We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is crucial to understand the genetic mechanisms and biological pathways underlying the relationship between obesity and serum lipid levels. Structural equation models (SEMs) were constructed to calculate heritability for body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the genetic connections between BMI and the four classes of lipids using 1197 pairs of twins from the Chinese National Twin Registry (CNTR). Bivariate genomewide association studies (GWAS) were performed to identify genetic variants associated with BMI and lipids using the records of 457 individuals, and the results were further validated in 289 individuals. The genetic background affecting BMI may differ by gender, and the heritability of males and females was 71% (95% CI [.66, .75]) and 39% (95% CI [.15, .71]) respectively. BMI was positively correlated with TC, TG and LDL-C in phenotypic and genetic correlation, while negatively correlated with HDL-C. There were gender differences in the correlation between BMI and lipids. Bivariate GWAS analysis and validation stage found 7 genes (LOC105378740, LINC02506, CSMD1, MELK, FAM81A, ERAL1 and MIR144) that were possibly related to BMI and lipid levels. The significant biological pathways were the regulation of cholesterol reverse transport and the regulation of high-density lipoprotein particle clearance (p < .001). BMI and blood lipid levels were affected by genetic factors, and they were genetically correlated. There might be gender differences in their genetic correlation. Bivariate GWAS analysis found MIR144 gene and its related biological pathways may influence obesity and lipid levels.
Inkjet printing, originally invented for text and pattern printing, is now central to many industrial applications, such as printed electronics, flexible electronics, 3-D printing of mechanical and even biological devices. However, constrained by the droplets’ ejection mechanism, the accuracy of traditional inkjet printing is limited by the size of its orifice, and it is difficult to achieve a volume of droplets at the femtolitre scale, which hinders its further application in the above fields. To this end, we propose the confined interface vibration inkjet printing (CIVIJP) technique, which is capable of printing patterns in a liquid environment with droplet size much smaller than the orifice from which they are dispensed. Here, further systematic study of the mechanism of printing in a liquid environment was carried out with the assistance of a high-speed imaging technique. It is found for the first time that a single pulse stimulation applied on the piezo-ceramic of the inkjet nozzle can trigger damping oscillations of the oil/water interface confined by the orifice, which can last more than 500 $\mathrm {\mu }$s. By adjusting the intensity of single pulse stimulation, the size and quantity of the dispensed droplets can be controlled in a wide range, which is obviously different from traditional droplet ejection in a gaseous environment. This work reveals the underlying physics between the pulse stimulation and the interface behaviours, as well as the physics between the interface behaviours and the size and number of dispensed droplets, enriching the fundamental theory of the inkjet printing in liquid phase.
To investigate the association between folate levels and the risk of gestational diabetes mellitus (GDM) risk during the whole pregnancy.
Design:
In this retrospective cohort study of pregnant women, serum folate levels were measured before 24 gestational weeks (GW). GDM was diagnosed between 24th and 28th GW based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. General linear models were performed to examine the association of serum folate with plasma glucose (i.e. linear regressions) and risk of GDM (i.e. log-binomial regressions) after controlling for confounders. Restricted cubic spline regression was conducted to test the dosage–response relationship between serum folate and the risk of GDM.
Setting:
A sigle, urban hospital in Shanghai, China.
Participants:
A total of 42 478 women who received antenatal care from April 2013 to March 2017 were included.
Results:
Consistent positive associations were observed between serum folate and plasma glucose levels (fasting, 1-h, 2-h). The adjusted relative risks (RR) and 95 % CI of GDM across serum folate quartiles were 1·00 (reference), 1·15 (95 % CI (1·04, 1·26)), 1·40 (95 % CI (1·27, 1·54)) and 1·54 (95 % CI (1·40, 1·69)), respectively (P-for-trend < 0·001). The positive association between serum folate and GDM remained when stratified by vitamin B12 (adequate v. deficient groups) and the GW of serum folate measurement (≤13 GW v. >13 GWs)
Conclusions:
The findings of this study may provide important evidence for the public health and clinical guidelines of pregnancy folate supplementation in terms of GDM prevention.
This study aimed to evaluate the efficacy and safety of high-frequency oscillation ventilation combined with intermittent mandatory ventilation in infants with acute respiratory distress syndrome after congenital heart surgery.
Methods:
We retrospectively analysed the clinical data of 32 infants who were ventilated due to acute respiratory distress syndrome after congenital heart surgery between January, 2020 and January, 2022. We adopted high-frequency oscillation ventilation combined with intermittent mandatory ventilation as the rescue ventilation mode for infants who were failing conventional mechanical ventilation.
