammalogy, 92, 76–86.Google Scholar
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., et al. (2001). Terrestrial ecoregions of the world: a new map of life on earth. BioScience, 51, 933–938.CrossRefGoogle Scholar
O'Meara, B. C., Ané, C., Sanderson, M. J. and Wainwright, P. C. (2006). Testing for different rates of continuous trait evolution using likelihood. Evolution, 60, 922–933.CrossRefGoogle ScholarPubMed
Opazo, J. C. (2005). A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi). Molecular Phylogenetics and Evolution, 37, 932–937.CrossRefGoogle Scholar
Palazzesi, L. and Barreda, V. (2007). Major vegetation trends in the Tertiary of Patagonia (Argentina): a qualitative paleoclimatic approach based on palynological evidence. Flora, 202, 328–337.CrossRefGoogle Scholar
Pascual, R. (1967). Los roedores Octodontoidea (Caviomorpha) de la Formación Arroyo Chasicó (Plioceno inferior) de la Provincia de Buenos Aires. Revista del Museo de La Plata, Paleontología, 5, 259–282.Google Scholar
Pascual, R. and Ortiz Jaureguizar, E. (1990). Evolving climates and mammal faunas in Cenozoic South America. Journal of Human Evolution, 19, 23–60.CrossRefGoogle Scholar
Pascual, R., Vucetich, M. G., Scillato-Yané, G. J., Bond, M. (1985). Main pathways of mammalian diversification in South America. In The Great American Biotic Interchange: Series Topics in Geobiology 4, eds. Stehli, F. G. and Webb, S. D.. New York: Plenum Press, pp. 219–247.Google Scholar
Patterson, B. and Wood, A. E. (1982). Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha. Bulletin of the Museum of Comparative Zoology, 149, 371–543.Google Scholar
Patterson, C. (1993a). Bird or dinosaur?Nature, 365, 21–22.CrossRefGoogle Scholar
Patterson, C. (1993b). Naming names. Nature, 366, 518.CrossRefGoogle Scholar
Pessôa, L. M. and dos Reis, S. F. (2002). Proechimys albispinus. Mammalian Species, 693, 1–3.
Pol, D. and Norell, M. A. (2001). Comments on the Manhattan Stratigraphic Measure. Cladistics, 17, 285–289.CrossRefGoogle Scholar
Pol, D., Norell, M. A. and Siddall, M. E. (2004). Measures of stratigraphic fit to phylogeny and their sensitivity to tree size, tree shape, and scale. Cladistics, 20, 64–75.CrossRefGoogle Scholar
Raia, P., Passaro, F., Fulgione, D. and Carotenuto, F. (2012). Habitat tracking, stasis and survival in Neogene large mammals. Biology Letters, 8, 64–66.CrossRefGoogle ScholarPubMed
Rasskin-Gutman, D. and Esteve-Altava, B. (2008). The multiple directions of evolutionary change. BioEssays, 30, 521–525.CrossRefGoogle ScholarPubMed
Redford, K. H. and Eisenberg, J. F. (1992). Mammals of the Neotropics. The Southern Cone: Chile, Argentina, Uruguay, Paraguay. Chicago: University of Chicago Press.Google Scholar
Reig, O. A. (1986). Diversity patterns and differentiation of high Andean rodents. In High Altitude Tropical Biogeography, eds. Vuilleumier, F. and Monasterio, M.. Oxford: Oxford University Press, pp. 404–439.Google Scholar
Reig, O. A. (1989). Karyotypic repatterning as one triggering factor in cases of explosive speciation. In Evolutionary Biology of Transient Unstable Populations, ed. Fontdevila, A., Berlin: Springer-Verlag, pp. 246–289.Google Scholar
Rohlf, F. J. (2008). Tpsdig, Version 2.12; tpsrelw, Version 1.46. Stony Brook, NY: State University of New York at Stony Brook, Available at: http://life.bio.sunysb.edu/morph/
Rohlf, F. J. (2010). TPSRelw 1.49. tps series software available at http://life.bio.sunysb.edu/morph.
