Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T16:14:27.670Z Has data issue: false hasContentIssue false

14 - Functional morphology of rodent middle ears

Published online by Cambridge University Press:  05 August 2015

Matthew J. Mason
Affiliation:
University of Cambridge
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Because of its functional and phylogenetic significance, the middle ear has occupied far more of the attention of zoologists than this tiny region of the body would, at first glance, appear to merit. Although all mammals have three middle ear ossicles, a defining characteristic of the class, middle ear morphology otherwise differs substantially both between and within mammalian orders.

Middle ear structures are particularly variable among the Rodentia and have long been used in rodent taxonomy. Features compared between groups include malleus morphology (Tullberg, 1899; Carleton and Musser, 1984), number of middle ear septa (Moore, 1959), stapedial arterial supply (Bugge, 1985) and the relationships between the bony components of the middle ear cavity (Lavocat and Parent, 1985). Although morphological phylogenies of living rodents have largely been supplanted by the molecular, the bony structures of the middle ear retain taxonomic value because of their preservation as fossils.

Rodents are central to current experimental studies of ear function, the mouse (Mus musculus), guinea pig (Cavia porcellus), chinchilla (Chinchilla lanigera) and gerbil (Meriones unguiculatus) representing model species of particular importance. The choice of these rodents is, of course, largely based on convenience: apart from ease of maintaining captive colonies, the relatively large middle ear cavities of the guinea pig, chinchilla and gerbil greatly facilitate surgery to expose the cochlea and other structures. To what extent their ears are representative of rodents as a whole, or mammals in general, often remains unaddressed.

Following a brief functional overview, this chapter will introduce the anatomy of the middle ear and then review details of its morphology in each of the major rodent clades. This is followed by a consideration of rodent ear evolution, including a discussion of the likely adaptive purposes of some of the features which distinguish the various groups. It is hoped that zoologists will gain some functional insight to help in the evolutionary interpretation of middle ear morphology, while the anatomical data provided may prove useful in the comparison of experimental results from different species, and in the consideration of what may safely be extrapolated to other mammals.

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 373 - 404
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alston, E. R. (1875). On Anomalurus, its structure and position. Proceedings of the Zoological Society of London, 1875, 88–97.Google Scholar
Argyle, E. C. and Mason, M. J. (2008). Middle ear structures of Octodon degus (Rodentia: Octodontidae), in comparison with those of subterranean caviomorphs. Journal of Mammalogy, 89, 1447–1455.CrossRefGoogle Scholar
Bárány, E. (1938). A contribution to the physiology of bone conduction. Acta Oto-Laryngologica Supplementum, 26, 1–233.Google Scholar
Begall, S. and Burda, H. (2006). Acoustic communication and burrow acoustics are reflected in the ear morphology of the coruro (Spalacopus cyanus, Octodontidae), a social fossorial rodent. Journal of Morphology, 267, 382–390.CrossRefGoogle Scholar
Bondy, G. (1907). Beiträge zur Vergleichenden Anatomie des Gehörorgans der Säuger. (Tympanicum, Membrana Shrapnelli und Chordaverlauf). Anatomische Hefte, 35, 293–408.Google Scholar
Bugge, J. (1970). The contribution of the stapedial artery to the cephalic arterial supply in muroid rodents. Acta Anatomica, 76, 313–336.Google ScholarPubMed
