Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T16:58:51.206Z Has data issue: false hasContentIssue false

17 - Convergent evolution of molar topography in Muroidea (Rodentia, Mammalia): connections between chewing movements and crown morphology

Published online by Cambridge University Press:  05 August 2015

Vincent Lazzari
Affiliation:
Université de Poitiers
Franck Guy
Affiliation:
Université de Poitiers
Pierre-Emmanuel Salais
Affiliation:
Université de Poitiers
Adélaïde Euriat
Affiliation:
Université de Poitiers
Cyril Charles
Affiliation:
France
Laurent Viriot
Affiliation:
Université Claude Bernard Lyon
Paul Tafforeau
Affiliation:
France
Jacques Michaux
Affiliation:
Universite Montpellier
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Understanding mammalian tooth crown morphological changes during evolution constitutes a crucial area of investigation common to both palaeontology and developmental biology (Osborn, 1907; Hershkovitz, 1962; Hunter and Jernvall, 1994; Jernvall, 2000; Kangas et al., 2004; Kavanagh et al., 2007; Charles et al., 2009a,b; Harjunmaa et al., 2012). During the past two decades, relationships between tooth morphology, diet and mastication have been deciphered through topographic analyses of the crown surface (e.g. Reed, 1997; Jernvall and Selänne, 1999; Evans et al., 2007; Lazzari et al., 2008a,b; Boyer et al., 2010;Wilson et al., 2012). Such an approach allowed the investigation of several well-documented primate, rodent and multituberculate lineages showing drastic modifications of dental morphology.

Including about one third of modern mammalian biodiversity, present in all the main continental landmasses except Antarctica and New Zealand, the superfamily Muroidea (rats, mice, gerbils, hamsters, voles … sensu Musser and Carleton, 2005) displays a huge diversity of cheek teeth in terms of cusp arrangement and crown elevation, that can be associated with different masticatory modes and diets (Butler 1980, 1985; Lazzari et al., 2008b, 2011; Coillot et al., 2013). It has also a very rich fossil record, and a now well-established phylogeny concerning extant species (Jansa and Weksler, 2004; Steppan et al., 2004; Jansa et al., 2009; Fabre et al., 2012).

For these reasons, Muroidea are exceptional in providing many examples that can be used to study the modalities and mechanisms of molar crown diversification not only because the fossil record of many muroid subfamilies is well-documented but because there are many cases of parallel and convergent evolutions of dental morphologies. Such convergences involve the recurrent emergences of supplementary cusps, but also hypsodonty, lophodonty (formation of crests) or formation of prismatic crowns. These convergences alter the phylogenetic signal carried by the teeth and greatly complicate morphological cladistic studies (De Bruijn et al., 1996).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 448 - 477
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyer, D. G., Evans, A. E. and Jernvall, J. (2010). Evidence of dietary differentiation among Late Paleocene – early Eocene Plesiadapids (Mammalia, Primates). American Journal of Physical Anthropology, 142, 194–210.Google Scholar
Butler, P. M. (1980). Functional aspects of the evolution of rodent molars. Palaeovertebrata, Mémoire Jubilaire R. Lavocat, pp. 249–262.
Butler, P. M. (1985). Homology of cusps and crests, and their bearing on assessments of rodent phylogeny. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J-L.. New York: Plenum Press, pp. 381–401.Google Scholar
Charles, C., Jaeger, J.-J., Michaux, J. and Viriot, L. (2007). Dental microwear in relation to changes in the direction of mastication during the evolution of Myodonta (Rodentia, Mammalia). Naturwissenschaften, 94, 71–75.Google Scholar
Charles, C., Pantalacci, S., Peterkova, R.et al. (2009a). Effect of eda loss of function on upper jugal tooth morphology. Anatomical Record, 292, 299–308.CrossRefGoogle ScholarPubMed
Charles, C., Pantalacci, S., Tafforeau, P.et al. (2009b). Distinct impacts of eda and edar loss of function on the mouse dentition. PLoS ONE, 4, e4985. doi:10.1371/journal.pone.0004985.CrossRefGoogle ScholarPubMed