Results:
After rescue high-frequency oscillation ventilation combined with intermittent mandatory ventilation, the dynamic compliance (Cdyn), PaO2 and PaO2/FiO2 ratio of the infants improved compared with conventional mechanical ventilation (p < 0.05). Moreover, high-frequency oscillation ventilation combined with intermittent mandatory ventilation resulted in a significant decrease in arterial-alveolar oxygen difference (AaDO2), FiO2, and oxygenation index (p < 0.05). No significant effect on haemodynamic parameters was observed. Moreover, no serious complications occurred in the two groups.
Conclusion:
Rescue high-frequency oscillation ventilation combined with intermittent mandatory ventilation significantly improved oxygenation in infants who failed conventional mechanical ventilation for acute respiratory distress syndrome after congenital heart surgery. Thus, this strategy is considered safe and feasible. However, further studies must be conducted to confirm the efficacy and safety of high-frequency oscillation ventilation combined with intermittent mandatory ventilation as a rescue perioperative respiratory support strategy for CHD.
Maternal overnutrition-induced fetal programming predisposes offspring to cardiovascular health issues throughout life. Understanding how these adverse cardiovascular effects are regulated at the maternal–fetal crosstalk will provide insight into the mechanisms of these cardiovascular diseases, which will help in further identifying potential targets for intervention. Here, we uncover a role of oxidative stress caused by prenatal overnutrition in governing cardiac damage. Mice exposed to maternal obesity showed remarkable pathological cardiomyocyte hypertrophy (pmale < 0.001, Cohen’s dmale = 1.77; pfemale < 0.001, Cohen’s dfemale = 1.94), increased collagen content (pmale < 0.001, Cohen’s dmale = 2.13; pfemale < 0.001, Cohen’s dfemale = 2.71), and increased levels of transforming growth factor β (TGF-β) (pmale < 0.001, Cohen’s dmale = 3.02; pfemale < 0.001, Cohen’s dfemale = 4.52), as well as left ventricular dysfunction in adulthood. To cope with increased oxidative stress in the myocardial tissue of offspring from obese mothers, we sought to decrease the effect of oxidative stress and prevent the development of these cardiovascular conditions with use of the antioxidant N-acetylcysteine during pregnancy. As predicted, after treatment with the antioxidant, there was greatly mitigated cardiomyocyte hypertrophy (pmale < 0.001, Cohen’s dmale = 1.31; pfemale < 0.001, Cohen’s dfemale = 0.82) and cardiac fibrosis, including decreased composition of collagen fibers (pmale < 0.01, Cohen’s dmale = 1.45; pfemale < 0.05, Cohen’s dfemale = 1.23) and reduced levels of TGF-β (pmale < 0.05, Cohen’s dmale = 1.83; pfemale < 0.01, Cohen’s dfemale = 3.81). We also observed improved left ventricle contractile function together with the alleviation of enhanced oxidative stress in the myocardial tissue of offspring. Collectively, these results established a crucial role of oxidative stress in prenatal overnutrition-associated ventricular remodeling and cardiac dysfunction. Our findings provided an important target for intervention of cardiovascular disease in overnutrition-related fetal programming.
To explore whether embryo culture with melatonin (MT) can improve the embryonic development and clinical outcome of patients with repeated cycles after in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure, immature oocytes from controlled ovarian superovulation cycles were collected for in vitro maturation (IVM) and ICSI. The obtained embryos were cultured in 0, 10–11, 10–9, 10–7 and 10–5 M MT medium respectively, and 10–9 M was screened out as the optimal concentration. Subsequently, 140 patients who underwent failed IVF/ICSI cycles received 140 cycles of embryo culture in vitro with a medium containing 10–9 M MT, these 140 MT culture cycles were designated as the experimental group (10–9 M group), and the control group was the previous failed cycles of patients (0 M group). The results showed that the fertilization, cleavage, high-quality embryo, blastocyst, and high-quality blastocyst rates of the 10–9 M group were significantly higher than those of the 0 M group (P < 0.01; P < 0.01; P < 0.0001; P < 0.0001; P < 0.0001). To date, in total, 50 vitrified-warmed cycle transfers have been performed in the 10–9 M group and the implantation rate, biochemical pregnancy rate and clinical pregnancy rate were significantly higher than those in the 0 M group (all P < 0.0001). Two healthy infants were delivered successfully and the other 18 women who achieved clinical pregnancy also had good examination indexes. Therefore the application of 10–9 M MT to embryo cultures in vitro improved embryonic development in patients with repeated cycles after failed IVF/ICSI cycles and had good clinical outcomes.