Bugge, J. (1971a). The cephalic arterial system in sciuromorphs with special reference to the systematic classification of rodents. Acta Anatomica, 80, 336–361.Google Scholar
Bugge, J. (1971b). The cephalic arterial system in mole-rats (Spalacidae) bamboo rats (Rhizomyidae), jumping mice and jerboas (Dipodoidea) and dormice (Gliroidea) with special reference to the systematic classification of rodents. Acta Anatomica, 79, 165–180.Google ScholarPubMed
Bugge, J. (1974). The cephalic arterial system in insectivores, primates, rodents and lagomorphs, with special reference to the systematic classification. Acta Anatomica, 87 (supplement 62), 1–160.Google Scholar
Bugge, J. (1985) Systematic value of the carotid arterial pattern in rodents. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 355–379.Google Scholar
Burda, H., Bruns, V. and Nevo, E. (1989). Middle ear and cochlear receptors in the subterranean mole-rat, Spalax ehrenbergi. Hearing Research, 39, 225–230.CrossRefGoogle ScholarPubMed
Burda, H., Bruns, V. and Hickman, G. C. (1992). The ear in subterranean Insectivora and Rodentia in comparison with ground-dwelling representatives. 1. Sound conducting system of the middle ear. Journal of Morphology, 214, 49–61.CrossRefGoogle ScholarPubMed
Cahn, A. R. (1930). Auditory ossicles of living and giant beavers. Journal of Mammalogy, 11, 292–299.CrossRefGoogle Scholar
Carleton, M. D. (1980). Phylogenetic relationships in neotomine-peromyscine rodents (Muroidea) and a reappraisal of the dichotomy within New World Cricetinae. Miscellaneous Publications of the Museum of Zoology, University of Michigan, 157, 1–146.Google Scholar
Carleton, M. D. and Musser, A. M. (1984) Muroid rodents. In Orders and Families of Recent Mammals of the World, eds. Anderson, S. and Jones, J. K.. New York: John Wiley & Sons, pp. 289–379.Google Scholar
Chole, R. A. and Kodama, K. (1989). Comparative histology of the tympanic membrane and its relationship to cholesteatoma. Annals of Otology, Rhinology and Laryngology, 98, 761–766.CrossRefGoogle ScholarPubMed
Clack, J.A. and Allin, E. (2004) The evolution of single- and multiple-ossicle ears in fishes and tetrapods. In Evolution of the Vertebrate Auditory System, eds. Manley, G. A., Popper, A. N. and Fay, R. R.. New York: Springer, pp. 128–163.Google Scholar
Cockerell, T. D. A. (1916). The auditory ossicles of Aplodontia. Bulletin of the American Museum of Natural History, 35, 531–532.Google Scholar
Cockerell, T. D. A., Miller, L. I. and Printz, M. (1914a). The auditory ossicles of American rodents. Bulletin of the American Museum of Natural History, 33, 347–380.Google Scholar
Cockerell, T. D. A., Miller, L. I. and Printz, M. (1914b). The auditory ossicles of some African rodents. Zoologischer Anzeiger, 44, 433–440.Google Scholar
Dallos, P. (1970). Low frequency auditory characteristics: species dependence. Journal of the Acoustical Society of America, 48, 489–499.CrossRefGoogle ScholarPubMed
de Beer, G. R. (1937). The Development of the Vertebrate Skull. Oxford: Clarendon Press.Google Scholar
DeBry, R. W. (2003). Identifying conflicting signal in a multigene analysis reveals a highly resolved tree: the phylogeny of Rodentia (Mammalia). Systematic Biology, 52, 604–617.CrossRefGoogle Scholar
Diamond, M. K. (1989). Coarctation of the stapedial artery: an unusual adaptive response to competing functional demands in the middle ear of some eutherians. Journal of Morphology, 200, 71–86.CrossRefGoogle ScholarPubMed
Dong, W., Varavva, P. and Olson, E. S. (2013). Sound transmission along the ossicular chain in common wild-type laboratory mice. Hearing Research, 301, 27–34.CrossRefGoogle ScholarPubMed
Doran, A. H. G. (1878). Morphology of the mammalian ossicula auditûs. Transactions of the Linnean Society, London, 2nd series, 1, 371–497.Google Scholar
Ellerman, J. R. (1941). The Familes and Genera of Living Rodents, volume 2. London: British Museum (Natural History).Google Scholar
