We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Caryophyllideans are intestinal parasites of freshwater fishes, occupying a basal position among the ‘true’ tapeworms. We performed detailed cytogenetic analyses of the well-known caryophyllidean species Caryophyllaeus laticeps. For comparison, we also examined for the first time the chromosomes of Paracaryophyllaeus gotoi, a specific parasite of loaches in China. Both species showed a diploid chromosome number of 2n = 20, n = 10m. Chromomycin A3 (CMA3)/diamidino-2-phenylindole (DAPI) staining performed for the first time in the class Cestoda revealed CMA3+/DAPI− bands in the pericentromeric regions of the short arms of chromosome pair no. 7 in the karyotype of C. laticeps. Fluorescence in situ hybridization with the 18S rDNA probe confirmed the presence of a single cluster of major rDNA near the centromere on a pair of small chromosomes in both species. These findings support the hypothesis that the ancestral state in the family Caryophyllaeidae is a single interstitial cluster of major rDNA genes and thus one nucleolar organizer region per haploid genome. Our results, which we presented together with literature data plotted on a phylogenetic tree, show stability of caryophyllidean karyotypes at the genus level, but showed differences between genera without a clear phylogenetic signal. The data allowed us to at least formulate a hypothesis about the ancestral haploid chromosome number of n = 10 for the family Caryophyllaeidae and possibly for the sister family Capingentidae. In addition, we compared two populations of C. laticeps from water bodies with different levels of polychlorinated biphenyl contamination, showing a slightly increased incidence of chromosomal abnormalities at the contaminated site.
Iodine deficiency has been demonstrated in UK women, which is of concern as iodine is required for fetal brain development during pregnancy. Plant-based diets are increasingly popular, especially with young females, which may affect iodine intake as the main dietary sources are dairy and fish; plant-based products are naturally low in iodine. We, therefore, aimed to (i) assess the iodine fortification of milk-, yoghurt-, cheese- and fish-alternative products available in UK supermarkets and (ii) model the impact that substitution with such products would have on iodine intake using portion-based scenarios. A cross-sectional survey of retail outlets was conducted in 2020 and nutritional data was extracted from food labels. We identified 300 products, including plant-based alternatives to: (i) milk (n=146), (ii) yoghurt (n=76), (iii) cheese (n=67), and (iv) fish (n=11). After excluding organic products (n=48), which cannot be fortified, only 28% (n=29) of milk alternatives and 6% (n=4) of yoghurt alternatives were fortified with iodine, compared to 88% (n=92) and 73% (n=51) respectively with calcium. No cheese alternative was fortified with iodine but 55% were fortified with calcium. None of the fish-alternatives were iodine-fortified. Substitution of three portions of dairy (milk/yoghurt/cheese) per day with unfortified alternatives would reduce iodine provision by 97.9% (124 vs. 2.6 µg) and substantially reduce the contribution to adult intake recommendations (83 vs. 1.8%). Our study highlights that the majority of plant-based alternatives are not iodine-fortified and that use of unfortified alternatives in place of dairy and fish may put consumers at risk of iodine deficiency.
Species of the genus Cryptosporidium (phylum Apicomplexa) infect the epithelium of the gastrointestinal tract of several vertebrate hosts, including humans and domestic and wild animals. In the past 20 years, several studies have focused on Cryptosporidium in fish. To date, a total of four piscine-host-specific species (Cryptosporidium molnari, Cryptosporidium huwi, Cryptosporidium bollandi and Cryptosporidium abrahamseni), nine piscine genotypes and more than 29 unnamed genotypes have been described in fish hosts. In addition, Cryptosporidium species and genotypes typical of other groups of vertebrates have also been identified. This review summarizes the history, biology, pathology and clinical manifestations, as well as the transmission, prevalence and molecular epidemiology of Cryptosporidium in wild, cultured and ornamental fish from both marine and freshwater environments. Finally, the potential role of piscine hosts as a reservoir of zoonotic Cryptosporidium species is also discussed.