Chevret, P., Denys, C., Jaeger, J.-J.et al. (1993). Molecular evidences that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae). Proceedings of the National Academy of Sciences, USA, 90, 3433–3436.CrossRefGoogle Scholar
Coillot, T., Chaimanee, Y., Charles, C.et al. (2013). Correlated changes in occlusal pattern and diet in stem murinae during the onset of the radiation of old world rats and mice. Evolution, 67, 3323–3338, DOI : 10.1111/evo.12172Google Scholar
De Bruijn, H., Hussain, S. T. and Leinders, J. J. M. (1981). Fossils rodents from the Muree Formation near Banda Daud Shah, Kohat, Pakistan. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings series B, 84, 155–166.Google Scholar
De Bruijn, H., Van Dam, J. A., Daxner-Höck, G.et al. (1996). The genera of the Murinae, endemic insular forms excluded, of Europe and Anatolia during the Late Miocene and Early Pliocene. In The Evolution of Western Eurasian Neogene Mammal Faunas, eds. Bernor, R. L., Fahlbusch, V. and Mittmann, H. W.. New York: Columbia University Press, pp. 253–260.Google Scholar
Evans, A. R., Wilson, G. P., Fortelius, M. and Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.CrossRefGoogle ScholarPubMed
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 88.CrossRefGoogle ScholarPubMed
Fejfar, O. (1999). Microtoid cricetids. In The Miocene Land Mammals of Europe, eds. Rössner, G. E. and Heissi, K.. München: Verlag Dr. F. Pfeil, pp. 365–372.Google Scholar
Fejfar, O., Heinrich, W.-D., Kordos, L. and Maul, L. C. (2011). Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia). Palaeontologia Electronica, 14, 38p, palaeo-electronica.org/2011_3/6_fejfar/index.htmlGoogle Scholar
Flynn, L. J., Jacobs, L. L. and Lindsay, E. H. (1985). Problems in muroid phylogeny: relationship to other rodents and origin of major groups. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J-L.. New York: Plenum Press, pp. 589–616.Google Scholar
Fortelius, M. and Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.2.0.CO;2>CrossRefGoogle Scholar
Gomes Rodrigues, H., Renaud, S., Charles, C.et al. (2013). Roles of dental development and adaptation in rodent evolution. Nature Communications, 4, 2504 doi: 10.1038/ncomms3504.CrossRefGoogle Scholar
Greaves, W. S. (1973). The inference of jaw motion from tooth wear facets. Journal of Paleontology, 47, 1000–1001.Google Scholar
Grippo, J. O., Simring, M. and Schreiner, S. (2004). Attrition, abrasion, corrosion and abfraction revisited: a new perspective on tooth surface lesions. Journal of the American Dental Association, 135, 1109–1118.CrossRefGoogle ScholarPubMed
Guy, F., Gouvard, F., Boistel, R.et al. (2013). Prospective in (primate) dental analysis through tooth 3D topographical quantification. PLoS ONE, 8, e66142. doi:10.1371/journal.pone.0066142CrossRefGoogle ScholarPubMed
Hammer, Ø., Harper, D. A. T. and Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologica Electronica, 4, 1–9http://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
Harjunmaa, E., Kallonen, A., Voutilainen, M.et al. (2012). On the difficulty of increasing dental complexity. Nature, 483, 324–328.CrossRefGoogle ScholarPubMed
Hershkovitz, P. (1962). Evolution of neotropical cricetine rodents (Muridae) with special reference to the Phyllotine group. Fieldiana: Zoology 46.Google Scholar
Hiiemae, K. M. and Ardran, G. M. (1968). A cinefluorographic study of mandibular movement during feeding in the rat. Journal of Zoology, 154, 139–154.Google Scholar
Hikida, T. and Murakami, O. (1980). Age determination of the japanese wood mouse, Apodemus speciosus. Japanese Journal of Ecology, 30, 109–116.Google Scholar
Hu, J. C., Yamakoshi, Y., Yamakoshi, F.et al. (2005). Proteomics and genetics of dental enamel. Cells Tissues Organs, 181, 219–231.CrossRefGoogle ScholarPubMed
Hunter, J. P. and Jernvall, J. (1994). The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences, USA, 92, 10 718–10 722.Google Scholar
Jacobs, L. L. (1978). Fossils rodents (Rhizomyidae & Muridae) from Neogene Siwalik deposits, Pakistan. Museum Northern Arizona Press Bulletin Series, 52, 1–103.Google Scholar