Viruses completely rely on the energy and metabolic systems of host cells for life activities. Viral infections usually lead to cytopathic effects and host diseases. To date, there are still no specific clinical vaccines or drugs against most viral infections. Therefore, understanding the molecular and cellular mechanisms of viral infections is of great significance to prevent and treat viral diseases. A variety of viral infections are related to the p38 MAPK signalling pathway, and p38 is an important host factor in virus-infected cells. Here, we introduce the different signalling pathways of p38 activation and then summarise how different viruses induce p38 phosphorylation. Finally, we provide a general summary of the effect of p38 activation on virus replication. Our review provides integrated data on p38 activation and viral infections and describes the potential application of targeting p38 as an antiviral strategy.
This study aimed to determine the risk factors for chronic diseases and to identify the potential influencing mechanisms from the perspectives of lifestyle and dietary factors. The findings could provide updated and innovative evidence for the prevention and control of chronic diseases.
Design:
A cross-sectional study.
Setting:
Shanghai, China.
Participants:
1005 adults from Yangpu district of Shanghai participated in the study, and responded to questions on dietary habits, lifestyle and health status.
Results:
Residents suffering from chronic diseases accounted for about 34·99 % of the respondents. Logistic regression analysis showed that age, diet quality, amount of exercise and tea drinking were related to chronic diseases. Age > 60 and overeating (Diet Balance Index total score > 0) had negative additive interaction on the occurrence of chronic disease, while overexercise (Physical Activity Index > 17·1) and tea drinking had negative multiplicative interaction and negative additive interaction on the occurrence of chronic disease. Diet quality, physical activity and tea drinking were incomplete mediators of the relationship between types of medical insurance residents participating in and chronic diseases.
Conclusions:
The residents in Yangpu District of Shanghai have a high prevalence of chronic diseases. Strengthening access of residents to health education and interventions to prevent chronic diseases and cultivating healthy eating and exercise habits of residents are crucial. The nutritional environment of the elderly population should be considered, and the reimbursement level of different types of medical insurance should be designed reasonably to improve the accessibility of medical and health services and reduce the risk of chronic diseases.
South-east Asia's diverse coastal wetlands, which span natural mudflats and mangroves to man-made salt pans, offer critical habitat for many migratory waterbird species in the East Asian–Australasian Flyway. Species dependent on these wetlands include nearly the entire population of the Critically Endangered spoon-billed sandpiper Calidris pygmaea and the Endangered spotted greenshank Tringa guttifer, and significant populations of several other globally threatened and declining species. Presently, more than 50 coastal Important Bird and Biodiversity Areas (IBAs) in the region (7.4% of all South-east Asian IBAs) support at least one threatened migratory species. However, recent studies continue to reveal major knowledge gaps on the distribution of migratory waterbirds and important wetland sites along South-east Asia's vast coastline, including undiscovered and potential IBAs. Alongside this, there are critical gaps in the representation of coastal wetlands across the protected area networks of many countries in this region (e.g. Viet Nam, Indonesia, Malaysia), hindering effective conservation. Although a better understanding of the value of coastal wetlands to people and their importance to migratory species is necessary, governments and other stakeholders need to do more to strengthen the conservation of these ecosystems by improving protected area coverage, habitat restoration, and coastal governance and management. This must be underpinned by the judicious use of evidence-based approaches, including satellite-tracking of migratory birds, ecological research and ground surveys.
To evaluate the relationship between religious beliefs and mental state, care burden, and quality of life in parents of infantile patients with CHD.
Methods:
A cross-sectional study was conducted at a provincial hospital in Fujian, China. In this study, 114 parents of infant patients with CHD were successfully enrolled. Data were collected using the Duke University Religion Index, Hospital Anxiety and Depression Scale, Zarit Caregiver Burden Interview, and 36-Item Short-Form Health Survey.
Results:
The organisational religious activity, non-organisational religious activity, and intrinsic religiosity of parents were significantly related to the care burden and quality of life, and the two dimensions of non-organisational religious activity and intrinsic religiosity of parents were significantly related to their anxiety symptoms. No association was found between parents’ religious beliefs and their depressive symptoms. Among Buddhist parents, non-organisational religious activity and intrinsic religiosity reduced the care burden and improved quality of life. Among Christian parents, organisational religious activity and non-organisational religious activity were found to reduce the care burden, while organisational religious activity and intrinsic religiosity were found to improve quality of life. There was no correlation between the sub-dimensions of religious beliefs and a negative impact on the care process in Muslim parents.