Demographic modelling can reveal options for improved conservation management, especially for rare or long-lived species not amenable to experimentation. Sturgeon (Acipenseridae) include many such species, endangered by demand for caviar, their unfertilized roe, and by dams blocking their migrations. Restocking of sturgeon populations with farm-raised individuals has probably prevented extinctions and widespread extirpations of some species, but it has rarely led to true recovery in Eurasia, given ongoing harvest. We used modified Leslie matrix models to test whether restocking with year-old juveniles instead of weeks-old fry could recover the critically endangered Amur sturgeon (Acipenser schrenckii), endemic to the Amur River basin along the Russia–China border. Without restocking, or even releasing an expert-recommended annual volume of young fry (10 million), we project that three of four Amur sturgeon populations will be nearly extirpated within 30 years. However, restocking with 5% as many (500 000) year-old juveniles annually could grow three populations (currently 0–425 mature females) and slow declines in another so that each has over 6400 mature females within 30 years. Retooling stocking efforts to use fewer juveniles that survive at higher rates than do small fry could buy time to reduce harvesting pressure on Amur sturgeon and for other related sturgeon species.
The present paper describes a new species of Dermadena (Digenea) parasitizing Pseudobalistes naufragium in Puerto Pizarro, northern Peru, using light and scanning electronic microscopy (SEM). Additionally, molecular analysis was also performed to determine the phylogenetic affinities of Dermadena within the Lepocreadiidae. The new species is differentiated from Dermadena spatiosa, Dermadena stirlingi and Dermadena lactophrysi by presenting a curved and well-developed external seminal vesicle. Also, SEM revealed numerous dome-shaped tegument protuberances forming glandular papillae with transversal wrinkles arranged roughly in concentric rows around the acetabular region, varying in size from large at the middle of the body to small at the margin. In the molecular phylogeny, the new species formed a well-supported clade with sequences of species from the Lepocreadiidae, confirming that it belongs to this family.
Microsporidia of the genus Ovipleistophora are generally parasites of fishes and aquatic crustaceans. In the current study, Ovipleistophora diplostomuri and O. ovariae were firstly reported from Culter alburnus and Xenocypris argentea and Parabramis pekinensis, respectively. Both of them exclusively infected fish ovary and were morphologically, ultrastructurally and genetically characterized. Sporogony occurred in direct contact with the host cell cytoplasm and sporophorous vesicles were not observed for the new isolates of these two Ovipleistophora species. Spores of O. ovariae were for the first time observed to be dimorphic. Genetic analysis indicated that the genetic variation in the ITS and LSU sequences was distinct among between-host O. diplostomuri isolates. High sequence variation in ITS sequence suggests that it can be a reliable molecular marker to explore the population genetics of O. diplostomuri. This is the first report of these two Ovipleistophora species in China which extends their host and geographical range.
This study examines the ritual and socioeconomic significance of animals in ceremonial contexts at Kaminaljuyu, Guatemala. Kaminaljuyu was once the largest and most politically powerful highland Maya center. We compare faunal remains from different contexts, including burials and dedicatory offerings in and around monumental features, to better understand the role of animals in these deposits. We then compare ceremonial activities across Mesoamerica to identify similarities alluding to widely recognized practices. Late and Terminal Preclassic (350 BC–AD 250) ceremonies at Kaminaljuyu contain some of the earliest marine fish recovered from a Maya highland site, demonstrating the ability of early elites to obtain exotic species for special events. Dogs, including perhaps the first evidence for Preclassic hairless dogs in Guatemala, appear in deposits that resemble canine sacrificial offerings in central Mexico. The new faunal data in this study provide a novel perspective on Kaminaljuyu's sociopolitical role in the region.
This study presents the results of ancient DNA analyses of eight snakehead (Channa sp.) bones from the Market Street Chinatown, a nineteenth-century Chinese diaspora archaeological site in San Jose, California. The sequences of a short stretch of the mitochondrial DNA identify the Market Street Chinatown snakeheads as Giant Snakehead (Channa micropeltes), a species native to Southeast Asia. These results provide the first archaeological evidence of the nineteenth-century trade of Asian freshwater fishes to North America, and they reveal that preserved fish products from throughout the Pacific World were readily distributed across the Chinese diaspora. We place our findings within the broader context of nineteenth-century Chinese migration to show how the common Chinese small shareholding business model and access to trade connections facilitated by Chinese-operated import/export firms known as jinshanzhuang allowed Chinese fishers to be successful across the Pacific World. Finally, we suggest avenues for future study by comparing Chinese migration-based, flexible fishing strategies using generalist methods with the highly specialized collection and trade of species like Atlantic Cod (Gadus morhua) in the North Atlantic.