Emmons, L. H. (1993). A new genus and species of rat from Borneo (Rodentia: Muridae). Proceedings of the Biological Society of Washington, 106, 752–761.Google Scholar
Emry, R. J. and Thorington, R. W. (1982). Descriptive and comparative osteology of the oldest fossil squirrel, Protosciurus (Rodentia: Sciuridae). Smithsonian Contributions to Paleobiology, 47, 1–35.Google Scholar
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 88.CrossRefGoogle ScholarPubMed
Farr, M. R. B. and Mason, M. J. (2008). Middle ear morphology in dormice (Rodentia: Gliridae). Mammalian Biology, 73, 330–334.CrossRefGoogle Scholar
Fields, R. W. (1957). Hystricomorph rodents from the late Miocene of Colombia, South America. University of California Publications in Geological Sciences, 32, 273–404.Google Scholar
Fleischer, G. (1973). Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierkundliche Mitteilungen, 21, 131–239.Google Scholar
Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear. Advances in Anatomy, Embryology and Cell Biology, 55, 1–70.Google ScholarPubMed
Heffner, R. S. and Heffner, H. E. (1990). Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hearing Research, 46, 239–252.CrossRefGoogle Scholar
Heffner, R. S. and Heffner, H. E. (1992). Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hearing Research, 62, 206–216.CrossRefGoogle Scholar
Heffner, R. S. and Heffner, H. E. (1993). Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. Journal of Comparative Neurology, 331, 418–433.Google Scholar
Heffner, R. S., Koay, G. and Heffner, H. E. (2001). Audiograms of five species of rodents: implications for the evolution of hearing and the perception of pitch. Hearing Research, 157, 138–152.CrossRefGoogle Scholar
Heim de Balsac, H. (1936). Biogéographie des mammifères et des oiseaux de l'Afrique du Nord. Suppléments au Bulletin Biologique de France et de Belgique, 21, 1–446.Google Scholar
Hellström, S. and Stenfors, L.-E. (1983). The pressure equilibrating function of pars flaccida in middle ear mechanics. Acta Physiologica Scandinavica, 118, 337–341.CrossRefGoogle ScholarPubMed
Henson, O. W. (1961). Some morphological and functional aspects of certain structures of the middle ear in bats and insectivores. University of Kansas Science Bulletin, 42, 151–255.Google Scholar
Heth, G., Frankenberg, E. and Nevo, E. (1986). Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia, 42, 1287–1289.CrossRefGoogle Scholar
Hooper, E. T. (1968). Anatomy of middle-ear walls and cavities in nine species of microtine rodents. Occasional Papers of the Museum of Zoology, University of Michigan, 657, 1–23.Google Scholar
Howell, A.B. (1932). The saltatorial rodent Dipodomys: the functional and comparative anatomy of its muscular and osseous systems. Proceedings of the American Academy of Arts and Sciences, 67, 377–536.CrossRefGoogle Scholar
Huang, G. T., Rosowski, J. J., Ravicz, M. E. and Peake, W. T. (2002). Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita). Journal of Comparative Physiology A, 188, 663–681.Google Scholar
Hyrtl, J. (1845). Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Prague: Verlag von Friedrich Ehrlich.Google Scholar
Jenkins, P. D., Kilpatrick, C. W., Robinson, M. F. and Timmins, R. J. (2005). Morphological and molecular investigations of a new family, genus and species of rodent (Mammalia: Rodentia: Hystricognatha) from Lao PDR. Systematics and Biodiversity, 2, 419–454.CrossRefGoogle Scholar
Klingener, D. (1984). Gliroid and dipodoid rodents. In Orders and Families of Recent Mammals of the World, eds. Anderson, S. and Jones, J. K.. New York: John Wiley & Sons, pp. 381–388.Google Scholar
Kohllöffel, L. U. E. (1984). Notes on the comparative mechanics of hearing. III. On Shrapnell's membrane. Hearing Research, 13, 83–88.Google ScholarPubMed