Conclusion:
Religious beliefs have a protective effect on the parents of infant patients with CHD. They help relieve parents’ anxiety, reduce their care burden, and improve their quality of life. In addition, different religious beliefs have different dimensions of influence on caregivers.
The aim of the present study was to compare the rate of preterm birth (PTB) and growth from birth to 18 years between twins conceived by in vitro fertilization (IVF) and twins conceived by spontaneous conception (SC) in mainland China. The retrospective cohort study included 1164 twins resulting from IVF and 25,654 twins conceived spontaneously, of which 494 from IVF and 6338 from SC were opposite-sex twins. PTB and low birth weight (LBW), and growth, including length/height and weight, were compared between the two groups at five stages: infancy (0 year), toddler period (1–2 years), preschool (3–5 years), primary or elementary school (6–11 years), and adolescence (10–18 years). Few statistically significant differences were found for LBW and growth between the two groups after adjusting for PTB and other confounders. Twins born by IVF faced an increased risk of PTB compared with those born by SC (adjusted odds ratio [aOR] 8.21, 95% confidence interval [CI] [3.19, 21.13], p < .001 in all twins and aOR 10.12, 95% CI [2.32, 44.04], p = .002 in opposite-sex twins). Twins born by IVF experienced a similar growth at five stages (0–18 years old) when compared with those born by SC. PTB risk, however, is significantly higher for twins conceived by IVF than those conceived by SC.
The effect of vitamin D (VD) on the risk of preeclampsia (PE) is uncertain. Few of previous studies focused on the relationship between dietary VD intake and PE risk. Therefore, we conducted this 1:1 matched case–control study to explore the association of dietary VD intake and serum VD concentrations with PE risk in Chinese pregnant women. A total of 440 pairs of participants were recruited during March 2016 to June 2019. Dietary information was obtained using a seventy-eight-item semi-quantitative FFQ. Serum concentrations of 25(OH)D2 and 25(OH)D3 were measured by liquid chromatography–tandem MS. Multivariate conditional logistic regression was used to estimate OR and 95 % CI. Restricted cubic splines (RCS) were plotted to evaluate the dose–response relationship of dietary VD intake and serum VD concentrations with PE risk. Compared with the lowest quartile, the OR of the highest quartile were 0·45 (95 % CI 0·29, 0·71, Ptrend = 0·001) for VD dietary intake and 0·26 (95 % CI 0·11, 0·60, Ptrend = 0·003) for serum levels after adjusting for confounders. In addition, the RCS analysis suggested a reverse J-shaped relationship between dietary VD intake and PE risk (P-nonlinearity = 0·02). A similar association was also found between serum concentrations of total 25(OH)D and PE risk (P-nonlinearity = 0·02). In conclusion, this study provides evidence that higher dietary intake and serum levels of VD are associated with the lower risk of PE in Chinese pregnant women.
To explore the feasibility and superiority of applying the WeChat platform in a midterm follow-up of surgical repair for ventricular septal defects in infants.
Methods:
Eighty-six infants with VSD who underwent surgical repair were divided into an outpatient follow-up group and a WeChat follow-up group. The clinical data, including complications, economic cost, time spent, loss to follow-up rate, and parents’ satisfaction at the 3-month and 1-year follow-ups, were recorded and analysed.
Results:
There was no significant difference in the incidence of post-operative complications between the two groups. Although the loss to follow-up rate in the WFU group was lower than that of the OFU group, the difference was not statistically significant. The economic cost and time spent in the 3 months and 1 year after discharge in the WFU group were significantly lower than those in the OFU group. One year after discharge, the PSQ-18 score of the WFU group was significantly higher than that of the OFU group.
Conclusion:
Compared with outpatient follow-up, the WeChat platform at the midterm follow-up after surgical repair of VSDs in infants has the advantages of saving time and economic costs and improves parents’ satisfaction.