Rowe, D. L., Dunn, K. A., Adkins, R. M. and Honeycutt, R. L. (2010). Molecular clocks keep dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents. Journal of Biogeography, 37, 305–324.CrossRefGoogle Scholar
Roy, K. and Foote, M. (1997). Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution, 12, 277–281.CrossRefGoogle ScholarPubMed
Rull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology and Evolution, 26, 508–513.CrossRefGoogle ScholarPubMed
Safi, K., Cianciaruso, M. V., Loyola, R. D., et al. (2011). Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of The Royal Society B, 366, 2536–2544.CrossRefGoogle ScholarPubMed
Sheets, H. D. (2010–2012). Integrated Morphometrics Package (IMP) 7, available at http://www3.canisius.edu/~sheets/imp7.htm.
Sheldon, P. R. (1996). Plus ça change – a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 127, 209–227.CrossRefGoogle Scholar
Shepherd, U. L. (1998). A comparison of species diversity and morphological diversity across the North American latitudinal gradient. Journal of Biogeography, 25, 19–29.CrossRefGoogle Scholar
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Simpson, G. G. (1953). The Major Features of Evolution. New York: Columbia University Press.Google Scholar
Simpson, G. G. (1963). Historical science. In The Fabric of Geology, ed. Albritton, C.. California, USA: Freeman, pp. 24–48.Google Scholar
Smith, A. B. (1994). Systematics and the Fossil Record: Documenting Evolutionary Patterns. London: Blackwell Scientific Publications.CrossRefGoogle Scholar
Stein, B. R. (2000). Morphology of subterranean rodents. In Life Underground. The Biology of Subterranean Rodents, eds. Lacey, A. E., Patton, J. L. and Cameron, G. N.. Chicago: University of Chicago Press, pp. 19–61.Google Scholar
Steiper, M. E. and Young, N. M. (2008). Timing primate evolution: lessons from the discordance between molecular and paleontological estimates. Evolutionary Anthropology, 17, 179–188.CrossRefGoogle Scholar
Szalay, F. S. (1999). Paleontology and macroevolution. On the theoretical conflict between an expanded synthesis and hierarchic punctuationism. In: African Biogeography, Climate Change, and Human Evolution, eds. Bromage, T. G. and Schrenk, F.. New York: Oxford University Press, pp. 35–56.Google Scholar
Templeton, A. R. (1989). The meaning of species and speciation: a genetic perspective. In Speciation and its Consequences, eds. Otte, D. and Endler, J. A.. Sunderland, Massachusetts: Sinauer Associates, pp. 3–27.Google Scholar
Thompson, J. D., Gibson, T. J., Plewniak, F., et al. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.CrossRefGoogle ScholarPubMed
Upham, N. S. and Patterson, B. D. (2012). Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Molecular Phylogenetics and Evolution, 63, 417–429.CrossRefGoogle Scholar
Venditti, C., Meade, A. and Pagel, M. (2011). Multiple routes to mammalian diversity. Nature, 479, 393–396.CrossRefGoogle ScholarPubMed
Verzi, D. H. (1999). The dental evidence on the differentiation of the ctenomyine rodents (Caviomorpha, Octodontidae, Ctenomyinae). Acta Theriologica, 44, 263–282.CrossRefGoogle Scholar
Verzi, D. H. (2001). Phylogenetic position of Abalosia and the evolution of the extant Octodontinae (Rodentia, Caviomorpha, Octodontidae). Acta Theriologica, 46, 243–268.Google Scholar
Verzi, D. H. (2002). Patrones de evolución morfológica en Ctenomyinae (Rodentia, Octodontidae). Mastozoología Neotropical, 9, 309–328.Google Scholar
Verzi, D. H. (2008). Phylogeny and adaptive diversity of rodents of the family Ctenomyidae (Caviomorpha): delimiting lineages and genera in the fossil record. Journal of Zoology, 274, 386–394.CrossRefGoogle Scholar