traces how health concerns informed good governance of the urban food trades. Urban authorities, in negotiation with food-related guilds and traders, established, intervened in, and physically altered food markets in order to expel wares deemed unsafe for consumption. The central position of food in Galenic medical theories of health preservation was reflected in an urban context especially in the policies around three highly regulated products: meat, fish and grain. Market inspectors, and likely also vendors and buyers, applied medical knowledge on preservation and disease risks. The extensive regulation of grain and bread provision closely related to issues of urban order and threat of shortages. Finally, butchering in particular was also targeted as a source of environmental pollution through coordinating the disposal of offal.
This chapter presents a variety of arguments against factory farming and explores arguments that question the status quo notion that animals belong in the category of edible beings.
The findings regarding the associations between red meat, fish and poultry consumption, and the metabolic syndrome (Mets) have been inconclusive, and evidence from Chinese populations is scarce. A cross-sectional study was performed to investigate the associations between red meat, fish and poultry consumption, and the prevalence of the Mets and its components among the residents of Suzhou Industrial Park, Suzhou, China. A total of 4424 participants were eligible for the analysis. A logistic regression model was used to estimate the OR and 95 % CI for the prevalence of the Mets and its components according to red meat, fish and poultry consumption. In addition, the data of our cross-sectional study were meta-analysed under a random effects model along with those of published observational studies to generate the summary relative risks (RR) of the associations between the highest v. lowest categories of red meat, fish and poultry consumption and the Mets and its components. In the cross-sectional study, the multivariable-adjusted OR for the highest v. lowest quartiles of consumption was 1·23 (95 % CI 1·02, 1·48) for red meat, 0·83 (95 % CI 0·72, 0·97) for fish and 0·93 (95 % CI 0·74, 1·18) for poultry. In the meta-analysis, the pooled RR for the highest v. lowest categories of consumption was 1·20 (95 % CI 1·06, 1·35) for red meat, 0·88 (95 % CI 0·81, 0·96) for fish and 0·97 (95 % CI 0·85, 1·10) for poultry. The findings of both cross-sectional studies and meta-analyses indicated that the association between fish consumption and the Mets may be partly driven by the inverse association of fish consumption with elevated TAG and reduced HDL-cholesterol and, to a lesser extent, fasting plasma glucose. No clear pattern of associations was observed between red meat or poultry consumption and the components of the Mets. The current findings add weight to the evidence that the Mets may be positively associated with red meat consumption, inversely associated with fish consumption and neutrally associated with poultry consumption.
By responding to information gained through observing or interacting with other individuals, fish can learn about important aspects of their environment, including where to forage, how to recognize and avoid predators, and who to mate with. Social learning processes are often closely intertwined with the social environment; whether individuals engage in social learning, who they learn from, and what they learn frequently depend on complex, nonrandom patterns of social interaction. Social network analysis provides a sophisticated toolset for quantifying such elements of social structure. In this chapter, we discuss how integrating social network approaches with investigations into social learning have provided novel and important insights regarding the ways in which fish acquire and use social information in realistic social contexts.
Coral skeletal structures can provide a robust record of nuclear bomb produced 14C with valuable insight into air-sea exchange processes and water movement with applications to fisheries science. To expand these records in the South Pacific, a coral core from Tutuila Island, American Samoa was dated with density band counting covering a 59-yr period (1953–2012). Seasonal signals in elemental ratios (Sr/Ca and Ba/Ca) and stable carbon (δ13C) values across the coral core corroborated the well-defined annual band structure and highlighted an ocean climate shift from the 1997–1998 El Niño. The American Samoa coral 14C measurements were consistent with other regional records but included some notable differences across the South Pacific Gyre (SPG) at Fiji, Rarotonga, and Easter Island that can be attributed to decadal ocean climate cycles, surface residence times and proximity to the South Equatorial Current. An analysis of the post-peak 14C decline associated with each coral record indicated 14C levels are beginning to merge for the SPG. This observation, coupled with otolith measurements from American Samoa, reinforces the perspective that bomb 14C dating can be performed on fishes and other marine organisms of the region using the post-peak 14C decline to properly inform fisheries management in the South Pacific.