Jacobs, L. L. and Flynn, L. J. (2005). Of mice, again: the Siwalik rodent record, murine distribution, and molecular clocks. In Interpreting the Past: Essays on Human, Primate and Mammal Evolution, eds. Lieberman, D., Smith, R. and Kelley, J.. Leiden: Brill Academic, pp. 63–80.Google Scholar
Jaeger, J.-J. (1977). Les rongeurs du Miocène moyen et supérieur du Maghreb. Palaeovertebrata, 8, 1–166.Google Scholar
Jaeger, J.-J., Tong, H., Buffetaut, E. and Ingavat, R. (1985). The first fossils rodents from the Miocene of Northern Thailand and their bearing on the problem of the origin of the Muridae. Revue de Paléobiologie, 4, 1–7.Google Scholar
Jaeger, J.-J., Tong, H. and Denys, C. (1986). Age de la divergence Mus-Rattus: comparaison des données paléontologiques et moléculaires. Comptes Rendus de l'Académie des Sciences Paris, Série II, 302, 917–922.Google Scholar
Jansa, S. A. and Weksler, M. (2004). Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution, 31, 256–276.CrossRefGoogle ScholarPubMed
Jansa, S. A., Giarla, T. C. and Lim, B. K. (2009). The phylogenetic position of the rodent genus Typhlomys and the geographic origin of Muroidea. Journal of Mammalogy, 90, 1083–1094.CrossRefGoogle Scholar
Jernvall, J. (2000). Linking development with generation of novelty in mammalian teeth. Proceedings of the National Academy of Sciences, USA, 97, 2641–2645.CrossRefGoogle ScholarPubMed
Jernvall, J. and Jung, H. S. (2000). Genotype, phenotype, and developmental biology of molar tooth characters. American Journal of Physical Arthopology, Suppl 31, 171–190.3.0.CO;2-3>CrossRef
Jernvall, J. and Selänne, L. (1999). Laser confocal microscopy and geographic information systems in the study of dental morphology. Palaeontologia Electronica, 2, 18.Google Scholar
Jernvall, J. and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29.CrossRefGoogle ScholarPubMed
Kangas, A. T., Evans, A. R., Thesleff, I. and Jernvall, J. (2004). Nonindependence of mammalian dental characters. Nature, 432, 211–214.CrossRefGoogle ScholarPubMed
Kavanagh, K. D., Evans, A. R. and Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.CrossRefGoogle ScholarPubMed
King, S. J., Arrigo-Nelson, S. J., Pochron, S. T.et al. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences, USA, 102, 16 579–16 583.CrossRefGoogle Scholar
Koenigswald, W. v., Sander, M. P., Leite, M.et al. (1994). Functional symmetries in the schmelzmuster and morphology in rootless rodent molars. Zoological Journal of the Linnean Society, 110, 141–179.CrossRefGoogle Scholar
Koenigswald, W. v., Anders, U., Engels, S.et al. (2013). Jaw movement in fossil mammals: analysis, description and visualization. Paläontologische Zeitschrift, 87, 141–159.Google Scholar
Lazzari, V., Tafforeau, P., Aguilar, J.-P. and Michaux, J. (2008a) Topographic maps applied to comparative molar morphology: the case of murine and cricetine dental plans (Rodentia, Muroidea). Paleobiology, 34, 59–77.CrossRefGoogle Scholar
Lazzari, V., Charles, C., Tafforeau, P.et al. (2008b). Mosaic convergence of rodent dentitions. PLoS ONE, 3,:e3607. doi:10.1371/journal.pone.0003607CrossRefGoogle ScholarPubMed
Lazzari, V., Schultz, J. A., Tafforeau, P. and Martin, T. (2010) Occlusal pattern in Paulchoffatiid multituberculates and the evolution of cusp morphology in mammaliamorphs with rodent-like dentitions. Journal of Mammalian Evolution, 17, 177–192.CrossRefGoogle Scholar
Lazzari, V., Tafforeau, P. and Michaux, J. (2011). When homologous cusps display non-homologous wear facets: an occlusal reorganization ensures functional continuity during dental evolution of Murinae (Rodentia, Mammalia). Archives of Oral Biology, 56, 194–204.CrossRefGoogle Scholar
Lecompte, E., Aplin, K., Denys, C.et al. (2008). Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology, 8, 199. doi:10.1186/1471-2148-8-199.CrossRefGoogle ScholarPubMed
Lindsay, E. H. (1988). Cricetid rodents from Siwalik deposits near Chinji village. Part I: Megacricetodontinae, Myocricetodontinae and Dendromurinae. Paleovertebrata, 18, 95–154.Google Scholar
López-Antõnanzas, R. (2009). First Potwarmus from the Miocene of Saudi Arabia and the early phylogeny of murines (Rodentia: Muroidea). Zoological Journal of the Linnean Society, 156, 664–679.CrossRefGoogle Scholar