Lange, S. and Burda, H. (2005). Comparative and functional morphology of the middle ear in Zambezian mole-rats (Coetomys – Cryptomys, Bathyergidae). Belgian Journal of Zoology, 135 (supplement), 5–10.Google Scholar
Lange, S., Stalleicken, J. and Burda, H. (2004). Functional morphology of the ear in fossorial rodents, Microtus arvalis and Arvicola terrestris. Journal of Morphology, 262, 770–779.CrossRefGoogle ScholarPubMed
Lange, S., Burda, H., Wegner, R. E., et al. (2007). Living in a “stethoscope”: burrow acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften, 94, 134–138.CrossRefGoogle Scholar
Lavender, D., Taraskin, S. N. and Mason, M. J. (2011). Mass distribution and rotational inertia of “microtype” and “freely mobile” middle ear ossicles in rodents. Hearing Research, 282, 97–107.CrossRefGoogle ScholarPubMed
Lavocat, R. (1967). Observations sur la région auditive des rongeurs théridomorphes. In Problèmes Actuels de Paléontologie (Évolution des Vertébrés). Paris: Éditions du Centre National de la Recherche Scientifique, pp. 491–501.Google Scholar
Lavocat, R. and Parent, J.-P. (1971). Valeur systématique de la région de l'oreille moyenne des rongeurs. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, série D, 273, 1478–1480.Google Scholar
Lavocat, R. and Parent, J.-P. (1985) Phylogenetic analysis of middle ear features in fossil and living rodents. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 333–354.Google Scholar
Lay, D. M. (1972). The anatomy, physiology, functional significance and evolution of specialised hearing organs of gerbilline rodents. Journal of Morphology, 138, 41–120.CrossRefGoogle Scholar
Lee, C.-Y. and Rosowski, J. J. (2001). Effect of middle-ear static pressure on pars tensa and pars flaccida in gerbil ears. Hearing Research, 153, 146–163.CrossRefGoogle ScholarPubMed
Luo, Z.-X. (2011). Developmental patterns in Mesozoic evolution of mammal ears. Annual Review of Ecology, Evolution, and Systematics, 42, 355–380.CrossRefGoogle Scholar
Mason, M. J. (1999). The functional anatomy of the middle ear of mammals, with an emphasis on fossorial forms. Unpublished PhD thesis, University of Cambridge, Cambridge, UK.
Mason, M. J. (2004). The middle ear apparatus of the tuco-tuco Ctenomys sociabilis (Rodentia, Ctenomyidae). Journal of Mammalogy, 85, 797–805.CrossRefGoogle Scholar
Mason, M. J. (2013). Of mice, moles and guinea-pigs: functional morphology of the middle ear in living mammals. Hearing Research, 301, 4–18.CrossRefGoogle ScholarPubMed
Mason, M. J. and Narins, P. M. (2010) Seismic sensitivity and communication in subterranean mammals. In The Use of Vibrations in Communication: Properties, Mechanisms and Function across Taxa, ed. O'Connell-Rodwell, C. E.. Kerala: Research Signpost, pp. 121–140.Google Scholar
Mason, M. J., Lai, F. W. S., Li, J.-G. and Nevo, E. (2010). Middle ear structure and bone conduction in Spalax, Eospalax and Tachyoryctes mole-rats (Rodentia: Spalacidae). Journal of Morphology, 271, 462–472.Google Scholar
Moody, D. and Lozanoff, S. (1998). SURFdriver: a practical computer program for generating three-dimensional models of anatomical structures using a PowerMac. Clinical Anatomy, 11, 132.Google Scholar
Moore, J. C. (1959). Relationships among the living squirrels of the Sciurinae. Bulletin of the American Museum of Natural History, 118, 153–206.Google Scholar
Musser, G. G. and Carleton, M. D. (2005) Superfamily Muroidea. In Mammal Species of the World: a Taxonomic and Geographic Reference, eds. Wilson, D. E. and Reeder, D. M.. Baltimore: The Johns Hopkins University Press, pp. 894–1531.Google Scholar
Novacek, M. J. (1977). Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla. Mammal Review, 7, 131–149.CrossRefGoogle Scholar
Oaks, E. C. J. (1967). Structure and function of inflated middle ears of rodents. Unpublished PhD thesis, Yale University, New Haven, USA.