Monozoic tapeworms (Caryophyllidea) are dominant components of parasite communities of suckers (Catostomidae) in North America, with Biacetabulum Hunter, 1927 representing one of the more species-rich genera. Molecular (28S rDNA) and morphological (including scanning electron microscopy and histology) evaluation of newly collected tapeworms from different fish hosts revealed the existence of four similar (and three closely related) species of Biacetabulum. These four species differ from their congeners by having a long body (up to 48 mm long) with a very long, slender neck (its length represents ≥30% of total body length), a large, globular scolex with a prominent central acetabulum-like loculus on the dorsal and ventral sides, two pairs of shallow lateral loculi and a distinct, slightly convex apical disc, and a cirrus-sac that is situated between the anterior arms of the ovarian wings. Taken together, the morphological and molecular data and the host associations of these species provide evidence of their host specificity. Biacetabulum isaureae n. sp. occurs in notch clip redhorse, Moxostoma collapsum, in South Carolina (USA), B. longicollum n. sp. in silver redhorse, Moxostoma anisurum (type host), and golden redhorse, M. erythrurum, in Manitoba (Canada) and West Virginia (USA), B. overstreeti n. sp. in a spotted sucker, Minytrema melanops, in Mississippi, and B. hypentelii n. sp. in northern hogsucker, Hypentelium nigricans, in Tennessee (USA). The new species differ from each other in the number of postovarian vitelline follicles, the posterior extent of preovarian vitelline follicles and relative size of the cirrus sac.
Due to conflicts between classic and molecular systematics of Camallanidae, different data types were used for the first time, to better understand the evolutionary history and taxa consistency within this family. Genetic [18S and 28S rDNA; cytochrome c oxidase subunit I (COI) mtDNA], morphological and life history traits were used to infer phylogenies using Bayesian inference, reconstructed from separated and concatenated datasets. The consistency of tree and morphological traits was evaluated using the consistency index. Characters were mapped on the trees and the phylogenetic informativeness of genetic markers was estimated. Phylogenetic informativeness of 18S provided better resolution for outer nodes, COI for inners and 28S had an intermediate profile. New sequences for two camallanid species were obtained. Phylogenies of genetic and concatenated data largely agreed, showing more divergence in the COI dataset, due to its higher mutation rate vs stable morphology for diagnosing higher taxa. No genus sustained monophyly. The lack of autapomorphy and phylogenetic proximity supported the partition of Batrachocamallanus as synonym of Procamallanus and Spirocamallanus, which should not be considered as subgenera. Although traits of buccal capsule, male tail, habitat, host and biogeographic were highly consistent, intrinsic patterns varied according to different taxa assemblages. Morphological systematics of Camallanidae, based on buccal capsule, is artificial for certain taxa.
Triploidization plays an important role in aquaculture and surrogate technologies. In this study, we induced triploidy in the matrinxã fish (Brycon amazonicus) using a heat-shock technique. Embryos at 2 min post fertilization (mpf) were heat shocked at 38°C, 40°C, or 42°C for 2 min. Untreated, intact embryos were used as a control. Survival rates during early development were monitored and ploidy status was confirmed using flow cytometry and nuclear diameter analysis of erythrocytes. The hatching rate reduced with heat-shock treatment, and heat-shock treatments at 42°C resulted in no hatching events. Optimal results were obtained at 40°C with 95% of larvae exhibiting triploidy. Therefore, we report that heat-shock treatments of embryos (2 mpf) at 40°C for 2 min is an effective way to induce triploid individuals in B. amazonicus.
Toxoplasma gondii (T. gondii) is known for its ability to infect warm-blooded vertebrates. Although T. gondii does not appear to parasitize cold-blooded animals, the occurrence of T. gondii infection in marine mammals raises concerns that cold-blooded animals (frogs, toad, turtles, crocodiles, snakes, and fish) and shellfish are potential sources of T. gondii. Therefore, this systematic review aimed to determine the prevalence of T. gondii in mollusks and cold-blooded animals worldwide. We searched PubMed, ScienceDirect, ProQuest, Scopus, and Web of Science from inception to 1 August 2020 for eligible papers in the English language and identified 26 articles that reported the prevalence of T. gondii in mollusks and cold-blooded animals. These articles were subsequently reviewed and data extracted using a standard form. In total, 26 studies [involving 9 cross-sectional studies including 2988 samples of cold-blooded animals (129 positive cases for T. gondii) and 18 cross-sectional studies entailing 13 447 samples of shellfish (692 positive cases for T. gondii)] were included in this study. Although this study showed that shellfish and cold-blooded animals could be potential sources of T. gondii for humans and other hosts that feed on them, further investigations are recommended to determine the prevalence of T. gondii in shellfish and cold-blooded animals.