Verzi, D. H. and Olivares, A. I. (2006). Craniomandibular joint in South American burrowing rodents (Ctenomyidae): adaptations and constraints related to a specialised mandibular position in digging. Journal of Zoology, 270, 488–501.CrossRefGoogle Scholar
Verzi, D. H. and Quintana, C. A. (2005). The Caviomorph rodents from the San Andrés Formation, east-central Argentina, and global Late Pliocene climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 303–320.CrossRefGoogle Scholar
Verzi, D. H., Vucetich, M. G. and Montalvo, C. I. (1994). Octodontid-like Echimyidae (Rodentia): an upper Miocene episode in the radiation of the family. Palaeovertebrata, 23, 199–210.Google Scholar
Verzi, D. H., Vieytes, E. C. and Montalvo, C. I. (2004). Dental evolution in Xenodontomys and first notice on secondary acquisition of radial enamel in rodents (Rodentia, Caviomorpha, Octodontidae). Geobios, 37, 795–806.CrossRefGoogle Scholar
Verzi, D. H., Vieytes, E. C. and Montalvo, C. I. (2011). Dental evolution in Neophanomys (Rodentia, Octodontidae) from the late Miocene of central Argentina. Geobios, 44, 621–633.CrossRefGoogle Scholar
Verzi, D. H., Olivares, A. I. and Morgan, C. C. (2014). Phylogeny, evolutionary patterns and timescale of South American octodontoid rodents. The importance of recognising morphological differentiation in the fossil record. Acta Palaeontologica Polonica, 59, 757–769.Google Scholar
Vieytes, E. C., Morgan, C. C. and Verzi, D. H. (2007). Adaptive diversity of incisor enamel microstructure in South American burrowing rodents (family Ctenomyidae, Caviomorpha). Journal of Anatomy, 211, 296–302.CrossRefGoogle Scholar
Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. (eds.) (1995). Paleoclimate and Evolution with Emphasis on Human Origins. New Haven: Yale University Press.Google Scholar
Vucetich, M. G. and Kramarz, A. G. (2003). New Miocene rodents from Patagonia (Argentina) and their bearing on the early radiation of the octodontoids (Hystricognathi). Journal of Vertebrate Paleontology, 23, 435–444.CrossRefGoogle Scholar
Vucetich, M. G., Verzi, D. H. and Tonni, E. P. (1997). Paleoclimatic implications of the presence of Clyomys (Rodentia, Echimyidae) in the Pleistocene of central Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 207–214.CrossRefGoogle Scholar
Vucetich, M. G., Verzi, D. H. and Hartenberger, J.-L. (1999). Review and analysis of the radiation of the South American Hystricognathi (Mammalia, Rodentia). Comptes Rendus de L'Academie des Sciences, Série IIa/Sciences de la Terre et des Planètes. Paléontologie, 329, 763–769.Google Scholar
Weir, J. T. and Schluter, D. (2007). The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science, 315, 1574–1576.CrossRefGoogle ScholarPubMed
Wiens, J. J. and Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639–644.CrossRefGoogle ScholarPubMed
Wilson, L. A. B. and Sánchez-Villagra, M. R. (2010). Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proceedings of the Royal Society B, 277, 1227–1234.CrossRefGoogle ScholarPubMed
Wood, A. E. and Patterson, B. (1959). Rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution. Bulletin of the Museum of Comparative Zoology, 120, 279–428.Google Scholar
Woods, C. A. and Kilpatrick, C. W. (2005). Infraorder Hystricognathi Brandt, 1855. In Mammal Species of the World, eds. Wilson, D. E. and Reeder, D. M.. Baltimore MD: Johns Hopkins University Press, pp. 1538–1600.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle ScholarPubMed
Zachos, J. C., Dickens, G. R. and Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×