Ognev, S. I. (1947). Mammals of the U.S.S.R. and Adjacent Countries. Volume 5. Rodents. Jerusalem: Israel Program for Scientific Translations (1963).Google Scholar
Ognev, S. I. (1948). Zveri vostochnoy Yevropy i severnoy Azii. Tom 6. Gryzuny (prodolzheniye). Moscow: Izdatel'stvo Akademii Nauk SSSR.Google Scholar
O'Gorman, S. (2005). Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Developmental Dynamics, 234, 124–131.CrossRefGoogle ScholarPubMed
Packard, R. L. (1960). Speciation and evolution of the pygmy mice, genus Baiomys. University of Kansas Publications, Museum of Natural History, 9, 579–670.CrossRefGoogle Scholar
Packer, D. J. (1987). The influence of carotid arterial sounds on hearing sensitivity in mammals. Journal of Zoology, 211, 547–560.CrossRefGoogle Scholar
Parent, J.-P. (1976a). Disposition fondamentale et variabilité de la région auditive des rongeurs hystricognathes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, série D, 283, 243–245.Google Scholar
Parent, J.-P. (1976b). La région auditive des rongeurs sciurognathes. Caractères anatomiques fondamentaux. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, série D, 282, 2183–2185.Google Scholar
Parent, J.-P. (1980). Recherches sur l'oreille moyenne des rongeurs actuels et fossiles. Anatomie. Valeur systématique. Mémoires et Travaux de l'Institut de Montpellier, 11, 1–286.Google Scholar
Parent, J.-P. (1983). Anatomie et valeur systématique de l'oreille moyenne des rongeurs actuels et fossiles. Mammalia, 47, 93–122.CrossRefGoogle Scholar
Pavlinov, I. Y. (1980). Taxonomic status of Calomyscus Thomas (Rodentia, Cricetidae) on the basis of structure of auditory ossicles. Zoologicheskii Zhurnal, 59, 312–316.Google Scholar
Peake, W. T., Rosowski, J. J. and Lynch, T. J. (1992). Middle-ear transmission: acoustic versus ossicular coupling in cat and human. Hearing Research, 57, 245–268.CrossRefGoogle ScholarPubMed
Petter, F. (1953). Remarques sur la signification des bulles tympaniques chez les mammifères. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, 237, 848–849.Google Scholar
Potapova, E. G. (2001). Morphological patterns and evolutionary pathways of the middle ear in dormice (Gliridae, Rodentia). Trakya University Journal of Scientific Research, series B, 2, 159–170.Google Scholar
Rado, R., Himelfarb, M., Arensburg, B.et al. (1989). Are seismic communication signals transmitted by bone conduction in the blind mole rat?Hearing Research, 41, 23–30.CrossRefGoogle ScholarPubMed
Randall, J. A. and Lewis, E. R. (1997). Seismic communication between burrows of kangaroo rats, Dipodomys spectabilis. Journal of Comparative Physiology A, 181, 525–531.CrossRefGoogle ScholarPubMed
Ravicz, M. E. and Rosowski, J. J. (1997). Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: III. Effect of variations in middle-ear volume. Journal of the Acoustical Society of America, 101, 2135–2147.CrossRefGoogle ScholarPubMed
Ravicz, M. E., Rosowski, J. J. and Voigt, H. F. (1992). Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance. Journal of the Acoustical Society of America, 92, 157–177.CrossRefGoogle ScholarPubMed
Ravicz, M. E., Cooper, N. P. and Rosowski, J. J. (2008). Gerbil middle-ear sound transmission from 100 Hz to 60 kHz. Journal of the Acoustical Society of America, 124, 363–380.CrossRefGoogle ScholarPubMed
Relkin, E. M. (1988) Introduction to the analysis of middle-ear function. In Physiology of the Ear, eds. Jahn, A. F. and Santos-Sacchi, J.. New York: Raven Press, pp. 103–123.Google Scholar
Rosowski, J. J. (1992) Hearing in transitional mammals: predictions from the middle ear anatomy and hearing capabilities of extant mammals. In The Evolutionary Biology of Hearing, eds. Webster, D. B., Fay, R. R. and Popper, A. N.. New York: Springer-Verlag, pp. 615–631.Google Scholar
Rosowski, J. J. and Lee, C.-Y. (2002). The effect of immobilizing the gerbil's pars flaccida on the middle-ear's response to static pressure. Hearing Research, 174, 183–195.CrossRefGoogle ScholarPubMed
Rosowski, J. J., Ravicz, M. E. and Songer, J. E. (2006). Structures that contribute to middle-ear admittance in chinchilla. Journal of Comparative Physiology A, 192, 1287–1311.CrossRefGoogle ScholarPubMed