X/γ-rays have many potential applications in laboratory astrophysics and particle physics. Although several methods have been proposed for generating electron, positron, and X/γ-photon beams with angular momentum (AM), the generation of ultra-intense brilliant γ-rays is still challenging. Here, we present an all-optical scheme to generate a high-energy γ-photon beam with large beam angular momentum (BAM), small divergence, and high brilliance. In the first stage, a circularly polarized laser pulse with intensity of 1022 W/cm2 irradiates a micro-channel target, drags out electrons from the channel wall, and accelerates them to high energies via the longitudinal electric fields. During the process, the laser transfers its spin angular momentum (SAM) to the electrons’ orbital angular momentum (OAM). In the second stage, the drive pulse is reflected by the attached fan-foil and a vortex laser pulse is thus formed. In the third stage, the energetic electrons collide head-on with the reflected vortex pulse and transfer their AM to the γ-photons via nonlinear Compton scattering. Three-dimensional particle-in-cell simulations show that the peak brilliance of the γ-ray beam is $\sim 1{0}^{22}$ photons·s–1·mm–2·mrad–2 per 0.1% bandwidth at 1 MeV with a peak instantaneous power of 25 TW and averaged BAM of $1{0}^6\hslash$/photon. The AM conversion efficiency from laser to the γ-photons is unprecedentedly 0.67%.
To investigate the safety and feasibility of midazolam for conscious sedation in transcatheter device closure of atrial septal defects guided solely by transthoracic echocardiography.
Methods:
A retrospective analysis was performed on 55 patients who underwent transcatheter device closure of atrial septal defects from October, 2019 to May, 2020. All patients received intravenous midazolam and local anesthesia with lidocaine to maintain sedation. A group of previous patients with unpublished data who underwent the same procedure with general anesthesia was set as the control group. The relevant clinical parameters, the Ramsay sedation scores, the numerical rating scale, and the post-operative satisfaction questionnaire were recorded and analyzed.
Results:
In the midazolam group, the success rate of atrial septal defect closure was 98.2%. Hemodynamic stability was observed during the procedure. None of the patients needed additional endotracheal intubation for general anesthesia. Compared with the control group, the midazolam group had no statistically significant differences in the Ramsay sedation score and numerical rating scale scores. Patients in the midazolam group experienced more post-operative satisfaction than those in the control group.
Conclusions:
Conscious sedation using midazolam is a safe and effective anesthetic technique for transcatheter device closure of atrial septal defects guided solely by transthoracic echocardiography.
The objective of this study was to investigate how different obesity measures link to circulating metabolites, and whether the connections are due to genetic or environmental factors. A cross-sectional analysis was performed on follow-up survey data at the Chinese National Twin Registry (CNTR), which was conducted in four areas of China (Shandong, Jiangsu, Zhejiang and Sichuan) in 2013. The survey collected detailed questionnaire information and conducted physical examinations, fasting blood sampling and untargeted metabolomic measurements among 439 adult twins. Linear regression models and bioinformatics analysis were used to examine the relation of obesity measures, including body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) with serum metabolite levels and related pathways. A co-twin control study was additionally conducted among 15 obesity-discordant monozygotic (MZ) pairs (intrapair BMI difference >3 kg/m2) to examine any differences in metabolites controlling for genetic factors. Eleven metabolites were associated with BMI, WC and WHR after controlling for genetic and shared environmental factors. Pathway analysis identified pathways such as phenylalanine metabolism, purine metabolism, valine, leucine and isoleucine biosynthesis that were associated with obesity. A wide range of unfavorable alterations in the serum metabolome was associated with obesity. Obesity-discordant twin analysis suggests that these associations are independent of genetic liability.
N6-Methyladenosine (m6A) regulates oocyte-to-embryo transition and the reprogramming of somatic cells into induced pluripotent stem cells. However, the role of m6A methylation in porcine early embryonic development and its reprogramming characteristics in somatic cell nuclear transfer (SCNT) embryos are yet to be known. Here, we showed that m6A methylation was essential for normal early embryonic development and its aberrant reprogramming in SCNT embryos. We identified a persistent occurrence of m6A methylation in embryos between 1-cell to blastocyst stages and m6A levels abruptly increased during the morula-to-blastocyst transition. Cycloleucine (methylation inhibitor, 20 mM) treatment efficiently reduced m6A levels, significantly decreased the rates of 4-cell embryos and blastocysts, and disrupted normal lineage allocation. Moreover, cycloleucine treatment also led to higher levels in both apoptosis and autophagy in blastocysts. Furthermore, m6A levels in SCNT embryos at the 4-cell and 8-cell stages were significantly lower than that in parthenogenetic activation (PA) embryos, suggesting an abnormal reprogramming of m6A methylation in SCNT embryos. Correspondingly, expression levels of m6A writers (METTL3 and METTL14) and eraser (FTO) were apparently higher in SCNT 8-cell embryos compared with their PA counterparts. Taken together, these results indicated that aberrant nuclear transfer-mediated reprogramming of m6A methylation was involved in regulating porcine early embryonic development.