Matthew, W. D. and Granger, W. (1923). Nine new rodents from the Oligocene of Mongolia. Ibidem, 102, 1–10.Google Scholar
Mein, P. and Freudenthal, M. (1971). Une nouvelle classification des Cricetidae (Mammalia, Rodentia) du Tertiaire de l'Europe. Scripta geologica, 2, 1–37.Google Scholar
Misonne, X. (1969). African and Indo-Australian Muridae: evolutionary trends. Annales du Musée Royal de l'Afrique Centrale, Tervuren, Belgium, série IN-8, Sciences Zoologiques, 172, 1–219.Google Scholar
Musser, G. G. and Carleton, M. D. (2005). Superfamily Muroidea. In Mammal Species of the World: a Taxonomic and Geographic Reference, eds. Wilson, D. E. and Reeder, D. M.. Baltimore: Johns Hopkins University Press, pp 894–1531.Google Scholar
Offermans, M. and Vree, F. d. (1990). Mastication in springhare: acineradiographic study. Journal of Morphology, 205, 353–367.CrossRefGoogle Scholar
Osborn, H. F. (1907). Evolution of the Mammalian Molar Teeth to and from the Triangular Type. New York: The Macmillan Company, pp. 1–250.Google Scholar
Osborn, H. F. (1910). The Age of Mammals in Europe, Asia and North America. New York: The Macmillan Company, pp. 1–635.Google Scholar
Pereira, E., Michaux, J. and Montuire, S. (2005). New data on the extinct endemic rodents Tyrrhenicola and Rhagamys (Rodentia, Muridae) of Corsica (France) with special emphasis on their dental morphology and adaptation. In Proceedings of the International Symposium “Insular Vertebrate Evolution: the Palaeontological Approach”, eds. Alcover, J. A. and Bover, P.. Monografies de la Societat d'Història Natural de les Balears, 12.Google Scholar
Reed, D. N. O. (1997). Contour mapping as a new method for interpreting diet from tooth morphology. American Journal of Physical Anthropology, Supplement, 24, 194.Google Scholar
Salazar-Bravo, J., Pardinas, U.F.J. and D'Elia, G. (2013). A phylogenetic appraisal of Sigmodontinae (Rodentia, Cricetidae) with emphasis on phyllotine genera: systematics and biogeography. Zoologica Scripta, 42, 250–261.CrossRefGoogle Scholar
Schaub, S. (1938). Tertiäre and Quartäre Murinae. Abh Schweiz Pal. Ges., 61, 1–38.Google Scholar
Steppan, S. J., Adkins, R. M. and Anderson, J. (2004). Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology, 53, 533–553.CrossRefGoogle ScholarPubMed
Tafforeau, P., Boistel, R., Boller, E.et al. (2006). Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A, 83, 195–202.CrossRefGoogle Scholar
Tong, H. (1989). Origine et évolution des Gerbillidae (Mammalia, Rodentia) en Afrique du Nord. Mémoires de la Société Géologique de France, 155.Google Scholar
Ungar, P. S. and M'Kirera, F. (2003). A solution to the worn tooth conundrum in primate functional anatomy. Proceedings of the National Academy of Sciences, USA, 100, 3874–3877.CrossRefGoogle ScholarPubMed
Ungar, P. S. and Williamson, M. (2000). Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Palaeontologia Electronica, 3, 1–18.Google Scholar
Van Valen, L. (1960). A functional index of hypsodonty. Evolution, 14, 531–532.Google Scholar
Vorontsov, N. N. (1979). Evolution of the Alimentary System in Myomorph Rodents. Washington, D.C.: Smithsonian Institute and National Science Foundation, pp. 1–346. (Trans. from Russian; original publ. 1967.)Google Scholar
Weijs, W. A. (1975). Mandibular movements of the albino rat during feeding. Journal of Morphology, 145, 107–124.CrossRefGoogle ScholarPubMed
Wessels, W. (1996). Myocricetodontinae from the Miocene of Pakistan. Koninklijke Nederlandse Akademie van Wetenschapper Proceedings, 99, 253–312.Google Scholar
Wessels, W., De Bruijn, H., Hussain, T. and Leinders, J. J. M. (1982). Fossil rodents from the Chinji Formation, Banda Daud Shah, Kohat, Pakistan. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B, 85, 337–64.Google Scholar
Wessels, W., Theocharopoulos, K. D., De Bruijn, H. and Ünay, E. (2001). Myocricetodontinae and Megacricetodontini (Rodentia) from the Lower Miocene of NW Anatolia. Lynx, 32, 371–388.Google Scholar
Wilson, G. P., Evans, A. R., Corfe, I. J.et al. (2012). Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature, 483, 457–460.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×