Ruf, I., Frahner, S. and Maier, W. (2009). The chorda tympani and its significance for rodent phylogeny. Mammalian Biology, 74, 100–113.CrossRefGoogle Scholar
Sánchez-Villagra, M. R. and Nummela, S. (2001). Bullate stapedes in some phalangeriform marsupials. Mammalian Biology, 66, 174–177.Google Scholar
Segall, W. (1971). The auditory region (ossicles, sinuses) in gliding mammals and selected representatives of non-gliding genera. Fieldiana: Zoology, 58, 27–59.Google Scholar
Simkin, G. N. (1965). Types of ear cavities in mammals in relation to the peculiarities of their mode of life [in Russian]. Zoologicheskii Zhurnal, 44, 1538–1545.Google Scholar
Stepp, C. E. and Voss, S. E. (2005). Acoustics of the human middle-ear air space. Journal of the Acoustical Society of America, 118, 861–871.CrossRefGoogle ScholarPubMed
Teoh, S. W., Flandermeyer, D. T. and Rosowski, J. J. (1997). Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements. Hearing Research, 106, 39–65.CrossRefGoogle ScholarPubMed
Tonndorf, J., Olesen, M., King, A. F.et al. (1966). Bone conduction studies in experimental animals. VII. The effect of osseous discontinuities upon the transmission of vibratory energy across the skull in rats. Acta Oto-Laryngologica Supplementum, 213, 124–132.Google Scholar
Tullberg, T. (1899). Ueber das System der Nagethiere, eine phylogenetische Studie. Nova Acta Regiae Societatis Scientiarum Upsaliensis, series 3, 18, 1–514.Google Scholar
Van der Klaauw, C. J. (1923). Die Skelettstückchen in der Sehne des Musculus stapedius und nahe dem Ursprung der Chorda tympani. Zeitschrift für Anatomie und Entwicklungsgeschichte, 69, 32–83.Google Scholar
Van der Klaauw, C. J. (1931). The auditory bulla in some fossil mammals, with a general introduction to this region of the skull. Bulletin of the American Museum of Natural History, 62, 1–352.Google Scholar
van Kampen, P. N. (1905). Die Tympanalgegend des Säugetierschädels. Gegenbaurs Morphologisches Jahrbuch, 34, 321–722.Google Scholar
von Unge, M., Bagger-Sjöbäck, D. and Borg, E. (1991). Mechanoacoustic properties of the tympanic membrane: a study on isolated Mongolian gerbil temporal bones. American Journal of Otology, 12, 407–419.Google ScholarPubMed
Voss, R. S. (1988). Systematics and ecology of ichthyomyine rodents (Muroidea): patterns of morphological evolution in a small adaptive radiation. Bulletin of the American Museum of Natural History, 188, 259–493.Google Scholar
Wahlert, J. H. and Oaks, E. C. (1996). Primitive morphology of the middle ear in some rodents. Journal of Vertebrate Paleontology, 16, (supplement to no. 3), 70A–71A.Google Scholar
Wassif, K. (1948). Studies on the structure of the auditory ossicles and tympanic bone in Egyptian Insectivora, Chiroptera and Rodentia. Bulletin of the Faculty of Science, Fouad I University, 27, 177–213.Google Scholar
Webster, D. B. (1962). A function of the enlarged middle-ear cavities of the kangaroo rat, Dipodomys. Physiological Zoology, 35, 248–255.CrossRefGoogle Scholar
Webster, D. B. and Webster, M. (1971). Adaptive value of hearing and vision in kangaroo rat predator avoidance. Brain, Behavior and Evolution, 4, 310–322.CrossRefGoogle ScholarPubMed
Webster, D. B. and Webster, M. (1975). Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear. Journal of Morphology, 146, 343–376.CrossRefGoogle ScholarPubMed
Wible, J. R., Wang, Y., Li, C. and Dawson, M. R. (2005). Cranial anatomy and relationships of a new ctenodactyloid (Mammalia, Rodentia) from the Early Eocene of Hubei Province, China. Annals of the Carnegie Museum, 74, 91–150.CrossRefGoogle Scholar
Wilkins, K. T., Roberts, J. C., Roorda, C. S. and Hawkins, J. E. (1999). Morphometrics and functional morphology of middle ears of extant pocket gophers (Rodentia: Geomyidae). Journal of Mammalogy, 80, 180–198.CrossRefGoogle Scholar
Wilson, D. E. and Reeder, D. M. (eds.) (2005). Mammal Species of the World: A Taxonomic and Geographic Reference, Baltimore: The Johns Hopkins University Press.Google Scholar
Wood Jones, F. (1923–5). The Mammals of South Australia, parts I-III, Reprint, 1968 edn. Adelaide: British Science Guild (South Australian Branch).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×