The long-term effect of a plant (P)-based diet was assessed by proton nuclear magnetic resonance (1H-NMR) metabolomics in rainbow trout fed a marine fish meal (FM)–fish oil (FO) diet (M), a P-based diet and a control commercial-like diet (C) starting with the first feeding. Growth performances were not heavily altered by long-term feeding on the P-based diet. An 1H-NMR metabolomic analysis of the feed revealed significantly different soluble chemical compound profiles between the diets. A set of soluble chemical compounds was found to be specific either to the P-based diet or to the M diet. Pterin, a biomarker of plant feedstuffs, was identified both in the P-based diet and in the plasma of fish fed the P-based diet. 1H-NMR metabolomic analysis on fish plasma and liver and muscle tissues at 6 and 48 h post feeding revealed significantly different profiles between the P-based diet and the M diet, while the C diet showed intermediate results. A higher amino acid content was found in the plasma of fish fed the P-based diet compared with the M diet after 48 h, suggesting either a delayed delivery of the amino acids or a lower amino acid utilisation in the P-based diet. This was associated with an accumulation of essential amino acids and the depletion of glutamine in the muscle, together with an accumulation of choline in the liver. Combined with an anticipated absorption of methionine and lysine supplemented in free form, the present results suggest an imbalanced essential amino acid supply for protein metabolism in the muscle and for specific functions of the liver.
In present study, we explored the effects and the underlying mechanisms of phospholipase C (PLC) mediating glucose-induced changes in intestinal glucose transport and lipid metabolism by using U-73122 (a PLC inhibitor). We found that glucose incubation activated the PLC signal and U-73122 pre-incubation alleviated the glucose-induced increase in plcb2, plce1 and plcg1 mRNA expression. Meanwhile, U-73122 pre-treatment blunted the glucose-induced increase in sodium/glucose co-transporters 1/2 mRNA and protein expressions. U-73122 pre-treatment alleviated the glucose-induced increase in TAG content, BODIPY 493/503 fluorescence intensity, lipogenic enzymes (glucose 6-phospate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), malic enzyme and fatty acid synthase (FAS)) activity and the mRNA expressions of lipogenic genes and related transcription factors (6pgd, g6pd, fas, acca, srebp1 and carbohydrate response element-binding protein (chrebp)) in intestinal epithelial cells of yellow catfish. Further research found that U-73122 pre-incubation mitigated the glucose-induced increase in the ChREBP protein expression and the acetylation level of ChREBP in HEK293T cells. Taken together, these data demonstrated that the PLC played a major role in the glucose-induced changes of glucose transport and lipid metabolism and provide a new perspective for revealing the molecular mechanism of glucose-induced changes of intestinal glucose absorption, lipid deposition and metabolism.
Molecular diagnostics, i.e. the detection and analysis of disease-related changes of DNA or RNA, is becoming ever more important for the diagnosis of bone marrow (BM) neoplasms. In modern BM haematopathology, molecular diagnostics should always be part of an integrated diagnostic approach including clinical information, morphology and immunophenotyping. It is the responsibility of the haematopathologist to interpret the information gathered and to produce a final diagnosis. For this purpose, the practising haematopathologist must be familiar with the various molecular techniques needed and possess an in-depth knowledge of their applications for the diagnosis of BM neoplasms. The first part of this chapter focuses on the most important molecular techniques currently used in everyday diagnostics in the modern haematopathological laboratory. The second part highlights the major molecular and genetic aberrations of diagnostic value across the different haematological disease entities. Ideally the haematopathological laboratory should either be able to perform the relevant tests or be in close cooperation with a laboratory performing them for optimal diagnostics. Such cooperations also include multidisciplinary conferences, where clinicians and haematopathologists meet to discuss the diagnoses of afflicted patients.